1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/base/math_util.h"
11 #include "base/values.h"
12 #include "ui/gfx/quad_f.h"
13 #include "ui/gfx/rect.h"
14 #include "ui/gfx/rect_conversions.h"
15 #include "ui/gfx/rect_f.h"
16 #include "ui/gfx/transform.h"
17 #include "ui/gfx/vector2d_f.h"
21 const double MathUtil::kPiDouble
= 3.14159265358979323846;
22 const float MathUtil::kPiFloat
= 3.14159265358979323846f
;
24 static HomogeneousCoordinate
ProjectHomogeneousPoint(
25 const gfx::Transform
& transform
,
26 const gfx::PointF
& p
) {
27 // In this case, the layer we are trying to project onto is perpendicular to
28 // ray (point p and z-axis direction) that we are trying to project. This
29 // happens when the layer is rotated so that it is infinitesimally thin, or
30 // when it is co-planar with the camera origin -- i.e. when the layer is
32 if (!transform
.matrix().get(2, 2))
33 return HomogeneousCoordinate(0.0, 0.0, 0.0, 1.0);
35 SkMScalar z
= -(transform
.matrix().get(2, 0) * p
.x() +
36 transform
.matrix().get(2, 1) * p
.y() +
37 transform
.matrix().get(2, 3)) /
38 transform
.matrix().get(2, 2);
39 HomogeneousCoordinate
result(p
.x(), p
.y(), z
, 1.0);
40 transform
.matrix().mapMScalars(result
.vec
, result
.vec
);
44 static HomogeneousCoordinate
MapHomogeneousPoint(
45 const gfx::Transform
& transform
,
46 const gfx::Point3F
& p
) {
47 HomogeneousCoordinate
result(p
.x(), p
.y(), p
.z(), 1.0);
48 transform
.matrix().mapMScalars(result
.vec
, result
.vec
);
52 static HomogeneousCoordinate
ComputeClippedPointForEdge(
53 const HomogeneousCoordinate
& h1
,
54 const HomogeneousCoordinate
& h2
) {
55 // Points h1 and h2 form a line in 4d, and any point on that line can be
56 // represented as an interpolation between h1 and h2:
57 // p = (1-t) h1 + (t) h2
59 // We want to compute point p such that p.w == epsilon, where epsilon is a
60 // small non-zero number. (but the smaller the number is, the higher the risk
62 // To do this, we solve for t in the following equation:
63 // p.w = epsilon = (1-t) * h1.w + (t) * h2.w
65 // Once paramter t is known, the rest of p can be computed via
66 // p = (1-t) h1 + (t) h2.
68 // Technically this is a special case of the following assertion, but its a
69 // good idea to keep it an explicit sanity check here.
70 DCHECK_NE(h2
.w(), h1
.w());
71 // Exactly one of h1 or h2 (but not both) must be on the negative side of the
72 // w plane when this is called.
73 DCHECK(h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped());
75 // ...or any positive non-zero small epsilon
76 SkMScalar w
= 0.00001f
;
77 SkMScalar t
= (w
- h1
.w()) / (h2
.w() - h1
.w());
79 SkMScalar x
= (SK_MScalar1
- t
) * h1
.x() + t
* h2
.x();
80 SkMScalar y
= (SK_MScalar1
- t
) * h1
.y() + t
* h2
.y();
81 SkMScalar z
= (SK_MScalar1
- t
) * h1
.z() + t
* h2
.z();
83 return HomogeneousCoordinate(x
, y
, z
, w
);
86 static inline void ExpandBoundsToIncludePoint(float* xmin
,
90 const gfx::PointF
& p
) {
91 *xmin
= std::min(p
.x(), *xmin
);
92 *xmax
= std::max(p
.x(), *xmax
);
93 *ymin
= std::min(p
.y(), *ymin
);
94 *ymax
= std::max(p
.y(), *ymax
);
97 static inline void AddVertexToClippedQuad(const gfx::PointF
& new_vertex
,
98 gfx::PointF clipped_quad
[8],
99 int* num_vertices_in_clipped_quad
) {
100 clipped_quad
[*num_vertices_in_clipped_quad
] = new_vertex
;
101 (*num_vertices_in_clipped_quad
)++;
104 gfx::Rect
MathUtil::MapEnclosingClippedRect(const gfx::Transform
& transform
,
105 const gfx::Rect
& src_rect
) {
106 if (transform
.IsIdentityOrIntegerTranslation()) {
109 static_cast<int>(SkMScalarToFloat(transform
.matrix().get(0, 3))),
111 SkMScalarToFloat(transform
.matrix().get(1, 3))));
113 return gfx::ToEnclosingRect(MapClippedRect(transform
, gfx::RectF(src_rect
)));
116 gfx::RectF
MathUtil::MapClippedRect(const gfx::Transform
& transform
,
117 const gfx::RectF
& src_rect
) {
118 if (transform
.IsIdentityOrTranslation()) {
120 gfx::Vector2dF(SkMScalarToFloat(transform
.matrix().get(0, 3)),
121 SkMScalarToFloat(transform
.matrix().get(1, 3)));
124 // Apply the transform, but retain the result in homogeneous coordinates.
126 SkMScalar quad
[4 * 2]; // input: 4 x 2D points
127 quad
[0] = src_rect
.x();
128 quad
[1] = src_rect
.y();
129 quad
[2] = src_rect
.right();
130 quad
[3] = src_rect
.y();
131 quad
[4] = src_rect
.right();
132 quad
[5] = src_rect
.bottom();
133 quad
[6] = src_rect
.x();
134 quad
[7] = src_rect
.bottom();
136 SkMScalar result
[4 * 4]; // output: 4 x 4D homogeneous points
137 transform
.matrix().map2(quad
, 4, result
);
139 HomogeneousCoordinate
hc0(result
[0], result
[1], result
[2], result
[3]);
140 HomogeneousCoordinate
hc1(result
[4], result
[5], result
[6], result
[7]);
141 HomogeneousCoordinate
hc2(result
[8], result
[9], result
[10], result
[11]);
142 HomogeneousCoordinate
hc3(result
[12], result
[13], result
[14], result
[15]);
143 return ComputeEnclosingClippedRect(hc0
, hc1
, hc2
, hc3
);
146 gfx::Rect
MathUtil::ProjectEnclosingClippedRect(const gfx::Transform
& transform
,
147 const gfx::Rect
& src_rect
) {
148 if (transform
.IsIdentityOrIntegerTranslation()) {
151 static_cast<int>(SkMScalarToFloat(transform
.matrix().get(0, 3))),
153 SkMScalarToFloat(transform
.matrix().get(1, 3))));
155 return gfx::ToEnclosingRect(
156 ProjectClippedRect(transform
, gfx::RectF(src_rect
)));
159 gfx::RectF
MathUtil::ProjectClippedRect(const gfx::Transform
& transform
,
160 const gfx::RectF
& src_rect
) {
161 if (transform
.IsIdentityOrTranslation()) {
163 gfx::Vector2dF(SkMScalarToFloat(transform
.matrix().get(0, 3)),
164 SkMScalarToFloat(transform
.matrix().get(1, 3)));
167 // Perform the projection, but retain the result in homogeneous coordinates.
168 gfx::QuadF q
= gfx::QuadF(src_rect
);
169 HomogeneousCoordinate h1
= ProjectHomogeneousPoint(transform
, q
.p1());
170 HomogeneousCoordinate h2
= ProjectHomogeneousPoint(transform
, q
.p2());
171 HomogeneousCoordinate h3
= ProjectHomogeneousPoint(transform
, q
.p3());
172 HomogeneousCoordinate h4
= ProjectHomogeneousPoint(transform
, q
.p4());
174 return ComputeEnclosingClippedRect(h1
, h2
, h3
, h4
);
177 void MathUtil::MapClippedQuad(const gfx::Transform
& transform
,
178 const gfx::QuadF
& src_quad
,
179 gfx::PointF clipped_quad
[8],
180 int* num_vertices_in_clipped_quad
) {
181 HomogeneousCoordinate h1
=
182 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p1()));
183 HomogeneousCoordinate h2
=
184 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p2()));
185 HomogeneousCoordinate h3
=
186 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p3()));
187 HomogeneousCoordinate h4
=
188 MapHomogeneousPoint(transform
, gfx::Point3F(src_quad
.p4()));
190 // The order of adding the vertices to the array is chosen so that
191 // clockwise / counter-clockwise orientation is retained.
193 *num_vertices_in_clipped_quad
= 0;
195 if (!h1
.ShouldBeClipped()) {
196 AddVertexToClippedQuad(
197 h1
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
200 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped()) {
201 AddVertexToClippedQuad(
202 ComputeClippedPointForEdge(h1
, h2
).CartesianPoint2d(),
204 num_vertices_in_clipped_quad
);
207 if (!h2
.ShouldBeClipped()) {
208 AddVertexToClippedQuad(
209 h2
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
212 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped()) {
213 AddVertexToClippedQuad(
214 ComputeClippedPointForEdge(h2
, h3
).CartesianPoint2d(),
216 num_vertices_in_clipped_quad
);
219 if (!h3
.ShouldBeClipped()) {
220 AddVertexToClippedQuad(
221 h3
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
224 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped()) {
225 AddVertexToClippedQuad(
226 ComputeClippedPointForEdge(h3
, h4
).CartesianPoint2d(),
228 num_vertices_in_clipped_quad
);
231 if (!h4
.ShouldBeClipped()) {
232 AddVertexToClippedQuad(
233 h4
.CartesianPoint2d(), clipped_quad
, num_vertices_in_clipped_quad
);
236 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped()) {
237 AddVertexToClippedQuad(
238 ComputeClippedPointForEdge(h4
, h1
).CartesianPoint2d(),
240 num_vertices_in_clipped_quad
);
243 DCHECK_LE(*num_vertices_in_clipped_quad
, 8);
246 gfx::RectF
MathUtil::ComputeEnclosingRectOfVertices(
247 const gfx::PointF vertices
[],
249 if (num_vertices
< 2)
252 float xmin
= std::numeric_limits
<float>::max();
253 float xmax
= -std::numeric_limits
<float>::max();
254 float ymin
= std::numeric_limits
<float>::max();
255 float ymax
= -std::numeric_limits
<float>::max();
257 for (int i
= 0; i
< num_vertices
; ++i
)
258 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
, vertices
[i
]);
260 return gfx::RectF(gfx::PointF(xmin
, ymin
),
261 gfx::SizeF(xmax
- xmin
, ymax
- ymin
));
264 gfx::RectF
MathUtil::ComputeEnclosingClippedRect(
265 const HomogeneousCoordinate
& h1
,
266 const HomogeneousCoordinate
& h2
,
267 const HomogeneousCoordinate
& h3
,
268 const HomogeneousCoordinate
& h4
) {
269 // This function performs clipping as necessary and computes the enclosing 2d
270 // gfx::RectF of the vertices. Doing these two steps simultaneously allows us
271 // to avoid the overhead of storing an unknown number of clipped vertices.
273 // If no vertices on the quad are clipped, then we can simply return the
274 // enclosing rect directly.
275 bool something_clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
276 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
277 if (!something_clipped
) {
278 gfx::QuadF mapped_quad
= gfx::QuadF(h1
.CartesianPoint2d(),
279 h2
.CartesianPoint2d(),
280 h3
.CartesianPoint2d(),
281 h4
.CartesianPoint2d());
282 return mapped_quad
.BoundingBox();
285 bool everything_clipped
= h1
.ShouldBeClipped() && h2
.ShouldBeClipped() &&
286 h3
.ShouldBeClipped() && h4
.ShouldBeClipped();
287 if (everything_clipped
)
290 float xmin
= std::numeric_limits
<float>::max();
291 float xmax
= -std::numeric_limits
<float>::max();
292 float ymin
= std::numeric_limits
<float>::max();
293 float ymax
= -std::numeric_limits
<float>::max();
295 if (!h1
.ShouldBeClipped())
296 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
297 h1
.CartesianPoint2d());
299 if (h1
.ShouldBeClipped() ^ h2
.ShouldBeClipped())
300 ExpandBoundsToIncludePoint(&xmin
,
304 ComputeClippedPointForEdge(h1
, h2
)
305 .CartesianPoint2d());
307 if (!h2
.ShouldBeClipped())
308 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
309 h2
.CartesianPoint2d());
311 if (h2
.ShouldBeClipped() ^ h3
.ShouldBeClipped())
312 ExpandBoundsToIncludePoint(&xmin
,
316 ComputeClippedPointForEdge(h2
, h3
)
317 .CartesianPoint2d());
319 if (!h3
.ShouldBeClipped())
320 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
321 h3
.CartesianPoint2d());
323 if (h3
.ShouldBeClipped() ^ h4
.ShouldBeClipped())
324 ExpandBoundsToIncludePoint(&xmin
,
328 ComputeClippedPointForEdge(h3
, h4
)
329 .CartesianPoint2d());
331 if (!h4
.ShouldBeClipped())
332 ExpandBoundsToIncludePoint(&xmin
, &xmax
, &ymin
, &ymax
,
333 h4
.CartesianPoint2d());
335 if (h4
.ShouldBeClipped() ^ h1
.ShouldBeClipped())
336 ExpandBoundsToIncludePoint(&xmin
,
340 ComputeClippedPointForEdge(h4
, h1
)
341 .CartesianPoint2d());
343 return gfx::RectF(gfx::PointF(xmin
, ymin
),
344 gfx::SizeF(xmax
- xmin
, ymax
- ymin
));
347 gfx::QuadF
MathUtil::MapQuad(const gfx::Transform
& transform
,
350 if (transform
.IsIdentityOrTranslation()) {
351 gfx::QuadF
mapped_quad(q
);
353 gfx::Vector2dF(SkMScalarToFloat(transform
.matrix().get(0, 3)),
354 SkMScalarToFloat(transform
.matrix().get(1, 3)));
359 HomogeneousCoordinate h1
=
360 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p1()));
361 HomogeneousCoordinate h2
=
362 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p2()));
363 HomogeneousCoordinate h3
=
364 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p3()));
365 HomogeneousCoordinate h4
=
366 MapHomogeneousPoint(transform
, gfx::Point3F(q
.p4()));
368 *clipped
= h1
.ShouldBeClipped() || h2
.ShouldBeClipped() ||
369 h3
.ShouldBeClipped() || h4
.ShouldBeClipped();
371 // Result will be invalid if clipped == true. But, compute it anyway just in
372 // case, to emulate existing behavior.
373 return gfx::QuadF(h1
.CartesianPoint2d(),
374 h2
.CartesianPoint2d(),
375 h3
.CartesianPoint2d(),
376 h4
.CartesianPoint2d());
379 gfx::PointF
MathUtil::MapPoint(const gfx::Transform
& transform
,
380 const gfx::PointF
& p
,
382 HomogeneousCoordinate h
= MapHomogeneousPoint(transform
, gfx::Point3F(p
));
386 return h
.CartesianPoint2d();
389 // The cartesian coordinates will be invalid after dividing by w.
392 // Avoid dividing by w if w == 0.
394 return gfx::PointF();
396 // This return value will be invalid because clipped == true, but (1) users of
397 // this code should be ignoring the return value when clipped == true anyway,
398 // and (2) this behavior is more consistent with existing behavior of WebKit
399 // transforms if the user really does not ignore the return value.
400 return h
.CartesianPoint2d();
403 gfx::Point3F
MathUtil::MapPoint(const gfx::Transform
& transform
,
404 const gfx::Point3F
& p
,
406 HomogeneousCoordinate h
= MapHomogeneousPoint(transform
, p
);
410 return h
.CartesianPoint3d();
413 // The cartesian coordinates will be invalid after dividing by w.
416 // Avoid dividing by w if w == 0.
418 return gfx::Point3F();
420 // This return value will be invalid because clipped == true, but (1) users of
421 // this code should be ignoring the return value when clipped == true anyway,
422 // and (2) this behavior is more consistent with existing behavior of WebKit
423 // transforms if the user really does not ignore the return value.
424 return h
.CartesianPoint3d();
427 gfx::QuadF
MathUtil::ProjectQuad(const gfx::Transform
& transform
,
430 gfx::QuadF projected_quad
;
432 projected_quad
.set_p1(ProjectPoint(transform
, q
.p1(), &clipped_point
));
433 *clipped
= clipped_point
;
434 projected_quad
.set_p2(ProjectPoint(transform
, q
.p2(), &clipped_point
));
435 *clipped
|= clipped_point
;
436 projected_quad
.set_p3(ProjectPoint(transform
, q
.p3(), &clipped_point
));
437 *clipped
|= clipped_point
;
438 projected_quad
.set_p4(ProjectPoint(transform
, q
.p4(), &clipped_point
));
439 *clipped
|= clipped_point
;
441 return projected_quad
;
444 gfx::PointF
MathUtil::ProjectPoint(const gfx::Transform
& transform
,
445 const gfx::PointF
& p
,
447 HomogeneousCoordinate h
= ProjectHomogeneousPoint(transform
, p
);
450 // The cartesian coordinates will be valid in this case.
452 return h
.CartesianPoint2d();
455 // The cartesian coordinates will be invalid after dividing by w.
458 // Avoid dividing by w if w == 0.
460 return gfx::PointF();
462 // This return value will be invalid because clipped == true, but (1) users of
463 // this code should be ignoring the return value when clipped == true anyway,
464 // and (2) this behavior is more consistent with existing behavior of WebKit
465 // transforms if the user really does not ignore the return value.
466 return h
.CartesianPoint2d();
469 gfx::RectF
MathUtil::ScaleRectProportional(const gfx::RectF
& input_outer_rect
,
470 const gfx::RectF
& scale_outer_rect
,
471 const gfx::RectF
& scale_inner_rect
) {
472 gfx::RectF output_inner_rect
= input_outer_rect
;
473 float scale_rect_to_input_scale_x
=
474 scale_outer_rect
.width() / input_outer_rect
.width();
475 float scale_rect_to_input_scale_y
=
476 scale_outer_rect
.height() / input_outer_rect
.height();
478 gfx::Vector2dF top_left_diff
=
479 scale_inner_rect
.origin() - scale_outer_rect
.origin();
480 gfx::Vector2dF bottom_right_diff
=
481 scale_inner_rect
.bottom_right() - scale_outer_rect
.bottom_right();
482 output_inner_rect
.Inset(top_left_diff
.x() / scale_rect_to_input_scale_x
,
483 top_left_diff
.y() / scale_rect_to_input_scale_y
,
484 -bottom_right_diff
.x() / scale_rect_to_input_scale_x
,
485 -bottom_right_diff
.y() / scale_rect_to_input_scale_y
);
486 return output_inner_rect
;
489 static inline float ScaleOnAxis(double a
, double b
, double c
) {
497 // Do the sqrt as a double to not lose precision.
498 return static_cast<float>(std::sqrt(a
* a
+ b
* b
+ c
* c
));
501 gfx::Vector2dF
MathUtil::ComputeTransform2dScaleComponents(
502 const gfx::Transform
& transform
,
503 float fallback_value
) {
504 if (transform
.HasPerspective())
505 return gfx::Vector2dF(fallback_value
, fallback_value
);
506 float x_scale
= ScaleOnAxis(transform
.matrix().getDouble(0, 0),
507 transform
.matrix().getDouble(1, 0),
508 transform
.matrix().getDouble(2, 0));
509 float y_scale
= ScaleOnAxis(transform
.matrix().getDouble(0, 1),
510 transform
.matrix().getDouble(1, 1),
511 transform
.matrix().getDouble(2, 1));
512 return gfx::Vector2dF(x_scale
, y_scale
);
515 float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF
& v1
,
516 const gfx::Vector2dF
& v2
) {
517 double dot_product
= gfx::DotProduct(v1
, v2
) / v1
.Length() / v2
.Length();
518 // Clamp to compensate for rounding errors.
519 dot_product
= std::max(-1.0, std::min(1.0, dot_product
));
520 return static_cast<float>(Rad2Deg(std::acos(dot_product
)));
523 gfx::Vector2dF
MathUtil::ProjectVector(const gfx::Vector2dF
& source
,
524 const gfx::Vector2dF
& destination
) {
525 float projected_length
=
526 gfx::DotProduct(source
, destination
) / destination
.LengthSquared();
527 return gfx::Vector2dF(projected_length
* destination
.x(),
528 projected_length
* destination
.y());
531 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::Size
& s
) {
532 scoped_ptr
<base::DictionaryValue
> res(new base::DictionaryValue());
533 res
->SetDouble("width", s
.width());
534 res
->SetDouble("height", s
.height());
535 return res
.PassAs
<base::Value
>();
538 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::SizeF
& s
) {
539 scoped_ptr
<base::DictionaryValue
> res(new base::DictionaryValue());
540 res
->SetDouble("width", s
.width());
541 res
->SetDouble("height", s
.height());
542 return res
.PassAs
<base::Value
>();
545 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::Rect
& r
) {
546 scoped_ptr
<base::ListValue
> res(new base::ListValue());
547 res
->AppendInteger(r
.x());
548 res
->AppendInteger(r
.y());
549 res
->AppendInteger(r
.width());
550 res
->AppendInteger(r
.height());
551 return res
.PassAs
<base::Value
>();
554 bool MathUtil::FromValue(const base::Value
* raw_value
, gfx::Rect
* out_rect
) {
555 const base::ListValue
* value
= NULL
;
556 if (!raw_value
->GetAsList(&value
))
559 if (value
->GetSize() != 4)
564 ok
&= value
->GetInteger(0, &x
);
565 ok
&= value
->GetInteger(1, &y
);
566 ok
&= value
->GetInteger(2, &w
);
567 ok
&= value
->GetInteger(3, &h
);
571 *out_rect
= gfx::Rect(x
, y
, w
, h
);
575 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::PointF
& pt
) {
576 scoped_ptr
<base::ListValue
> res(new base::ListValue());
577 res
->AppendDouble(pt
.x());
578 res
->AppendDouble(pt
.y());
579 return res
.PassAs
<base::Value
>();
582 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::Vector2d
& v
) {
583 scoped_ptr
<base::ListValue
> res(new base::ListValue());
584 res
->AppendInteger(v
.x());
585 res
->AppendInteger(v
.y());
586 return res
.PassAs
<base::Value
>();
589 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::QuadF
& q
) {
590 scoped_ptr
<base::ListValue
> res(new base::ListValue());
591 res
->AppendDouble(q
.p1().x());
592 res
->AppendDouble(q
.p1().y());
593 res
->AppendDouble(q
.p2().x());
594 res
->AppendDouble(q
.p2().y());
595 res
->AppendDouble(q
.p3().x());
596 res
->AppendDouble(q
.p3().y());
597 res
->AppendDouble(q
.p4().x());
598 res
->AppendDouble(q
.p4().y());
599 return res
.PassAs
<base::Value
>();
602 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::RectF
& rect
) {
603 scoped_ptr
<base::ListValue
> res(new base::ListValue());
604 res
->AppendDouble(rect
.x());
605 res
->AppendDouble(rect
.y());
606 res
->AppendDouble(rect
.width());
607 res
->AppendDouble(rect
.height());
608 return res
.PassAs
<base::Value
>();
611 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::Transform
& transform
) {
612 scoped_ptr
<base::ListValue
> res(new base::ListValue());
613 const SkMatrix44
& m
= transform
.matrix();
614 for (int row
= 0; row
< 4; ++row
) {
615 for (int col
= 0; col
< 4; ++col
)
616 res
->AppendDouble(m
.getDouble(row
, col
));
618 return res
.PassAs
<base::Value
>();
621 scoped_ptr
<base::Value
> MathUtil::AsValue(const gfx::BoxF
& box
) {
622 scoped_ptr
<base::ListValue
> res(new base::ListValue());
623 res
->AppendInteger(box
.x());
624 res
->AppendInteger(box
.y());
625 res
->AppendInteger(box
.z());
626 res
->AppendInteger(box
.width());
627 res
->AppendInteger(box
.height());
628 res
->AppendInteger(box
.depth());
629 return res
.PassAs
<base::Value
>();
632 scoped_ptr
<base::Value
> MathUtil::AsValueSafely(double value
) {
633 return scoped_ptr
<base::Value
>(base::Value::CreateDoubleValue(
634 std::min(value
, std::numeric_limits
<double>::max())));
637 scoped_ptr
<base::Value
> MathUtil::AsValueSafely(float value
) {
638 return scoped_ptr
<base::Value
>(base::Value::CreateDoubleValue(
639 std::min(value
, std::numeric_limits
<float>::max())));