Encode method and error message inside LevelDB::Status message
[chromium-blink-merge.git] / ui / gfx / transform_util.cc
blob90c8b56e5547937f76686bfa6934064e74207112
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "ui/gfx/transform_util.h"
7 #include <cmath>
9 #include "ui/gfx/point.h"
11 namespace gfx {
13 namespace {
15 double Length3(double v[3]) {
16 return std::sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
19 void Scale3(double v[3], double scale) {
20 for (int i = 0; i < 3; ++i)
21 v[i] *= scale;
24 template <int n>
25 double Dot(const double* a, const double* b) {
26 double toReturn = 0;
27 for (int i = 0; i < n; ++i)
28 toReturn += a[i] * b[i];
29 return toReturn;
32 template <int n>
33 void Combine(double* out,
34 const double* a,
35 const double* b,
36 double scale_a,
37 double scale_b) {
38 for (int i = 0; i < n; ++i)
39 out[i] = a[i] * scale_a + b[i] * scale_b;
42 void Cross3(double out[3], double a[3], double b[3]) {
43 double x = a[1] * b[2] - a[2] * b[1];
44 double y = a[2] * b[0] - a[0] * b[2];
45 double z = a[0] * b[1] - a[1] * b[0];
46 out[0] = x;
47 out[1] = y;
48 out[2] = z;
51 // Taken from http://www.w3.org/TR/css3-transforms/.
52 bool Slerp(double out[4],
53 const double q1[4],
54 const double q2[4],
55 double progress) {
56 double product = Dot<4>(q1, q2);
58 // Clamp product to -1.0 <= product <= 1.0.
59 product = std::min(std::max(product, -1.0), 1.0);
61 // Interpolate angles along the shortest path. For example, to interpolate
62 // between a 175 degree angle and a 185 degree angle, interpolate along the
63 // 10 degree path from 175 to 185, rather than along the 350 degree path in
64 // the opposite direction. This matches WebKit's implementation but not
65 // the current W3C spec. Fixing the spec to match this approach is discussed
66 // at:
67 // http://lists.w3.org/Archives/Public/www-style/2013May/0131.html
68 double scale1 = 1.0;
69 if (product < 0) {
70 product = -product;
71 scale1 = -1.0;
74 const double epsilon = 1e-5;
75 if (std::abs(product - 1.0) < epsilon) {
76 for (int i = 0; i < 4; ++i)
77 out[i] = q1[i];
78 return true;
81 double denom = std::sqrt(1 - product * product);
82 double theta = std::acos(product);
83 double w = std::sin(progress * theta) * (1 / denom);
85 scale1 *= std::cos(progress * theta) - product * w;
86 double scale2 = w;
87 Combine<4>(out, q1, q2, scale1, scale2);
89 return true;
92 // Returns false if the matrix cannot be normalized.
93 bool Normalize(SkMatrix44& m) {
94 if (m.getDouble(3, 3) == 0.0)
95 // Cannot normalize.
96 return false;
98 double scale = 1.0 / m.getDouble(3, 3);
99 for (int i = 0; i < 4; i++)
100 for (int j = 0; j < 4; j++)
101 m.setDouble(i, j, m.getDouble(i, j) * scale);
103 return true;
106 } // namespace
108 Transform GetScaleTransform(const Point& anchor, float scale) {
109 Transform transform;
110 transform.Translate(anchor.x() * (1 - scale),
111 anchor.y() * (1 - scale));
112 transform.Scale(scale, scale);
113 return transform;
116 DecomposedTransform::DecomposedTransform() {
117 translate[0] = translate[1] = translate[2] = 0.0;
118 scale[0] = scale[1] = scale[2] = 1.0;
119 skew[0] = skew[1] = skew[2] = 0.0;
120 perspective[0] = perspective[1] = perspective[2] = 0.0;
121 quaternion[0] = quaternion[1] = quaternion[2] = 0.0;
122 perspective[3] = quaternion[3] = 1.0;
125 bool BlendDecomposedTransforms(DecomposedTransform* out,
126 const DecomposedTransform& to,
127 const DecomposedTransform& from,
128 double progress) {
129 double scalea = progress;
130 double scaleb = 1.0 - progress;
131 Combine<3>(out->translate, to.translate, from.translate, scalea, scaleb);
132 Combine<3>(out->scale, to.scale, from.scale, scalea, scaleb);
133 Combine<3>(out->skew, to.skew, from.skew, scalea, scaleb);
134 Combine<4>(
135 out->perspective, to.perspective, from.perspective, scalea, scaleb);
136 return Slerp(out->quaternion, from.quaternion, to.quaternion, progress);
139 // Taken from http://www.w3.org/TR/css3-transforms/.
140 bool DecomposeTransform(DecomposedTransform* decomp,
141 const Transform& transform) {
142 if (!decomp)
143 return false;
145 // We'll operate on a copy of the matrix.
146 SkMatrix44 matrix = transform.matrix();
148 // If we cannot normalize the matrix, then bail early as we cannot decompose.
149 if (!Normalize(matrix))
150 return false;
152 SkMatrix44 perspectiveMatrix = matrix;
154 for (int i = 0; i < 3; ++i)
155 perspectiveMatrix.setDouble(3, i, 0.0);
157 perspectiveMatrix.setDouble(3, 3, 1.0);
159 // If the perspective matrix is not invertible, we are also unable to
160 // decompose, so we'll bail early. Constant taken from SkMatrix44::invert.
161 if (std::abs(perspectiveMatrix.determinant()) < 1e-8)
162 return false;
164 if (matrix.getDouble(3, 0) != 0.0 ||
165 matrix.getDouble(3, 1) != 0.0 ||
166 matrix.getDouble(3, 2) != 0.0) {
167 // rhs is the right hand side of the equation.
168 SkMScalar rhs[4] = {
169 matrix.get(3, 0),
170 matrix.get(3, 1),
171 matrix.get(3, 2),
172 matrix.get(3, 3)
175 // Solve the equation by inverting perspectiveMatrix and multiplying
176 // rhs by the inverse.
177 SkMatrix44 inversePerspectiveMatrix(SkMatrix44::kUninitialized_Constructor);
178 if (!perspectiveMatrix.invert(&inversePerspectiveMatrix))
179 return false;
181 SkMatrix44 transposedInversePerspectiveMatrix =
182 inversePerspectiveMatrix;
184 transposedInversePerspectiveMatrix.transpose();
185 transposedInversePerspectiveMatrix.mapMScalars(rhs);
187 for (int i = 0; i < 4; ++i)
188 decomp->perspective[i] = rhs[i];
190 } else {
191 // No perspective.
192 for (int i = 0; i < 3; ++i)
193 decomp->perspective[i] = 0.0;
194 decomp->perspective[3] = 1.0;
197 for (int i = 0; i < 3; i++)
198 decomp->translate[i] = matrix.getDouble(i, 3);
200 double row[3][3];
201 for (int i = 0; i < 3; i++)
202 for (int j = 0; j < 3; ++j)
203 row[i][j] = matrix.getDouble(j, i);
205 // Compute X scale factor and normalize first row.
206 decomp->scale[0] = Length3(row[0]);
207 if (decomp->scale[0] != 0.0)
208 Scale3(row[0], 1.0 / decomp->scale[0]);
210 // Compute XY shear factor and make 2nd row orthogonal to 1st.
211 decomp->skew[0] = Dot<3>(row[0], row[1]);
212 Combine<3>(row[1], row[1], row[0], 1.0, -decomp->skew[0]);
214 // Now, compute Y scale and normalize 2nd row.
215 decomp->scale[1] = Length3(row[1]);
216 if (decomp->scale[1] != 0.0)
217 Scale3(row[1], 1.0 / decomp->scale[1]);
219 decomp->skew[0] /= decomp->scale[1];
221 // Compute XZ and YZ shears, orthogonalize 3rd row
222 decomp->skew[1] = Dot<3>(row[0], row[2]);
223 Combine<3>(row[2], row[2], row[0], 1.0, -decomp->skew[1]);
224 decomp->skew[2] = Dot<3>(row[1], row[2]);
225 Combine<3>(row[2], row[2], row[1], 1.0, -decomp->skew[2]);
227 // Next, get Z scale and normalize 3rd row.
228 decomp->scale[2] = Length3(row[2]);
229 if (decomp->scale[2] != 0.0)
230 Scale3(row[2], 1.0 / decomp->scale[2]);
232 decomp->skew[1] /= decomp->scale[2];
233 decomp->skew[2] /= decomp->scale[2];
235 // At this point, the matrix (in rows) is orthonormal.
236 // Check for a coordinate system flip. If the determinant
237 // is -1, then negate the matrix and the scaling factors.
238 double pdum3[3];
239 Cross3(pdum3, row[1], row[2]);
240 if (Dot<3>(row[0], pdum3) < 0) {
241 for (int i = 0; i < 3; i++) {
242 decomp->scale[i] *= -1.0;
243 for (int j = 0; j < 3; ++j)
244 row[i][j] *= -1.0;
248 decomp->quaternion[0] =
249 0.5 * std::sqrt(std::max(1.0 + row[0][0] - row[1][1] - row[2][2], 0.0));
250 decomp->quaternion[1] =
251 0.5 * std::sqrt(std::max(1.0 - row[0][0] + row[1][1] - row[2][2], 0.0));
252 decomp->quaternion[2] =
253 0.5 * std::sqrt(std::max(1.0 - row[0][0] - row[1][1] + row[2][2], 0.0));
254 decomp->quaternion[3] =
255 0.5 * std::sqrt(std::max(1.0 + row[0][0] + row[1][1] + row[2][2], 0.0));
257 if (row[2][1] > row[1][2])
258 decomp->quaternion[0] = -decomp->quaternion[0];
259 if (row[0][2] > row[2][0])
260 decomp->quaternion[1] = -decomp->quaternion[1];
261 if (row[1][0] > row[0][1])
262 decomp->quaternion[2] = -decomp->quaternion[2];
264 return true;
267 // Taken from http://www.w3.org/TR/css3-transforms/.
268 Transform ComposeTransform(const DecomposedTransform& decomp) {
269 SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor);
270 for (int i = 0; i < 4; i++)
271 matrix.setDouble(3, i, decomp.perspective[i]);
273 matrix.preTranslate(SkDoubleToMScalar(decomp.translate[0]),
274 SkDoubleToMScalar(decomp.translate[1]),
275 SkDoubleToMScalar(decomp.translate[2]));
277 double x = decomp.quaternion[0];
278 double y = decomp.quaternion[1];
279 double z = decomp.quaternion[2];
280 double w = decomp.quaternion[3];
282 SkMatrix44 rotation_matrix(SkMatrix44::kUninitialized_Constructor);
283 rotation_matrix.set3x3(1.0 - 2.0 * (y * y + z * z),
284 2.0 * (x * y + z * w),
285 2.0 * (x * z - y * w),
286 2.0 * (x * y - z * w),
287 1.0 - 2.0 * (x * x + z * z),
288 2.0 * (y * z + x * w),
289 2.0 * (x * z + y * w),
290 2.0 * (y * z - x * w),
291 1.0 - 2.0 * (x * x + y * y));
293 matrix.preConcat(rotation_matrix);
295 SkMatrix44 temp(SkMatrix44::kIdentity_Constructor);
296 if (decomp.skew[2]) {
297 temp.setDouble(1, 2, decomp.skew[2]);
298 matrix.preConcat(temp);
301 if (decomp.skew[1]) {
302 temp.setDouble(1, 2, 0);
303 temp.setDouble(0, 2, decomp.skew[1]);
304 matrix.preConcat(temp);
307 if (decomp.skew[0]) {
308 temp.setDouble(0, 2, 0);
309 temp.setDouble(0, 1, decomp.skew[0]);
310 matrix.preConcat(temp);
313 matrix.preScale(SkDoubleToMScalar(decomp.scale[0]),
314 SkDoubleToMScalar(decomp.scale[1]),
315 SkDoubleToMScalar(decomp.scale[2]));
317 Transform to_return;
318 to_return.matrix() = matrix;
319 return to_return;
322 } // namespace ui