Only grant permissions to new extensions from sync if they have the expected version
[chromium-blink-merge.git] / net / base / mime_sniffer.cc
blob668e89831f80837dd25793cc155835143eb14692
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // Detecting mime types is a tricky business because we need to balance
6 // compatibility concerns with security issues. Here is a survey of how other
7 // browsers behave and then a description of how we intend to behave.
8 //
9 // HTML payload, no Content-Type header:
10 // * IE 7: Render as HTML
11 // * Firefox 2: Render as HTML
12 // * Safari 3: Render as HTML
13 // * Opera 9: Render as HTML
15 // Here the choice seems clear:
16 // => Chrome: Render as HTML
18 // HTML payload, Content-Type: "text/plain":
19 // * IE 7: Render as HTML
20 // * Firefox 2: Render as text
21 // * Safari 3: Render as text (Note: Safari will Render as HTML if the URL
22 // has an HTML extension)
23 // * Opera 9: Render as text
25 // Here we choose to follow the majority (and break some compatibility with IE).
26 // Many folks dislike IE's behavior here.
27 // => Chrome: Render as text
28 // We generalize this as follows. If the Content-Type header is text/plain
29 // we won't detect dangerous mime types (those that can execute script).
31 // HTML payload, Content-Type: "application/octet-stream":
32 // * IE 7: Render as HTML
33 // * Firefox 2: Download as application/octet-stream
34 // * Safari 3: Render as HTML
35 // * Opera 9: Render as HTML
37 // We follow Firefox.
38 // => Chrome: Download as application/octet-stream
39 // One factor in this decision is that IIS 4 and 5 will send
40 // application/octet-stream for .xhtml files (because they don't recognize
41 // the extension). We did some experiments and it looks like this doesn't occur
42 // very often on the web. We choose the more secure option.
44 // GIF payload, no Content-Type header:
45 // * IE 7: Render as GIF
46 // * Firefox 2: Render as GIF
47 // * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
48 // URL has an GIF extension)
49 // * Opera 9: Render as GIF
51 // The choice is clear.
52 // => Chrome: Render as GIF
53 // Once we decide to render HTML without a Content-Type header, there isn't much
54 // reason not to render GIFs.
56 // GIF payload, Content-Type: "text/plain":
57 // * IE 7: Render as GIF
58 // * Firefox 2: Download as application/octet-stream (Note: Firefox will
59 // Download as GIF if the URL has an GIF extension)
60 // * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
61 // URL has an GIF extension)
62 // * Opera 9: Render as GIF
64 // Displaying as text/plain makes little sense as the content will look like
65 // gibberish. Here, we could change our minds and download.
66 // => Chrome: Render as GIF
68 // GIF payload, Content-Type: "application/octet-stream":
69 // * IE 7: Render as GIF
70 // * Firefox 2: Download as application/octet-stream (Note: Firefox will
71 // Download as GIF if the URL has an GIF extension)
72 // * Safari 3: Download as Unknown (Note: Safari will Render as GIF if the
73 // URL has an GIF extension)
74 // * Opera 9: Render as GIF
76 // We used to render as GIF here, but the problem is that some sites want to
77 // trigger downloads by sending application/octet-stream (even though they
78 // should be sending Content-Disposition: attachment). Although it is safe
79 // to render as GIF from a security perspective, we actually get better
80 // compatibility if we don't sniff from application/octet stream at all.
81 // => Chrome: Download as application/octet-stream
83 // XHTML payload, Content-Type: "text/xml":
84 // * IE 7: Render as XML
85 // * Firefox 2: Render as HTML
86 // * Safari 3: Render as HTML
87 // * Opera 9: Render as HTML
88 // The layout tests rely on us rendering this as HTML.
89 // But we're conservative in XHTML detection, as this runs afoul of the
90 // "don't detect dangerous mime types" rule.
92 // Note that our definition of HTML payload is much stricter than IE's
93 // definition and roughly the same as Firefox's definition.
95 #include <stdint.h>
96 #include <string>
98 #include "net/base/mime_sniffer.h"
100 #include "base/logging.h"
101 #include "base/metrics/histogram.h"
102 #include "base/strings/string_util.h"
103 #include "url/gurl.h"
105 namespace net {
107 // The number of content bytes we need to use all our magic numbers. Feel free
108 // to increase this number if you add a longer magic number.
109 static const size_t kBytesRequiredForMagic = 42;
111 struct MagicNumber {
112 const char* const mime_type;
113 const char* const magic;
114 size_t magic_len;
115 bool is_string;
116 const char* const mask; // if set, must have same length as |magic|
119 #define MAGIC_NUMBER(mime_type, magic) \
120 { (mime_type), (magic), sizeof(magic)-1, false, NULL },
122 template <int MagicSize, int MaskSize>
123 class VerifySizes {
124 static_assert(MagicSize == MaskSize, "sizes must be equal");
126 public:
127 enum { SIZES = MagicSize };
130 #define verified_sizeof(magic, mask) \
131 VerifySizes<sizeof(magic), sizeof(mask)>::SIZES
133 #define MAGIC_MASK(mime_type, magic, mask) \
134 { (mime_type), (magic), verified_sizeof(magic, mask)-1, false, (mask) },
136 // Magic strings are case insensitive and must not include '\0' characters
137 #define MAGIC_STRING(mime_type, magic) \
138 { (mime_type), (magic), sizeof(magic)-1, true, NULL },
140 static const MagicNumber kMagicNumbers[] = {
141 // Source: HTML 5 specification
142 MAGIC_NUMBER("application/pdf", "%PDF-")
143 MAGIC_NUMBER("application/postscript", "%!PS-Adobe-")
144 MAGIC_NUMBER("image/gif", "GIF87a")
145 MAGIC_NUMBER("image/gif", "GIF89a")
146 MAGIC_NUMBER("image/png", "\x89" "PNG\x0D\x0A\x1A\x0A")
147 MAGIC_NUMBER("image/jpeg", "\xFF\xD8\xFF")
148 MAGIC_NUMBER("image/bmp", "BM")
149 // Source: Mozilla
150 MAGIC_NUMBER("text/plain", "#!") // Script
151 MAGIC_NUMBER("text/plain", "%!") // Script, similar to PS
152 MAGIC_NUMBER("text/plain", "From")
153 MAGIC_NUMBER("text/plain", ">From")
154 // Chrome specific
155 MAGIC_NUMBER("application/x-gzip", "\x1F\x8B\x08")
156 MAGIC_NUMBER("audio/x-pn-realaudio", "\x2E\x52\x4D\x46")
157 MAGIC_NUMBER("video/x-ms-asf",
158 "\x30\x26\xB2\x75\x8E\x66\xCF\x11\xA6\xD9\x00\xAA\x00\x62\xCE\x6C")
159 MAGIC_NUMBER("image/tiff", "I I")
160 MAGIC_NUMBER("image/tiff", "II*")
161 MAGIC_NUMBER("image/tiff", "MM\x00*")
162 MAGIC_NUMBER("audio/mpeg", "ID3")
163 MAGIC_NUMBER("image/webp", "RIFF....WEBPVP8 ")
164 MAGIC_NUMBER("video/webm", "\x1A\x45\xDF\xA3")
165 MAGIC_NUMBER("application/zip", "PK\x03\x04")
166 MAGIC_NUMBER("application/x-rar-compressed", "Rar!\x1A\x07\x00")
167 MAGIC_NUMBER("application/x-msmetafile", "\xD7\xCD\xC6\x9A")
168 MAGIC_NUMBER("application/octet-stream", "MZ") // EXE
169 // Sniffing for Flash:
171 // MAGIC_NUMBER("application/x-shockwave-flash", "CWS")
172 // MAGIC_NUMBER("application/x-shockwave-flash", "FLV")
173 // MAGIC_NUMBER("application/x-shockwave-flash", "FWS")
175 // Including these magic number for Flash is a trade off.
177 // Pros:
178 // * Flash is an important and popular file format
180 // Cons:
181 // * These patterns are fairly weak
182 // * If we mistakenly decide something is Flash, we will execute it
183 // in the origin of an unsuspecting site. This could be a security
184 // vulnerability if the site allows users to upload content.
186 // On balance, we do not include these patterns.
189 // The number of content bytes we need to use all our Microsoft Office magic
190 // numbers.
191 static const size_t kBytesRequiredForOfficeMagic = 8;
193 static const MagicNumber kOfficeMagicNumbers[] = {
194 MAGIC_NUMBER("CFB", "\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1")
195 MAGIC_NUMBER("OOXML", "PK\x03\x04")
198 enum OfficeDocType {
199 DOC_TYPE_WORD,
200 DOC_TYPE_EXCEL,
201 DOC_TYPE_POWERPOINT,
202 DOC_TYPE_NONE
205 struct OfficeExtensionType {
206 OfficeDocType doc_type;
207 const char* const extension;
208 size_t extension_len;
211 #define OFFICE_EXTENSION(type, extension) \
212 { (type), (extension), sizeof(extension) - 1 },
214 static const OfficeExtensionType kOfficeExtensionTypes[] = {
215 OFFICE_EXTENSION(DOC_TYPE_WORD, ".doc")
216 OFFICE_EXTENSION(DOC_TYPE_EXCEL, ".xls")
217 OFFICE_EXTENSION(DOC_TYPE_POWERPOINT, ".ppt")
218 OFFICE_EXTENSION(DOC_TYPE_WORD, ".docx")
219 OFFICE_EXTENSION(DOC_TYPE_EXCEL, ".xlsx")
220 OFFICE_EXTENSION(DOC_TYPE_POWERPOINT, ".pptx")
223 static const MagicNumber kExtraMagicNumbers[] = {
224 MAGIC_NUMBER("image/x-xbitmap", "#define")
225 MAGIC_NUMBER("image/x-icon", "\x00\x00\x01\x00")
226 MAGIC_NUMBER("image/svg+xml", "<?xml_version=")
227 MAGIC_NUMBER("audio/wav", "RIFF....WAVEfmt ")
228 MAGIC_NUMBER("video/avi", "RIFF....AVI LIST")
229 MAGIC_NUMBER("audio/ogg", "OggS")
230 MAGIC_MASK("video/mpeg", "\x00\x00\x01\xB0", "\xFF\xFF\xFF\xF0")
231 MAGIC_MASK("audio/mpeg", "\xFF\xE0", "\xFF\xE0")
232 MAGIC_NUMBER("video/3gpp", "....ftyp3g")
233 MAGIC_NUMBER("video/3gpp", "....ftypavcl")
234 MAGIC_NUMBER("video/mp4", "....ftyp")
235 MAGIC_NUMBER("video/quicktime", "....moov")
236 MAGIC_NUMBER("application/x-shockwave-flash", "CWS")
237 MAGIC_NUMBER("application/x-shockwave-flash", "FWS")
238 MAGIC_NUMBER("video/x-flv", "FLV")
239 MAGIC_NUMBER("audio/x-flac", "fLaC")
241 // RAW image types.
242 MAGIC_NUMBER("image/x-canon-cr2", "II\x2a\x00\x10\x00\x00\x00CR")
243 MAGIC_NUMBER("image/x-canon-crw", "II\x1a\x00\x00\x00HEAPCCDR")
244 MAGIC_NUMBER("image/x-minolta-mrw", "\x00MRM")
245 MAGIC_NUMBER("image/x-olympus-orf", "MMOR") // big-endian
246 MAGIC_NUMBER("image/x-olympus-orf", "IIRO") // little-endian
247 MAGIC_NUMBER("image/x-olympus-orf", "IIRS") // little-endian
248 MAGIC_NUMBER("image/x-fuji-raf", "FUJIFILMCCD-RAW ")
249 MAGIC_NUMBER("image/x-panasonic-raw",
250 "IIU\x00\x08\x00\x00\x00") // Panasonic .raw
251 MAGIC_NUMBER("image/x-panasonic-raw",
252 "IIU\x00\x18\x00\x00\x00") // Panasonic .rw2
253 MAGIC_NUMBER("image/x-phaseone-raw", "MMMMRaw")
254 MAGIC_NUMBER("image/x-x3f", "FOVb")
257 // Our HTML sniffer differs slightly from Mozilla. For example, Mozilla will
258 // decide that a document that begins "<!DOCTYPE SOAP-ENV:Envelope PUBLIC " is
259 // HTML, but we will not.
261 #define MAGIC_HTML_TAG(tag) \
262 MAGIC_STRING("text/html", "<" tag)
264 static const MagicNumber kSniffableTags[] = {
265 // XML processing directive. Although this is not an HTML mime type, we sniff
266 // for this in the HTML phase because text/xml is just as powerful as HTML and
267 // we want to leverage our white space skipping technology.
268 MAGIC_NUMBER("text/xml", "<?xml") // Mozilla
269 // DOCTYPEs
270 MAGIC_HTML_TAG("!DOCTYPE html") // HTML5 spec
271 // Sniffable tags, ordered by how often they occur in sniffable documents.
272 MAGIC_HTML_TAG("script") // HTML5 spec, Mozilla
273 MAGIC_HTML_TAG("html") // HTML5 spec, Mozilla
274 MAGIC_HTML_TAG("!--")
275 MAGIC_HTML_TAG("head") // HTML5 spec, Mozilla
276 MAGIC_HTML_TAG("iframe") // Mozilla
277 MAGIC_HTML_TAG("h1") // Mozilla
278 MAGIC_HTML_TAG("div") // Mozilla
279 MAGIC_HTML_TAG("font") // Mozilla
280 MAGIC_HTML_TAG("table") // Mozilla
281 MAGIC_HTML_TAG("a") // Mozilla
282 MAGIC_HTML_TAG("style") // Mozilla
283 MAGIC_HTML_TAG("title") // Mozilla
284 MAGIC_HTML_TAG("b") // Mozilla
285 MAGIC_HTML_TAG("body") // Mozilla
286 MAGIC_HTML_TAG("br")
287 MAGIC_HTML_TAG("p") // Mozilla
290 static base::HistogramBase* UMASnifferHistogramGet(const char* name,
291 int array_size) {
292 base::HistogramBase* counter =
293 base::LinearHistogram::FactoryGet(name, 1, array_size - 1, array_size,
294 base::HistogramBase::kUmaTargetedHistogramFlag);
295 return counter;
298 // Compare content header to a magic number where magic_entry can contain '.'
299 // for single character of anything, allowing some bytes to be skipped.
300 static bool MagicCmp(const char* magic_entry, const char* content, size_t len) {
301 while (len) {
302 if ((*magic_entry != '.') && (*magic_entry != *content))
303 return false;
304 ++magic_entry;
305 ++content;
306 --len;
308 return true;
311 // Like MagicCmp() except that it ANDs each byte with a mask before
312 // the comparison, because there are some bits we don't care about.
313 static bool MagicMaskCmp(const char* magic_entry,
314 const char* content,
315 size_t len,
316 const char* mask) {
317 while (len) {
318 if ((*magic_entry != '.') && (*magic_entry != (*mask & *content)))
319 return false;
320 ++magic_entry;
321 ++content;
322 ++mask;
323 --len;
325 return true;
328 static bool MatchMagicNumber(const char* content,
329 size_t size,
330 const MagicNumber& magic_entry,
331 std::string* result) {
332 const size_t len = magic_entry.magic_len;
334 // Keep kBytesRequiredForMagic honest.
335 DCHECK_LE(len, kBytesRequiredForMagic);
337 // To compare with magic strings, we need to compute strlen(content), but
338 // content might not actually have a null terminator. In that case, we
339 // pretend the length is content_size.
340 const char* end = static_cast<const char*>(memchr(content, '\0', size));
341 const size_t content_strlen =
342 (end != NULL) ? static_cast<size_t>(end - content) : size;
344 bool match = false;
345 if (magic_entry.is_string) {
346 if (content_strlen >= len) {
347 // Do a case-insensitive prefix comparison.
348 DCHECK_EQ(strlen(magic_entry.magic), len);
349 match = base::EqualsCaseInsensitiveASCII(magic_entry.magic,
350 base::StringPiece(content, len));
352 } else {
353 if (size >= len) {
354 if (!magic_entry.mask) {
355 match = MagicCmp(magic_entry.magic, content, len);
356 } else {
357 match = MagicMaskCmp(magic_entry.magic, content, len, magic_entry.mask);
362 if (match) {
363 result->assign(magic_entry.mime_type);
364 return true;
366 return false;
369 static bool CheckForMagicNumbers(const char* content, size_t size,
370 const MagicNumber* magic, size_t magic_len,
371 base::HistogramBase* counter,
372 std::string* result) {
373 for (size_t i = 0; i < magic_len; ++i) {
374 if (MatchMagicNumber(content, size, magic[i], result)) {
375 if (counter) counter->Add(static_cast<int>(i));
376 return true;
379 return false;
382 // Truncates |size| to |max_size| and returns true if |size| is at least
383 // |max_size|.
384 static bool TruncateSize(const size_t max_size, size_t* size) {
385 // Keep kMaxBytesToSniff honest.
386 DCHECK_LE(static_cast<int>(max_size), kMaxBytesToSniff);
388 if (*size >= max_size) {
389 *size = max_size;
390 return true;
392 return false;
395 // Returns true and sets result if the content appears to be HTML.
396 // Clears have_enough_content if more data could possibly change the result.
397 static bool SniffForHTML(const char* content,
398 size_t size,
399 bool* have_enough_content,
400 std::string* result) {
401 // For HTML, we are willing to consider up to 512 bytes. This may be overly
402 // conservative as IE only considers 256.
403 *have_enough_content &= TruncateSize(512, &size);
405 // We adopt a strategy similar to that used by Mozilla to sniff HTML tags,
406 // but with some modifications to better match the HTML5 spec.
407 const char* const end = content + size;
408 const char* pos;
409 for (pos = content; pos < end; ++pos) {
410 if (!base::IsAsciiWhitespace(*pos))
411 break;
413 static base::HistogramBase* counter(NULL);
414 if (!counter) {
415 counter = UMASnifferHistogramGet("mime_sniffer.kSniffableTags2",
416 arraysize(kSniffableTags));
418 // |pos| now points to first non-whitespace character (or at end).
419 return CheckForMagicNumbers(pos, end - pos,
420 kSniffableTags, arraysize(kSniffableTags),
421 counter, result);
424 // Returns true and sets result if the content matches any of kMagicNumbers.
425 // Clears have_enough_content if more data could possibly change the result.
426 static bool SniffForMagicNumbers(const char* content,
427 size_t size,
428 bool* have_enough_content,
429 std::string* result) {
430 *have_enough_content &= TruncateSize(kBytesRequiredForMagic, &size);
432 // Check our big table of Magic Numbers
433 static base::HistogramBase* counter(NULL);
434 if (!counter) {
435 counter = UMASnifferHistogramGet("mime_sniffer.kMagicNumbers2",
436 arraysize(kMagicNumbers));
438 return CheckForMagicNumbers(content, size,
439 kMagicNumbers, arraysize(kMagicNumbers),
440 counter, result);
443 // Returns true and sets result if the content matches any of
444 // kOfficeMagicNumbers, and the URL has the proper extension.
445 // Clears |have_enough_content| if more data could possibly change the result.
446 static bool SniffForOfficeDocs(const char* content,
447 size_t size,
448 const GURL& url,
449 bool* have_enough_content,
450 std::string* result) {
451 *have_enough_content &= TruncateSize(kBytesRequiredForOfficeMagic, &size);
453 // Check our table of magic numbers for Office file types.
454 std::string office_version;
455 if (!CheckForMagicNumbers(content, size,
456 kOfficeMagicNumbers, arraysize(kOfficeMagicNumbers),
457 NULL, &office_version))
458 return false;
460 OfficeDocType type = DOC_TYPE_NONE;
461 for (size_t i = 0; i < arraysize(kOfficeExtensionTypes); ++i) {
462 std::string url_path = url.path();
464 if (url_path.length() < kOfficeExtensionTypes[i].extension_len)
465 continue;
467 base::StringPiece extension = base::StringPiece(url_path).substr(
468 url_path.length() - kOfficeExtensionTypes[i].extension_len);
469 if (base::EqualsCaseInsensitiveASCII(
470 extension,
471 base::StringPiece(kOfficeExtensionTypes[i].extension,
472 kOfficeExtensionTypes[i].extension_len))) {
473 type = kOfficeExtensionTypes[i].doc_type;
474 break;
478 if (type == DOC_TYPE_NONE)
479 return false;
481 if (office_version == "CFB") {
482 switch (type) {
483 case DOC_TYPE_WORD:
484 *result = "application/msword";
485 return true;
486 case DOC_TYPE_EXCEL:
487 *result = "application/vnd.ms-excel";
488 return true;
489 case DOC_TYPE_POWERPOINT:
490 *result = "application/vnd.ms-powerpoint";
491 return true;
492 case DOC_TYPE_NONE:
493 NOTREACHED();
494 return false;
496 } else if (office_version == "OOXML") {
497 switch (type) {
498 case DOC_TYPE_WORD:
499 *result = "application/vnd.openxmlformats-officedocument."
500 "wordprocessingml.document";
501 return true;
502 case DOC_TYPE_EXCEL:
503 *result = "application/vnd.openxmlformats-officedocument."
504 "spreadsheetml.sheet";
505 return true;
506 case DOC_TYPE_POWERPOINT:
507 *result = "application/vnd.openxmlformats-officedocument."
508 "presentationml.presentation";
509 return true;
510 case DOC_TYPE_NONE:
511 NOTREACHED();
512 return false;
516 NOTREACHED();
517 return false;
520 static bool IsOfficeType(const std::string& type_hint) {
521 return (type_hint == "application/msword" ||
522 type_hint == "application/vnd.ms-excel" ||
523 type_hint == "application/vnd.ms-powerpoint" ||
524 type_hint == "application/vnd.openxmlformats-officedocument."
525 "wordprocessingml.document" ||
526 type_hint == "application/vnd.openxmlformats-officedocument."
527 "spreadsheetml.sheet" ||
528 type_hint == "application/vnd.openxmlformats-officedocument."
529 "presentationml.presentation" ||
530 type_hint == "application/vnd.ms-excel.sheet.macroenabled.12" ||
531 type_hint == "application/vnd.ms-word.document.macroenabled.12" ||
532 type_hint == "application/vnd.ms-powerpoint.presentation."
533 "macroenabled.12" ||
534 type_hint == "application/mspowerpoint" ||
535 type_hint == "application/msexcel" ||
536 type_hint == "application/vnd.ms-word" ||
537 type_hint == "application/vnd.ms-word.document.12" ||
538 type_hint == "application/vnd.msword");
541 // This function checks for files that have a Microsoft Office MIME type
542 // set, but are not actually Office files.
544 // If this is not actually an Office file, |*result| is set to
545 // "application/octet-stream", otherwise it is not modified.
547 // Returns false if additional data is required to determine the file type, or
548 // true if there is enough data to make a decision.
549 static bool SniffForInvalidOfficeDocs(const char* content,
550 size_t size,
551 const GURL& url,
552 std::string* result) {
553 if (!TruncateSize(kBytesRequiredForOfficeMagic, &size))
554 return false;
556 // Check our table of magic numbers for Office file types. If it does not
557 // match one, the MIME type was invalid. Set it instead to a safe value.
558 std::string office_version;
559 if (!CheckForMagicNumbers(content, size,
560 kOfficeMagicNumbers, arraysize(kOfficeMagicNumbers),
561 NULL, &office_version)) {
562 *result = "application/octet-stream";
565 // We have enough information to determine if this was a Microsoft Office
566 // document or not, so sniffing is completed.
567 return true;
570 // Byte order marks
571 static const MagicNumber kMagicXML[] = {
572 // We want to be very conservative in interpreting text/xml content as
573 // XHTML -- we just want to sniff enough to make unit tests pass.
574 // So we match explicitly on this, and don't match other ways of writing
575 // it in semantically-equivalent ways.
576 MAGIC_STRING("application/xhtml+xml",
577 "<html xmlns=\"http://www.w3.org/1999/xhtml\"")
578 MAGIC_STRING("application/atom+xml", "<feed")
579 MAGIC_STRING("application/rss+xml", "<rss") // UTF-8
582 // Returns true and sets result if the content appears to contain XHTML or a
583 // feed.
584 // Clears have_enough_content if more data could possibly change the result.
586 // TODO(evanm): this is similar but more conservative than what Safari does,
587 // while HTML5 has a different recommendation -- what should we do?
588 // TODO(evanm): this is incorrect for documents whose encoding isn't a superset
589 // of ASCII -- do we care?
590 static bool SniffXML(const char* content,
591 size_t size,
592 bool* have_enough_content,
593 std::string* result) {
594 // We allow at most 300 bytes of content before we expect the opening tag.
595 *have_enough_content &= TruncateSize(300, &size);
596 const char* pos = content;
597 const char* const end = content + size;
599 // This loop iterates through tag-looking offsets in the file.
600 // We want to skip XML processing instructions (of the form "<?xml ...")
601 // and stop at the first "plain" tag, then make a decision on the mime-type
602 // based on the name (or possibly attributes) of that tag.
603 static base::HistogramBase* counter(NULL);
604 if (!counter) {
605 counter = UMASnifferHistogramGet("mime_sniffer.kMagicXML2",
606 arraysize(kMagicXML));
608 const int kMaxTagIterations = 5;
609 for (int i = 0; i < kMaxTagIterations && pos < end; ++i) {
610 pos = reinterpret_cast<const char*>(memchr(pos, '<', end - pos));
611 if (!pos)
612 return false;
614 static const char kXmlPrefix[] = "<?xml";
615 static const size_t kXmlPrefixLength = arraysize(kXmlPrefix) - 1;
616 static const char kDocTypePrefix[] = "<!DOCTYPE";
617 static const size_t kDocTypePrefixLength = arraysize(kDocTypePrefix) - 1;
619 if ((pos + kXmlPrefixLength <= end) &&
620 base::EqualsCaseInsensitiveASCII(
621 base::StringPiece(pos, kXmlPrefixLength),
622 base::StringPiece(kXmlPrefix, kXmlPrefixLength))) {
623 // Skip XML declarations.
624 ++pos;
625 continue;
626 } else if ((pos + kDocTypePrefixLength <= end) &&
627 base::EqualsCaseInsensitiveASCII(
628 base::StringPiece(pos, kDocTypePrefixLength),
629 base::StringPiece(kDocTypePrefix, kDocTypePrefixLength))) {
630 // Skip DOCTYPE declarations.
631 ++pos;
632 continue;
635 if (CheckForMagicNumbers(pos, end - pos,
636 kMagicXML, arraysize(kMagicXML),
637 counter, result))
638 return true;
640 // TODO(evanm): handle RSS 1.0, which is an RDF format and more difficult
641 // to identify.
643 // If we get here, we've hit an initial tag that hasn't matched one of the
644 // above tests. Abort.
645 return true;
648 // We iterated too far without finding a start tag.
649 // If we have more content to look at, we aren't going to change our mind by
650 // seeing more bytes from the network.
651 return pos < end;
654 // Byte order marks
655 static const MagicNumber kByteOrderMark[] = {
656 MAGIC_NUMBER("text/plain", "\xFE\xFF") // UTF-16BE
657 MAGIC_NUMBER("text/plain", "\xFF\xFE") // UTF-16LE
658 MAGIC_NUMBER("text/plain", "\xEF\xBB\xBF") // UTF-8
661 // Returns true and sets result to "application/octet-stream" if the content
662 // appears to be binary data. Otherwise, returns false and sets "text/plain".
663 // Clears have_enough_content if more data could possibly change the result.
664 static bool SniffBinary(const char* content,
665 size_t size,
666 bool* have_enough_content,
667 std::string* result) {
668 // There is no concensus about exactly how to sniff for binary content.
669 // * IE 7: Don't sniff for binary looking bytes, but trust the file extension.
670 // * Firefox 3.5: Sniff first 4096 bytes for a binary looking byte.
671 // Here, we side with FF, but with a smaller buffer. This size was chosen
672 // because it is small enough to comfortably fit into a single packet (after
673 // allowing for headers) and yet large enough to account for binary formats
674 // that have a significant amount of ASCII at the beginning (crbug.com/15314).
675 const bool is_truncated = TruncateSize(kMaxBytesToSniff, &size);
677 // First, we look for a BOM.
678 static base::HistogramBase* counter(NULL);
679 if (!counter) {
680 counter = UMASnifferHistogramGet("mime_sniffer.kByteOrderMark2",
681 arraysize(kByteOrderMark));
683 std::string unused;
684 if (CheckForMagicNumbers(content, size,
685 kByteOrderMark, arraysize(kByteOrderMark),
686 counter, &unused)) {
687 // If there is BOM, we think the buffer is not binary.
688 result->assign("text/plain");
689 return false;
692 // Next we look to see if any of the bytes "look binary."
693 if (LooksLikeBinary(content, size)) {
694 result->assign("application/octet-stream");
695 return true;
698 // No evidence either way. Default to non-binary and, if truncated, clear
699 // have_enough_content because there could be a binary looking byte in the
700 // truncated data.
701 *have_enough_content &= is_truncated;
702 result->assign("text/plain");
703 return false;
706 static bool IsUnknownMimeType(const std::string& mime_type) {
707 // TODO(tc): Maybe reuse some code in net/http/http_response_headers.* here.
708 // If we do, please be careful not to alter the semantics at all.
709 static const char* const kUnknownMimeTypes[] = {
710 // Empty mime types are as unknown as they get.
712 // The unknown/unknown type is popular and uninformative
713 "unknown/unknown",
714 // The second most popular unknown mime type is application/unknown
715 "application/unknown",
716 // Firefox rejects a mime type if it is exactly */*
717 "*/*",
719 static base::HistogramBase* counter(NULL);
720 if (!counter) {
721 counter = UMASnifferHistogramGet("mime_sniffer.kUnknownMimeTypes2",
722 arraysize(kUnknownMimeTypes) + 1);
724 for (size_t i = 0; i < arraysize(kUnknownMimeTypes); ++i) {
725 if (mime_type == kUnknownMimeTypes[i]) {
726 counter->Add(i);
727 return true;
730 if (mime_type.find('/') == std::string::npos) {
731 // Firefox rejects a mime type if it does not contain a slash
732 counter->Add(arraysize(kUnknownMimeTypes));
733 return true;
735 return false;
738 // Returns true and sets result if the content appears to be a crx (Chrome
739 // extension) file.
740 // Clears have_enough_content if more data could possibly change the result.
741 static bool SniffCRX(const char* content,
742 size_t size,
743 const GURL& url,
744 const std::string& type_hint,
745 bool* have_enough_content,
746 std::string* result) {
747 static base::HistogramBase* counter(NULL);
748 if (!counter)
749 counter = UMASnifferHistogramGet("mime_sniffer.kSniffCRX", 3);
751 // Technically, the crx magic number is just Cr24, but the bytes after that
752 // are a version number which changes infrequently. Including it in the
753 // sniffing gives us less room for error. If the version number ever changes,
754 // we can just add an entry to this list.
756 // TODO(aa): If we ever have another magic number, we'll want to pass a
757 // histogram into CheckForMagicNumbers(), below, to see which one matched.
758 static const struct MagicNumber kCRXMagicNumbers[] = {
759 MAGIC_NUMBER("application/x-chrome-extension", "Cr24\x02\x00\x00\x00")
762 // Only consider files that have the extension ".crx".
763 static const char kCRXExtension[] = ".crx";
764 // Ignore null by subtracting 1.
765 static const int kExtensionLength = arraysize(kCRXExtension) - 1;
766 if (url.path().rfind(kCRXExtension, std::string::npos, kExtensionLength) ==
767 url.path().size() - kExtensionLength) {
768 counter->Add(1);
769 } else {
770 return false;
773 *have_enough_content &= TruncateSize(kBytesRequiredForMagic, &size);
774 if (CheckForMagicNumbers(content, size,
775 kCRXMagicNumbers, arraysize(kCRXMagicNumbers),
776 NULL, result)) {
777 counter->Add(2);
778 } else {
779 return false;
782 return true;
785 bool ShouldSniffMimeType(const GURL& url, const std::string& mime_type) {
786 static base::HistogramBase* should_sniff_counter(NULL);
787 if (!should_sniff_counter) {
788 should_sniff_counter =
789 UMASnifferHistogramGet("mime_sniffer.ShouldSniffMimeType2", 3);
791 bool sniffable_scheme = url.is_empty() ||
792 url.SchemeIsHTTPOrHTTPS() ||
793 url.SchemeIs("ftp") ||
794 #if defined(OS_ANDROID)
795 url.SchemeIs("content") ||
796 #endif
797 url.SchemeIsFile() ||
798 url.SchemeIsFileSystem();
799 if (!sniffable_scheme) {
800 should_sniff_counter->Add(1);
801 return false;
804 static const char* const kSniffableTypes[] = {
805 // Many web servers are misconfigured to send text/plain for many
806 // different types of content.
807 "text/plain",
808 // We want to sniff application/octet-stream for
809 // application/x-chrome-extension, but nothing else.
810 "application/octet-stream",
811 // XHTML and Atom/RSS feeds are often served as plain xml instead of
812 // their more specific mime types.
813 "text/xml",
814 "application/xml",
815 // Check for false Microsoft Office MIME types.
816 "application/msword",
817 "application/vnd.ms-excel",
818 "application/vnd.ms-powerpoint",
819 "application/vnd.openxmlformats-officedocument.wordprocessingml.document",
820 "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
821 "application/vnd.openxmlformats-officedocument.presentationml.presentation",
822 "application/vnd.ms-excel.sheet.macroenabled.12",
823 "application/vnd.ms-word.document.macroenabled.12",
824 "application/vnd.ms-powerpoint.presentation.macroenabled.12",
825 "application/mspowerpoint",
826 "application/msexcel",
827 "application/vnd.ms-word",
828 "application/vnd.ms-word.document.12",
829 "application/vnd.msword",
831 static base::HistogramBase* counter(NULL);
832 if (!counter) {
833 counter = UMASnifferHistogramGet("mime_sniffer.kSniffableTypes2",
834 arraysize(kSniffableTypes) + 1);
836 for (size_t i = 0; i < arraysize(kSniffableTypes); ++i) {
837 if (mime_type == kSniffableTypes[i]) {
838 counter->Add(i);
839 should_sniff_counter->Add(2);
840 return true;
843 if (IsUnknownMimeType(mime_type)) {
844 // The web server didn't specify a content type or specified a mime
845 // type that we ignore.
846 counter->Add(arraysize(kSniffableTypes));
847 should_sniff_counter->Add(2);
848 return true;
850 should_sniff_counter->Add(1);
851 return false;
854 bool SniffMimeType(const char* content,
855 size_t content_size,
856 const GURL& url,
857 const std::string& type_hint,
858 std::string* result) {
859 DCHECK_LT(content_size, 1000000U); // sanity check
860 DCHECK(content);
861 DCHECK(result);
863 // By default, we assume we have enough content.
864 // Each sniff routine may unset this if it wasn't provided enough content.
865 bool have_enough_content = true;
867 // By default, we'll return the type hint.
868 // Each sniff routine may modify this if it has a better guess..
869 result->assign(type_hint);
871 // If the file has a Microsoft Office MIME type, we should only check that it
872 // is a valid Office file. Because this is the only reason we sniff files
873 // with a Microsoft Office MIME type, we can return early.
874 if (IsOfficeType(type_hint))
875 return SniffForInvalidOfficeDocs(content, content_size, url, result);
877 // Cache information about the type_hint
878 const bool hint_is_unknown_mime_type = IsUnknownMimeType(type_hint);
880 // First check for HTML
881 if (hint_is_unknown_mime_type) {
882 // We're only willing to sniff HTML if the server has not supplied a mime
883 // type, or if the type it did supply indicates that it doesn't know what
884 // the type should be.
885 if (SniffForHTML(content, content_size, &have_enough_content, result))
886 return true; // We succeeded in sniffing HTML. No more content needed.
889 // We're only willing to sniff for binary in 3 cases:
890 // 1. The server has not supplied a mime type.
891 // 2. The type it did supply indicates that it doesn't know what the type
892 // should be.
893 // 3. The type is "text/plain" which is the default on some web servers and
894 // could be indicative of a mis-configuration that we shield the user from.
895 const bool hint_is_text_plain = (type_hint == "text/plain");
896 if (hint_is_unknown_mime_type || hint_is_text_plain) {
897 if (!SniffBinary(content, content_size, &have_enough_content, result)) {
898 // If the server said the content was text/plain and it doesn't appear
899 // to be binary, then we trust it.
900 if (hint_is_text_plain) {
901 return have_enough_content;
906 // If we have plain XML, sniff XML subtypes.
907 if (type_hint == "text/xml" || type_hint == "application/xml") {
908 // We're not interested in sniffing these types for images and the like.
909 // Instead, we're looking explicitly for a feed. If we don't find one
910 // we're done and return early.
911 if (SniffXML(content, content_size, &have_enough_content, result))
912 return true;
913 return have_enough_content;
916 // CRX files (Chrome extensions) have a special sniffing algorithm. It is
917 // tighter than the others because we don't have to match legacy behavior.
918 if (SniffCRX(content, content_size, url, type_hint,
919 &have_enough_content, result))
920 return true;
922 // Check the file extension and magic numbers to see if this is an Office
923 // document. This needs to be checked before the general magic numbers
924 // because zip files and Office documents (OOXML) have the same magic number.
925 if (SniffForOfficeDocs(content, content_size, url,
926 &have_enough_content, result))
927 return true; // We've matched a magic number. No more content needed.
929 // We're not interested in sniffing for magic numbers when the type_hint
930 // is application/octet-stream. Time to bail out.
931 if (type_hint == "application/octet-stream")
932 return have_enough_content;
934 // Now we look in our large table of magic numbers to see if we can find
935 // anything that matches the content.
936 if (SniffForMagicNumbers(content, content_size,
937 &have_enough_content, result))
938 return true; // We've matched a magic number. No more content needed.
940 return have_enough_content;
943 bool SniffMimeTypeFromLocalData(const char* content,
944 size_t size,
945 std::string* result) {
946 // First check the extra table.
947 if (CheckForMagicNumbers(content, size, kExtraMagicNumbers,
948 arraysize(kExtraMagicNumbers), NULL, result))
949 return true;
950 // Finally check the original table.
951 return CheckForMagicNumbers(content, size, kMagicNumbers,
952 arraysize(kMagicNumbers), NULL, result);
955 bool LooksLikeBinary(const char* content, size_t size) {
956 // The definition of "binary bytes" is from the spec at
957 // https://mimesniff.spec.whatwg.org/#binary-data-byte
959 // The bytes which are considered to be "binary" are all < 0x20. Encode them
960 // one bit per byte, with 1 for a "binary" bit, and 0 for a "text" bit. The
961 // least-significant bit represents byte 0x00, the most-significant bit
962 // represents byte 0x1F.
963 const uint32_t kBinaryBits =
964 ~(1u << '\t' | 1u << '\n' | 1u << '\r' | 1u << '\f' | 1u << '\x1b');
965 for (size_t i = 0; i < size; ++i) {
966 uint8_t byte = static_cast<uint8_t>(content[i]);
967 if (byte < 0x20 && (kBinaryBits & (1u << byte)))
968 return true;
970 return false;
973 } // namespace net