1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/memory/scoped_ptr.h"
6 #include "base/strings/string_number_conversions.h"
7 #include "testing/gtest/include/gtest/gtest.h"
8 #include "ui/accessibility/ax_node.h"
9 #include "ui/accessibility/ax_serializable_tree.h"
10 #include "ui/accessibility/ax_tree.h"
11 #include "ui/accessibility/ax_tree_serializer.h"
16 // A function to turn a tree into a string, capturing only the node ids
17 // and their relationship to one another.
19 // The string format is kind of like an S-expression, with each expression
20 // being either a node id, or a node id followed by a subexpression
21 // representing its children.
25 // (1) is a tree with a single node with id 1.
26 // (1 (2 3)) is a tree with 1 as the root, and 2 and 3 as its children.
27 // (1 (2 (3))) has 1 as the root, 2 as its child, and then 3 as the child of 2.
28 void TreeToStringHelper(const AXNode
* node
, std::string
* out_result
) {
29 *out_result
+= base::IntToString(node
->id());
30 if (node
->child_count() != 0) {
32 for (int i
= 0; i
< node
->child_count(); ++i
) {
35 TreeToStringHelper(node
->ChildAtIndex(i
), out_result
);
41 std::string
TreeToString(const AXTree
& tree
) {
43 TreeToStringHelper(tree
.GetRoot(), &result
);
44 return "(" + result
+ ")";
47 } // anonymous namespace
49 // A class to create all possible trees with <n> nodes and the ids [1...n].
51 // There are two parts to the algorithm:
53 // The tree structure is formed as follows: without loss of generality,
54 // the first node becomes the root and the second node becomes its
55 // child. Thereafter, choose every possible parent for every other node.
57 // So for node i in (3...n), there are (i - 1) possible choices for its
58 // parent, for a total of (n-1)! (n minus 1 factorial) possible trees.
60 // The second part is the assignment of ids to the nodes in the tree.
61 // There are exactly n! (n factorial) permutations of the sequence 1...n,
62 // and each of these is assigned to every node in every possible tree.
64 // The total number of trees returned for a given <n>, then, is
72 // This grows really fast! Luckily it's very unlikely that there'd be
73 // bugs that affect trees with >4 nodes that wouldn't affect a smaller tree
77 TreeGenerator(int node_count
)
78 : node_count_(node_count
),
79 unique_tree_count_(1) {
80 // (n-1)! for the possible trees.
81 for (int i
= 2; i
< node_count_
; i
++)
82 unique_tree_count_
*= i
;
83 // n! for the permutations of ids.
84 for (int i
= 2; i
<= node_count_
; i
++)
85 unique_tree_count_
*= i
;
88 int UniqueTreeCount() {
89 return unique_tree_count_
;
92 void BuildUniqueTree(int tree_index
, AXTree
* out_tree
) {
93 std::vector
<int> indices
;
94 std::vector
<int> permuted
;
95 CHECK(tree_index
<= unique_tree_count_
);
97 // Use the first few bits of |tree_index| to permute
99 for (int i
= 0; i
< node_count_
; i
++)
100 indices
.push_back(i
+ 1);
101 for (int i
= 0; i
< node_count_
; i
++) {
102 int p
= (node_count_
- i
);
103 int index
= tree_index
% p
;
105 permuted
.push_back(indices
[index
]);
106 indices
.erase(indices
.begin() + index
);
109 // Build an AXTreeUpdate. The first two nodes of the tree always
110 // go in the same place.
112 update
.nodes
.resize(node_count_
);
113 update
.nodes
[0].id
= permuted
[0];
114 update
.nodes
[0].role
= AX_ROLE_ROOT_WEB_AREA
;
115 update
.nodes
[0].child_ids
.push_back(permuted
[1]);
116 update
.nodes
[1].id
= permuted
[1];
118 // The remaining nodes are assigned based on their parent
119 // selected from the next bits from |tree_index|.
120 for (int i
= 2; i
< node_count_
; i
++) {
121 update
.nodes
[i
].id
= permuted
[i
];
122 int parent_index
= (tree_index
% i
);
124 update
.nodes
[parent_index
].child_ids
.push_back(permuted
[i
]);
127 // Unserialize the tree update into the destination tree.
128 CHECK(out_tree
->Unserialize(update
));
133 int unique_tree_count_
;
136 // Test the TreeGenerator class by building all possible trees with
137 // 3 nodes and the ids [1...3].
138 TEST(AXGeneratedTreeTest
, TestTreeGenerator
) {
140 TreeGenerator
generator(tree_size
);
141 const char* EXPECTED_TREES
[] = {
156 int n
= generator
.UniqueTreeCount();
157 ASSERT_EQ(static_cast<int>(arraysize(EXPECTED_TREES
)), n
);
159 for (int i
= 0; i
< n
; i
++) {
161 generator
.BuildUniqueTree(i
, &tree
);
162 std::string str
= TreeToString(tree
);
163 EXPECT_EQ(EXPECTED_TREES
[i
], str
);
167 // Test mutating every possible tree with <n> nodes to every other possible
168 // tree with <n> nodes, where <n> is 4 in release mode and 3 in debug mode
169 // (for speed). For each possible combination of trees, we also vary which
170 // node we serialize first.
172 // For every possible scenario, we check that the AXTreeUpdate is valid,
173 // that the destination tree can unserialize it and create a valid tree,
174 // and that after updating all nodes the resulting tree now matches the
176 TEST(AXGeneratedTreeTest
, SerializeGeneratedTrees
) {
177 // Do a more exhaustive test in release mode. If you're modifying
178 // the algorithm you may want to try even larger tree sizes if you
179 // can afford the time.
183 LOG(WARNING
) << "Debug build, only testing trees with 3 nodes and not 4.";
187 TreeGenerator
generator(tree_size
);
188 int n
= generator
.UniqueTreeCount();
190 for (int i
= 0; i
< n
; i
++) {
191 // Build the first tree, tree0.
192 AXSerializableTree tree0
;
193 generator
.BuildUniqueTree(i
, &tree0
);
194 SCOPED_TRACE("tree0 is " + TreeToString(tree0
));
196 for (int j
= 0; j
< n
; j
++) {
197 // Build the second tree, tree1.
198 AXSerializableTree tree1
;
199 generator
.BuildUniqueTree(j
, &tree1
);
200 SCOPED_TRACE("tree1 is " + TreeToString(tree0
));
202 // Now iterate over which node to update first, |k|.
203 for (int k
= 0; k
< tree_size
; k
++) {
204 SCOPED_TRACE("i=" + base::IntToString(i
) +
205 " j=" + base::IntToString(j
) +
206 " k=" + base::IntToString(k
));
208 // Start by serializing tree0 and unserializing it into a new
209 // empty tree |dst_tree|.
210 scoped_ptr
<AXTreeSource
<AXNode
> > tree0_source(
211 tree0
.CreateTreeSource());
212 AXTreeSerializer
<AXNode
> serializer(tree0_source
.get());
213 AXTreeUpdate update0
;
214 serializer
.SerializeChanges(tree0
.GetRoot(), &update0
);
217 ASSERT_TRUE(dst_tree
.Unserialize(update0
));
219 // At this point, |dst_tree| should now be identical to |tree0|.
220 EXPECT_EQ(TreeToString(tree0
), TreeToString(dst_tree
));
222 // Next, pretend that tree0 turned into tree1, and serialize
223 // a sequence of updates to |dst_tree| to match.
224 scoped_ptr
<AXTreeSource
<AXNode
> > tree1_source(
225 tree1
.CreateTreeSource());
226 serializer
.ChangeTreeSourceForTesting(tree1_source
.get());
228 for (int k_index
= 0; k_index
< tree_size
; ++k_index
) {
229 int id
= 1 + (k
+ k_index
) % tree_size
;
231 serializer
.SerializeChanges(tree1
.GetFromId(id
), &update
);
232 ASSERT_TRUE(dst_tree
.Unserialize(update
));
235 // After the sequence of updates, |dst_tree| should now be
236 // identical to |tree1|.
237 EXPECT_EQ(TreeToString(tree1
), TreeToString(dst_tree
));