Adding support for storing webrtc logs locally with an extension supplied unique...
[chromium-blink-merge.git] / net / disk_cache / simple / simple_entry_impl.cc
blobf8f1b8566655cd7212ee45141f1d08f52ba6693f
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/simple/simple_entry_impl.h"
7 #include <algorithm>
8 #include <cstring>
9 #include <vector>
11 #include "base/bind.h"
12 #include "base/bind_helpers.h"
13 #include "base/callback.h"
14 #include "base/location.h"
15 #include "base/logging.h"
16 #include "base/single_thread_task_runner.h"
17 #include "base/task_runner.h"
18 #include "base/task_runner_util.h"
19 #include "base/thread_task_runner_handle.h"
20 #include "base/time/time.h"
21 #include "net/base/io_buffer.h"
22 #include "net/base/net_errors.h"
23 #include "net/disk_cache/net_log_parameters.h"
24 #include "net/disk_cache/simple/simple_backend_impl.h"
25 #include "net/disk_cache/simple/simple_histogram_macros.h"
26 #include "net/disk_cache/simple/simple_index.h"
27 #include "net/disk_cache/simple/simple_net_log_parameters.h"
28 #include "net/disk_cache/simple/simple_synchronous_entry.h"
29 #include "net/disk_cache/simple/simple_util.h"
30 #include "third_party/zlib/zlib.h"
32 namespace disk_cache {
33 namespace {
35 // An entry can store sparse data taking up to 1 / kMaxSparseDataSizeDivisor of
36 // the cache.
37 const int64 kMaxSparseDataSizeDivisor = 10;
39 // Used in histograms, please only add entries at the end.
40 enum ReadResult {
41 READ_RESULT_SUCCESS = 0,
42 READ_RESULT_INVALID_ARGUMENT = 1,
43 READ_RESULT_NONBLOCK_EMPTY_RETURN = 2,
44 READ_RESULT_BAD_STATE = 3,
45 READ_RESULT_FAST_EMPTY_RETURN = 4,
46 READ_RESULT_SYNC_READ_FAILURE = 5,
47 READ_RESULT_SYNC_CHECKSUM_FAILURE = 6,
48 READ_RESULT_MAX = 7,
51 // Used in histograms, please only add entries at the end.
52 enum WriteResult {
53 WRITE_RESULT_SUCCESS = 0,
54 WRITE_RESULT_INVALID_ARGUMENT = 1,
55 WRITE_RESULT_OVER_MAX_SIZE = 2,
56 WRITE_RESULT_BAD_STATE = 3,
57 WRITE_RESULT_SYNC_WRITE_FAILURE = 4,
58 WRITE_RESULT_FAST_EMPTY_RETURN = 5,
59 WRITE_RESULT_MAX = 6,
62 // Used in histograms, please only add entries at the end.
63 enum HeaderSizeChange {
64 HEADER_SIZE_CHANGE_INITIAL,
65 HEADER_SIZE_CHANGE_SAME,
66 HEADER_SIZE_CHANGE_INCREASE,
67 HEADER_SIZE_CHANGE_DECREASE,
68 HEADER_SIZE_CHANGE_UNEXPECTED_WRITE,
69 HEADER_SIZE_CHANGE_MAX
72 void RecordReadResult(net::CacheType cache_type, ReadResult result) {
73 SIMPLE_CACHE_UMA(ENUMERATION,
74 "ReadResult", cache_type, result, READ_RESULT_MAX);
77 void RecordWriteResult(net::CacheType cache_type, WriteResult result) {
78 SIMPLE_CACHE_UMA(ENUMERATION,
79 "WriteResult2", cache_type, result, WRITE_RESULT_MAX);
82 // TODO(ttuttle): Consider removing this once we have a good handle on header
83 // size changes.
84 void RecordHeaderSizeChange(net::CacheType cache_type,
85 int old_size, int new_size) {
86 HeaderSizeChange size_change;
88 SIMPLE_CACHE_UMA(COUNTS_10000, "HeaderSize", cache_type, new_size);
90 if (old_size == 0) {
91 size_change = HEADER_SIZE_CHANGE_INITIAL;
92 } else if (new_size == old_size) {
93 size_change = HEADER_SIZE_CHANGE_SAME;
94 } else if (new_size > old_size) {
95 int delta = new_size - old_size;
96 SIMPLE_CACHE_UMA(COUNTS_10000,
97 "HeaderSizeIncreaseAbsolute", cache_type, delta);
98 SIMPLE_CACHE_UMA(PERCENTAGE,
99 "HeaderSizeIncreasePercentage", cache_type,
100 delta * 100 / old_size);
101 size_change = HEADER_SIZE_CHANGE_INCREASE;
102 } else { // new_size < old_size
103 int delta = old_size - new_size;
104 SIMPLE_CACHE_UMA(COUNTS_10000,
105 "HeaderSizeDecreaseAbsolute", cache_type, delta);
106 SIMPLE_CACHE_UMA(PERCENTAGE,
107 "HeaderSizeDecreasePercentage", cache_type,
108 delta * 100 / old_size);
109 size_change = HEADER_SIZE_CHANGE_DECREASE;
112 SIMPLE_CACHE_UMA(ENUMERATION,
113 "HeaderSizeChange", cache_type,
114 size_change, HEADER_SIZE_CHANGE_MAX);
117 void RecordUnexpectedStream0Write(net::CacheType cache_type) {
118 SIMPLE_CACHE_UMA(ENUMERATION,
119 "HeaderSizeChange", cache_type,
120 HEADER_SIZE_CHANGE_UNEXPECTED_WRITE, HEADER_SIZE_CHANGE_MAX);
123 int g_open_entry_count = 0;
125 void AdjustOpenEntryCountBy(net::CacheType cache_type, int offset) {
126 g_open_entry_count += offset;
127 SIMPLE_CACHE_UMA(COUNTS_10000,
128 "GlobalOpenEntryCount", cache_type, g_open_entry_count);
131 void InvokeCallbackIfBackendIsAlive(
132 const base::WeakPtr<SimpleBackendImpl>& backend,
133 const net::CompletionCallback& completion_callback,
134 int result) {
135 DCHECK(!completion_callback.is_null());
136 if (!backend.get())
137 return;
138 completion_callback.Run(result);
141 } // namespace
143 using base::Closure;
144 using base::FilePath;
145 using base::MessageLoopProxy;
146 using base::Time;
147 using base::TaskRunner;
149 // A helper class to insure that RunNextOperationIfNeeded() is called when
150 // exiting the current stack frame.
151 class SimpleEntryImpl::ScopedOperationRunner {
152 public:
153 explicit ScopedOperationRunner(SimpleEntryImpl* entry) : entry_(entry) {
156 ~ScopedOperationRunner() {
157 entry_->RunNextOperationIfNeeded();
160 private:
161 SimpleEntryImpl* const entry_;
164 SimpleEntryImpl::ActiveEntryProxy::~ActiveEntryProxy() {}
166 SimpleEntryImpl::SimpleEntryImpl(net::CacheType cache_type,
167 const FilePath& path,
168 const uint64 entry_hash,
169 OperationsMode operations_mode,
170 SimpleBackendImpl* backend,
171 net::NetLog* net_log)
172 : backend_(backend->AsWeakPtr()),
173 cache_type_(cache_type),
174 worker_pool_(backend->worker_pool()),
175 path_(path),
176 entry_hash_(entry_hash),
177 use_optimistic_operations_(operations_mode == OPTIMISTIC_OPERATIONS),
178 last_used_(Time::Now()),
179 last_modified_(last_used_),
180 sparse_data_size_(0),
181 open_count_(0),
182 doomed_(false),
183 state_(STATE_UNINITIALIZED),
184 synchronous_entry_(NULL),
185 net_log_(net::BoundNetLog::Make(
186 net_log, net::NetLog::SOURCE_DISK_CACHE_ENTRY)),
187 stream_0_data_(new net::GrowableIOBuffer()) {
188 static_assert(arraysize(data_size_) == arraysize(crc32s_end_offset_),
189 "arrays should be the same size");
190 static_assert(arraysize(data_size_) == arraysize(crc32s_),
191 "arrays should be the same size");
192 static_assert(arraysize(data_size_) == arraysize(have_written_),
193 "arrays should be the same size");
194 static_assert(arraysize(data_size_) == arraysize(crc_check_state_),
195 "arrays should be the same size");
196 MakeUninitialized();
197 net_log_.BeginEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY,
198 CreateNetLogSimpleEntryConstructionCallback(this));
201 void SimpleEntryImpl::SetActiveEntryProxy(
202 scoped_ptr<ActiveEntryProxy> active_entry_proxy) {
203 DCHECK(!active_entry_proxy_);
204 active_entry_proxy_.reset(active_entry_proxy.release());
207 int SimpleEntryImpl::OpenEntry(Entry** out_entry,
208 const CompletionCallback& callback) {
209 DCHECK(backend_.get());
211 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_OPEN_CALL);
213 bool have_index = backend_->index()->initialized();
214 // This enumeration is used in histograms, add entries only at end.
215 enum OpenEntryIndexEnum {
216 INDEX_NOEXIST = 0,
217 INDEX_MISS = 1,
218 INDEX_HIT = 2,
219 INDEX_MAX = 3,
221 OpenEntryIndexEnum open_entry_index_enum = INDEX_NOEXIST;
222 if (have_index) {
223 if (backend_->index()->Has(entry_hash_))
224 open_entry_index_enum = INDEX_HIT;
225 else
226 open_entry_index_enum = INDEX_MISS;
228 SIMPLE_CACHE_UMA(ENUMERATION,
229 "OpenEntryIndexState", cache_type_,
230 open_entry_index_enum, INDEX_MAX);
232 // If entry is not known to the index, initiate fast failover to the network.
233 if (open_entry_index_enum == INDEX_MISS) {
234 net_log_.AddEventWithNetErrorCode(
235 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_OPEN_END,
236 net::ERR_FAILED);
237 return net::ERR_FAILED;
240 pending_operations_.push(SimpleEntryOperation::OpenOperation(
241 this, have_index, callback, out_entry));
242 RunNextOperationIfNeeded();
243 return net::ERR_IO_PENDING;
246 int SimpleEntryImpl::CreateEntry(Entry** out_entry,
247 const CompletionCallback& callback) {
248 DCHECK(backend_.get());
249 DCHECK_EQ(entry_hash_, simple_util::GetEntryHashKey(key_));
251 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_CREATE_CALL);
253 bool have_index = backend_->index()->initialized();
254 int ret_value = net::ERR_FAILED;
255 if (use_optimistic_operations_ &&
256 state_ == STATE_UNINITIALIZED && pending_operations_.size() == 0) {
257 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_CREATE_OPTIMISTIC);
259 ReturnEntryToCaller(out_entry);
260 pending_operations_.push(SimpleEntryOperation::CreateOperation(
261 this, have_index, CompletionCallback(), static_cast<Entry**>(NULL)));
262 ret_value = net::OK;
263 } else {
264 pending_operations_.push(SimpleEntryOperation::CreateOperation(
265 this, have_index, callback, out_entry));
266 ret_value = net::ERR_IO_PENDING;
269 // We insert the entry in the index before creating the entry files in the
270 // SimpleSynchronousEntry, because this way the worst scenario is when we
271 // have the entry in the index but we don't have the created files yet, this
272 // way we never leak files. CreationOperationComplete will remove the entry
273 // from the index if the creation fails.
274 backend_->index()->Insert(entry_hash_);
276 RunNextOperationIfNeeded();
277 return ret_value;
280 int SimpleEntryImpl::DoomEntry(const CompletionCallback& callback) {
281 if (doomed_)
282 return net::OK;
283 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_DOOM_CALL);
284 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_DOOM_BEGIN);
286 MarkAsDoomed();
287 if (backend_.get())
288 backend_->OnDoomStart(entry_hash_);
289 pending_operations_.push(SimpleEntryOperation::DoomOperation(this, callback));
290 RunNextOperationIfNeeded();
291 return net::ERR_IO_PENDING;
294 void SimpleEntryImpl::SetKey(const std::string& key) {
295 key_ = key;
296 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_SET_KEY,
297 net::NetLog::StringCallback("key", &key));
300 void SimpleEntryImpl::Doom() {
301 DoomEntry(CompletionCallback());
304 void SimpleEntryImpl::Close() {
305 DCHECK(io_thread_checker_.CalledOnValidThread());
306 DCHECK_LT(0, open_count_);
308 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_CLOSE_CALL);
310 if (--open_count_ > 0) {
311 DCHECK(!HasOneRef());
312 Release(); // Balanced in ReturnEntryToCaller().
313 return;
316 pending_operations_.push(SimpleEntryOperation::CloseOperation(this));
317 DCHECK(!HasOneRef());
318 Release(); // Balanced in ReturnEntryToCaller().
319 RunNextOperationIfNeeded();
322 std::string SimpleEntryImpl::GetKey() const {
323 DCHECK(io_thread_checker_.CalledOnValidThread());
324 return key_;
327 Time SimpleEntryImpl::GetLastUsed() const {
328 DCHECK(io_thread_checker_.CalledOnValidThread());
329 return last_used_;
332 Time SimpleEntryImpl::GetLastModified() const {
333 DCHECK(io_thread_checker_.CalledOnValidThread());
334 return last_modified_;
337 int32 SimpleEntryImpl::GetDataSize(int stream_index) const {
338 DCHECK(io_thread_checker_.CalledOnValidThread());
339 DCHECK_LE(0, data_size_[stream_index]);
340 return data_size_[stream_index];
343 int SimpleEntryImpl::ReadData(int stream_index,
344 int offset,
345 net::IOBuffer* buf,
346 int buf_len,
347 const CompletionCallback& callback) {
348 DCHECK(io_thread_checker_.CalledOnValidThread());
350 if (net_log_.IsLogging()) {
351 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_READ_CALL,
352 CreateNetLogReadWriteDataCallback(stream_index, offset, buf_len,
353 false));
356 if (stream_index < 0 || stream_index >= kSimpleEntryStreamCount ||
357 buf_len < 0) {
358 if (net_log_.IsLogging()) {
359 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_READ_END,
360 CreateNetLogReadWriteCompleteCallback(net::ERR_INVALID_ARGUMENT));
363 RecordReadResult(cache_type_, READ_RESULT_INVALID_ARGUMENT);
364 return net::ERR_INVALID_ARGUMENT;
366 if (pending_operations_.empty() && (offset >= GetDataSize(stream_index) ||
367 offset < 0 || !buf_len)) {
368 if (net_log_.IsLogging()) {
369 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_READ_END,
370 CreateNetLogReadWriteCompleteCallback(0));
373 RecordReadResult(cache_type_, READ_RESULT_NONBLOCK_EMPTY_RETURN);
374 return 0;
377 // TODO(clamy): return immediatly when reading from stream 0.
379 // TODO(felipeg): Optimization: Add support for truly parallel read
380 // operations.
381 bool alone_in_queue =
382 pending_operations_.size() == 0 && state_ == STATE_READY;
383 pending_operations_.push(SimpleEntryOperation::ReadOperation(
384 this, stream_index, offset, buf_len, buf, callback, alone_in_queue));
385 RunNextOperationIfNeeded();
386 return net::ERR_IO_PENDING;
389 int SimpleEntryImpl::WriteData(int stream_index,
390 int offset,
391 net::IOBuffer* buf,
392 int buf_len,
393 const CompletionCallback& callback,
394 bool truncate) {
395 DCHECK(io_thread_checker_.CalledOnValidThread());
397 if (net_log_.IsLogging()) {
398 net_log_.AddEvent(
399 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_WRITE_CALL,
400 CreateNetLogReadWriteDataCallback(stream_index, offset, buf_len,
401 truncate));
404 if (stream_index < 0 || stream_index >= kSimpleEntryStreamCount ||
405 offset < 0 || buf_len < 0) {
406 if (net_log_.IsLogging()) {
407 net_log_.AddEvent(
408 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_WRITE_END,
409 CreateNetLogReadWriteCompleteCallback(net::ERR_INVALID_ARGUMENT));
411 RecordWriteResult(cache_type_, WRITE_RESULT_INVALID_ARGUMENT);
412 return net::ERR_INVALID_ARGUMENT;
414 if (backend_.get() && offset + buf_len > backend_->GetMaxFileSize()) {
415 if (net_log_.IsLogging()) {
416 net_log_.AddEvent(
417 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_WRITE_END,
418 CreateNetLogReadWriteCompleteCallback(net::ERR_FAILED));
420 RecordWriteResult(cache_type_, WRITE_RESULT_OVER_MAX_SIZE);
421 return net::ERR_FAILED;
423 ScopedOperationRunner operation_runner(this);
425 // Stream 0 data is kept in memory, so can be written immediatly if there are
426 // no IO operations pending.
427 if (stream_index == 0 && state_ == STATE_READY &&
428 pending_operations_.size() == 0)
429 return SetStream0Data(buf, offset, buf_len, truncate);
431 // We can only do optimistic Write if there is no pending operations, so
432 // that we are sure that the next call to RunNextOperationIfNeeded will
433 // actually run the write operation that sets the stream size. It also
434 // prevents from previous possibly-conflicting writes that could be stacked
435 // in the |pending_operations_|. We could optimize this for when we have
436 // only read operations enqueued.
437 const bool optimistic =
438 (use_optimistic_operations_ && state_ == STATE_READY &&
439 pending_operations_.size() == 0);
440 CompletionCallback op_callback;
441 scoped_refptr<net::IOBuffer> op_buf;
442 int ret_value = net::ERR_FAILED;
443 if (!optimistic) {
444 op_buf = buf;
445 op_callback = callback;
446 ret_value = net::ERR_IO_PENDING;
447 } else {
448 // TODO(gavinp,pasko): For performance, don't use a copy of an IOBuffer
449 // here to avoid paying the price of the RefCountedThreadSafe atomic
450 // operations.
451 if (buf) {
452 op_buf = new IOBuffer(buf_len);
453 memcpy(op_buf->data(), buf->data(), buf_len);
455 op_callback = CompletionCallback();
456 ret_value = buf_len;
457 if (net_log_.IsLogging()) {
458 net_log_.AddEvent(
459 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_WRITE_OPTIMISTIC,
460 CreateNetLogReadWriteCompleteCallback(buf_len));
464 pending_operations_.push(SimpleEntryOperation::WriteOperation(this,
465 stream_index,
466 offset,
467 buf_len,
468 op_buf.get(),
469 truncate,
470 optimistic,
471 op_callback));
472 return ret_value;
475 int SimpleEntryImpl::ReadSparseData(int64 offset,
476 net::IOBuffer* buf,
477 int buf_len,
478 const CompletionCallback& callback) {
479 DCHECK(io_thread_checker_.CalledOnValidThread());
481 ScopedOperationRunner operation_runner(this);
482 pending_operations_.push(SimpleEntryOperation::ReadSparseOperation(
483 this, offset, buf_len, buf, callback));
484 return net::ERR_IO_PENDING;
487 int SimpleEntryImpl::WriteSparseData(int64 offset,
488 net::IOBuffer* buf,
489 int buf_len,
490 const CompletionCallback& callback) {
491 DCHECK(io_thread_checker_.CalledOnValidThread());
493 ScopedOperationRunner operation_runner(this);
494 pending_operations_.push(SimpleEntryOperation::WriteSparseOperation(
495 this, offset, buf_len, buf, callback));
496 return net::ERR_IO_PENDING;
499 int SimpleEntryImpl::GetAvailableRange(int64 offset,
500 int len,
501 int64* start,
502 const CompletionCallback& callback) {
503 DCHECK(io_thread_checker_.CalledOnValidThread());
505 ScopedOperationRunner operation_runner(this);
506 pending_operations_.push(SimpleEntryOperation::GetAvailableRangeOperation(
507 this, offset, len, start, callback));
508 return net::ERR_IO_PENDING;
511 bool SimpleEntryImpl::CouldBeSparse() const {
512 DCHECK(io_thread_checker_.CalledOnValidThread());
513 // TODO(ttuttle): Actually check.
514 return true;
517 void SimpleEntryImpl::CancelSparseIO() {
518 DCHECK(io_thread_checker_.CalledOnValidThread());
519 // The Simple Cache does not return distinct objects for the same non-doomed
520 // entry, so there's no need to coordinate which object is performing sparse
521 // I/O. Therefore, CancelSparseIO and ReadyForSparseIO succeed instantly.
524 int SimpleEntryImpl::ReadyForSparseIO(const CompletionCallback& callback) {
525 DCHECK(io_thread_checker_.CalledOnValidThread());
526 // The simple Cache does not return distinct objects for the same non-doomed
527 // entry, so there's no need to coordinate which object is performing sparse
528 // I/O. Therefore, CancelSparseIO and ReadyForSparseIO succeed instantly.
529 return net::OK;
532 SimpleEntryImpl::~SimpleEntryImpl() {
533 DCHECK(io_thread_checker_.CalledOnValidThread());
534 DCHECK_EQ(0U, pending_operations_.size());
535 DCHECK(state_ == STATE_UNINITIALIZED || state_ == STATE_FAILURE);
536 DCHECK(!synchronous_entry_);
537 net_log_.EndEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY);
540 void SimpleEntryImpl::PostClientCallback(const CompletionCallback& callback,
541 int result) {
542 if (callback.is_null())
543 return;
544 // Note that the callback is posted rather than directly invoked to avoid
545 // reentrancy issues.
546 base::ThreadTaskRunnerHandle::Get()->PostTask(
547 FROM_HERE,
548 base::Bind(&InvokeCallbackIfBackendIsAlive, backend_, callback, result));
551 void SimpleEntryImpl::MakeUninitialized() {
552 state_ = STATE_UNINITIALIZED;
553 std::memset(crc32s_end_offset_, 0, sizeof(crc32s_end_offset_));
554 std::memset(crc32s_, 0, sizeof(crc32s_));
555 std::memset(have_written_, 0, sizeof(have_written_));
556 std::memset(data_size_, 0, sizeof(data_size_));
557 for (size_t i = 0; i < arraysize(crc_check_state_); ++i) {
558 crc_check_state_[i] = CRC_CHECK_NEVER_READ_AT_ALL;
562 void SimpleEntryImpl::ReturnEntryToCaller(Entry** out_entry) {
563 DCHECK(out_entry);
564 ++open_count_;
565 AddRef(); // Balanced in Close()
566 if (!backend_.get()) {
567 // This method can be called when an asynchronous operation completed.
568 // If the backend no longer exists, the callback won't be invoked, and so we
569 // must close ourselves to avoid leaking. As well, there's no guarantee the
570 // client-provided pointer (|out_entry|) hasn't been freed, and no point
571 // dereferencing it, either.
572 Close();
573 return;
575 *out_entry = this;
578 void SimpleEntryImpl::MarkAsDoomed() {
579 doomed_ = true;
580 if (!backend_.get())
581 return;
582 backend_->index()->Remove(entry_hash_);
583 active_entry_proxy_.reset();
586 void SimpleEntryImpl::RunNextOperationIfNeeded() {
587 DCHECK(io_thread_checker_.CalledOnValidThread());
588 SIMPLE_CACHE_UMA(CUSTOM_COUNTS,
589 "EntryOperationsPending", cache_type_,
590 pending_operations_.size(), 0, 100, 20);
591 if (!pending_operations_.empty() && state_ != STATE_IO_PENDING) {
592 scoped_ptr<SimpleEntryOperation> operation(
593 new SimpleEntryOperation(pending_operations_.front()));
594 pending_operations_.pop();
595 switch (operation->type()) {
596 case SimpleEntryOperation::TYPE_OPEN:
597 OpenEntryInternal(operation->have_index(),
598 operation->callback(),
599 operation->out_entry());
600 break;
601 case SimpleEntryOperation::TYPE_CREATE:
602 CreateEntryInternal(operation->have_index(),
603 operation->callback(),
604 operation->out_entry());
605 break;
606 case SimpleEntryOperation::TYPE_CLOSE:
607 CloseInternal();
608 break;
609 case SimpleEntryOperation::TYPE_READ:
610 RecordReadIsParallelizable(*operation);
611 ReadDataInternal(operation->index(),
612 operation->offset(),
613 operation->buf(),
614 operation->length(),
615 operation->callback());
616 break;
617 case SimpleEntryOperation::TYPE_WRITE:
618 RecordWriteDependencyType(*operation);
619 WriteDataInternal(operation->index(),
620 operation->offset(),
621 operation->buf(),
622 operation->length(),
623 operation->callback(),
624 operation->truncate());
625 break;
626 case SimpleEntryOperation::TYPE_READ_SPARSE:
627 ReadSparseDataInternal(operation->sparse_offset(),
628 operation->buf(),
629 operation->length(),
630 operation->callback());
631 break;
632 case SimpleEntryOperation::TYPE_WRITE_SPARSE:
633 WriteSparseDataInternal(operation->sparse_offset(),
634 operation->buf(),
635 operation->length(),
636 operation->callback());
637 break;
638 case SimpleEntryOperation::TYPE_GET_AVAILABLE_RANGE:
639 GetAvailableRangeInternal(operation->sparse_offset(),
640 operation->length(),
641 operation->out_start(),
642 operation->callback());
643 break;
644 case SimpleEntryOperation::TYPE_DOOM:
645 DoomEntryInternal(operation->callback());
646 break;
647 default:
648 NOTREACHED();
650 // The operation is kept for histograms. Makes sure it does not leak
651 // resources.
652 executing_operation_.swap(operation);
653 executing_operation_->ReleaseReferences();
654 // |this| may have been deleted.
658 void SimpleEntryImpl::OpenEntryInternal(bool have_index,
659 const CompletionCallback& callback,
660 Entry** out_entry) {
661 ScopedOperationRunner operation_runner(this);
663 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_OPEN_BEGIN);
665 if (state_ == STATE_READY) {
666 ReturnEntryToCaller(out_entry);
667 PostClientCallback(callback, net::OK);
668 net_log_.AddEvent(
669 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_OPEN_END,
670 CreateNetLogSimpleEntryCreationCallback(this, net::OK));
671 return;
673 if (state_ == STATE_FAILURE) {
674 PostClientCallback(callback, net::ERR_FAILED);
675 net_log_.AddEvent(
676 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_OPEN_END,
677 CreateNetLogSimpleEntryCreationCallback(this, net::ERR_FAILED));
678 return;
681 DCHECK_EQ(STATE_UNINITIALIZED, state_);
682 DCHECK(!synchronous_entry_);
683 state_ = STATE_IO_PENDING;
684 const base::TimeTicks start_time = base::TimeTicks::Now();
685 scoped_ptr<SimpleEntryCreationResults> results(
686 new SimpleEntryCreationResults(
687 SimpleEntryStat(last_used_, last_modified_, data_size_,
688 sparse_data_size_)));
689 Closure task = base::Bind(&SimpleSynchronousEntry::OpenEntry,
690 cache_type_,
691 path_,
692 entry_hash_,
693 have_index,
694 results.get());
695 Closure reply = base::Bind(&SimpleEntryImpl::CreationOperationComplete,
696 this,
697 callback,
698 start_time,
699 base::Passed(&results),
700 out_entry,
701 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_OPEN_END);
702 worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
705 void SimpleEntryImpl::CreateEntryInternal(bool have_index,
706 const CompletionCallback& callback,
707 Entry** out_entry) {
708 ScopedOperationRunner operation_runner(this);
710 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_CREATE_BEGIN);
712 if (state_ != STATE_UNINITIALIZED) {
713 // There is already an active normal entry.
714 net_log_.AddEvent(
715 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_CREATE_END,
716 CreateNetLogSimpleEntryCreationCallback(this, net::ERR_FAILED));
717 PostClientCallback(callback, net::ERR_FAILED);
718 return;
720 DCHECK_EQ(STATE_UNINITIALIZED, state_);
721 DCHECK(!synchronous_entry_);
723 state_ = STATE_IO_PENDING;
725 // Since we don't know the correct values for |last_used_| and
726 // |last_modified_| yet, we make this approximation.
727 last_used_ = last_modified_ = base::Time::Now();
729 // If creation succeeds, we should mark all streams to be saved on close.
730 for (int i = 0; i < kSimpleEntryStreamCount; ++i)
731 have_written_[i] = true;
733 const base::TimeTicks start_time = base::TimeTicks::Now();
734 scoped_ptr<SimpleEntryCreationResults> results(
735 new SimpleEntryCreationResults(
736 SimpleEntryStat(last_used_, last_modified_, data_size_,
737 sparse_data_size_)));
738 Closure task = base::Bind(&SimpleSynchronousEntry::CreateEntry,
739 cache_type_,
740 path_,
741 key_,
742 entry_hash_,
743 have_index,
744 results.get());
745 Closure reply = base::Bind(&SimpleEntryImpl::CreationOperationComplete,
746 this,
747 callback,
748 start_time,
749 base::Passed(&results),
750 out_entry,
751 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_CREATE_END);
752 worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
755 void SimpleEntryImpl::CloseInternal() {
756 DCHECK(io_thread_checker_.CalledOnValidThread());
757 typedef SimpleSynchronousEntry::CRCRecord CRCRecord;
758 scoped_ptr<std::vector<CRCRecord> >
759 crc32s_to_write(new std::vector<CRCRecord>());
761 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_CLOSE_BEGIN);
763 if (state_ == STATE_READY) {
764 DCHECK(synchronous_entry_);
765 state_ = STATE_IO_PENDING;
766 for (int i = 0; i < kSimpleEntryStreamCount; ++i) {
767 if (have_written_[i]) {
768 if (GetDataSize(i) == crc32s_end_offset_[i]) {
769 int32 crc = GetDataSize(i) == 0 ? crc32(0, Z_NULL, 0) : crc32s_[i];
770 crc32s_to_write->push_back(CRCRecord(i, true, crc));
771 } else {
772 crc32s_to_write->push_back(CRCRecord(i, false, 0));
776 } else {
777 DCHECK(STATE_UNINITIALIZED == state_ || STATE_FAILURE == state_);
780 if (synchronous_entry_) {
781 Closure task =
782 base::Bind(&SimpleSynchronousEntry::Close,
783 base::Unretained(synchronous_entry_),
784 SimpleEntryStat(last_used_, last_modified_, data_size_,
785 sparse_data_size_),
786 base::Passed(&crc32s_to_write),
787 stream_0_data_);
788 Closure reply = base::Bind(&SimpleEntryImpl::CloseOperationComplete, this);
789 synchronous_entry_ = NULL;
790 worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
792 for (int i = 0; i < kSimpleEntryStreamCount; ++i) {
793 if (!have_written_[i]) {
794 SIMPLE_CACHE_UMA(ENUMERATION,
795 "CheckCRCResult", cache_type_,
796 crc_check_state_[i], CRC_CHECK_MAX);
799 } else {
800 CloseOperationComplete();
804 void SimpleEntryImpl::ReadDataInternal(int stream_index,
805 int offset,
806 net::IOBuffer* buf,
807 int buf_len,
808 const CompletionCallback& callback) {
809 DCHECK(io_thread_checker_.CalledOnValidThread());
810 ScopedOperationRunner operation_runner(this);
812 if (net_log_.IsLogging()) {
813 net_log_.AddEvent(
814 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_READ_BEGIN,
815 CreateNetLogReadWriteDataCallback(stream_index, offset, buf_len,
816 false));
819 if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) {
820 if (!callback.is_null()) {
821 RecordReadResult(cache_type_, READ_RESULT_BAD_STATE);
822 // Note that the API states that client-provided callbacks for entry-level
823 // (i.e. non-backend) operations (e.g. read, write) are invoked even if
824 // the backend was already destroyed.
825 base::ThreadTaskRunnerHandle::Get()->PostTask(
826 FROM_HERE, base::Bind(callback, net::ERR_FAILED));
828 if (net_log_.IsLogging()) {
829 net_log_.AddEvent(
830 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_READ_END,
831 CreateNetLogReadWriteCompleteCallback(net::ERR_FAILED));
833 return;
835 DCHECK_EQ(STATE_READY, state_);
836 if (offset >= GetDataSize(stream_index) || offset < 0 || !buf_len) {
837 RecordReadResult(cache_type_, READ_RESULT_FAST_EMPTY_RETURN);
838 // If there is nothing to read, we bail out before setting state_ to
839 // STATE_IO_PENDING.
840 if (!callback.is_null())
841 base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
842 base::Bind(callback, 0));
843 return;
846 buf_len = std::min(buf_len, GetDataSize(stream_index) - offset);
848 // Since stream 0 data is kept in memory, it is read immediately.
849 if (stream_index == 0) {
850 int ret_value = ReadStream0Data(buf, offset, buf_len);
851 if (!callback.is_null()) {
852 base::ThreadTaskRunnerHandle::Get()->PostTask(
853 FROM_HERE, base::Bind(callback, ret_value));
855 return;
858 state_ = STATE_IO_PENDING;
859 if (!doomed_ && backend_.get())
860 backend_->index()->UseIfExists(entry_hash_);
862 scoped_ptr<uint32> read_crc32(new uint32());
863 scoped_ptr<int> result(new int());
864 scoped_ptr<SimpleEntryStat> entry_stat(
865 new SimpleEntryStat(last_used_, last_modified_, data_size_,
866 sparse_data_size_));
867 Closure task = base::Bind(
868 &SimpleSynchronousEntry::ReadData,
869 base::Unretained(synchronous_entry_),
870 SimpleSynchronousEntry::EntryOperationData(stream_index, offset, buf_len),
871 make_scoped_refptr(buf),
872 read_crc32.get(),
873 entry_stat.get(),
874 result.get());
875 Closure reply = base::Bind(&SimpleEntryImpl::ReadOperationComplete,
876 this,
877 stream_index,
878 offset,
879 callback,
880 base::Passed(&read_crc32),
881 base::Passed(&entry_stat),
882 base::Passed(&result));
883 worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
886 void SimpleEntryImpl::WriteDataInternal(int stream_index,
887 int offset,
888 net::IOBuffer* buf,
889 int buf_len,
890 const CompletionCallback& callback,
891 bool truncate) {
892 DCHECK(io_thread_checker_.CalledOnValidThread());
893 ScopedOperationRunner operation_runner(this);
895 if (net_log_.IsLogging()) {
896 net_log_.AddEvent(
897 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_WRITE_BEGIN,
898 CreateNetLogReadWriteDataCallback(stream_index, offset, buf_len,
899 truncate));
902 if (state_ == STATE_FAILURE || state_ == STATE_UNINITIALIZED) {
903 RecordWriteResult(cache_type_, WRITE_RESULT_BAD_STATE);
904 if (net_log_.IsLogging()) {
905 net_log_.AddEvent(
906 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_WRITE_END,
907 CreateNetLogReadWriteCompleteCallback(net::ERR_FAILED));
909 if (!callback.is_null()) {
910 base::ThreadTaskRunnerHandle::Get()->PostTask(
911 FROM_HERE, base::Bind(callback, net::ERR_FAILED));
913 // |this| may be destroyed after return here.
914 return;
917 DCHECK_EQ(STATE_READY, state_);
919 // Since stream 0 data is kept in memory, it will be written immediatly.
920 if (stream_index == 0) {
921 int ret_value = SetStream0Data(buf, offset, buf_len, truncate);
922 if (!callback.is_null()) {
923 base::ThreadTaskRunnerHandle::Get()->PostTask(
924 FROM_HERE, base::Bind(callback, ret_value));
926 return;
929 // Ignore zero-length writes that do not change the file size.
930 if (buf_len == 0) {
931 int32 data_size = data_size_[stream_index];
932 if (truncate ? (offset == data_size) : (offset <= data_size)) {
933 RecordWriteResult(cache_type_, WRITE_RESULT_FAST_EMPTY_RETURN);
934 if (!callback.is_null()) {
935 base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE,
936 base::Bind(callback, 0));
938 return;
941 state_ = STATE_IO_PENDING;
942 if (!doomed_ && backend_.get())
943 backend_->index()->UseIfExists(entry_hash_);
945 AdvanceCrc(buf, offset, buf_len, stream_index);
947 // |entry_stat| needs to be initialized before modifying |data_size_|.
948 scoped_ptr<SimpleEntryStat> entry_stat(
949 new SimpleEntryStat(last_used_, last_modified_, data_size_,
950 sparse_data_size_));
951 if (truncate) {
952 data_size_[stream_index] = offset + buf_len;
953 } else {
954 data_size_[stream_index] = std::max(offset + buf_len,
955 GetDataSize(stream_index));
958 // Since we don't know the correct values for |last_used_| and
959 // |last_modified_| yet, we make this approximation.
960 last_used_ = last_modified_ = base::Time::Now();
962 have_written_[stream_index] = true;
963 // Writing on stream 1 affects the placement of stream 0 in the file, the EOF
964 // record will have to be rewritten.
965 if (stream_index == 1)
966 have_written_[0] = true;
968 scoped_ptr<int> result(new int());
969 Closure task = base::Bind(&SimpleSynchronousEntry::WriteData,
970 base::Unretained(synchronous_entry_),
971 SimpleSynchronousEntry::EntryOperationData(
972 stream_index, offset, buf_len, truncate,
973 doomed_),
974 make_scoped_refptr(buf),
975 entry_stat.get(),
976 result.get());
977 Closure reply = base::Bind(&SimpleEntryImpl::WriteOperationComplete,
978 this,
979 stream_index,
980 callback,
981 base::Passed(&entry_stat),
982 base::Passed(&result));
983 worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
986 void SimpleEntryImpl::ReadSparseDataInternal(
987 int64 sparse_offset,
988 net::IOBuffer* buf,
989 int buf_len,
990 const CompletionCallback& callback) {
991 DCHECK(io_thread_checker_.CalledOnValidThread());
992 ScopedOperationRunner operation_runner(this);
994 DCHECK_EQ(STATE_READY, state_);
995 state_ = STATE_IO_PENDING;
997 scoped_ptr<int> result(new int());
998 scoped_ptr<base::Time> last_used(new base::Time());
999 Closure task = base::Bind(&SimpleSynchronousEntry::ReadSparseData,
1000 base::Unretained(synchronous_entry_),
1001 SimpleSynchronousEntry::EntryOperationData(
1002 sparse_offset, buf_len),
1003 make_scoped_refptr(buf),
1004 last_used.get(),
1005 result.get());
1006 Closure reply = base::Bind(&SimpleEntryImpl::ReadSparseOperationComplete,
1007 this,
1008 callback,
1009 base::Passed(&last_used),
1010 base::Passed(&result));
1011 worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
1014 void SimpleEntryImpl::WriteSparseDataInternal(
1015 int64 sparse_offset,
1016 net::IOBuffer* buf,
1017 int buf_len,
1018 const CompletionCallback& callback) {
1019 DCHECK(io_thread_checker_.CalledOnValidThread());
1020 ScopedOperationRunner operation_runner(this);
1022 DCHECK_EQ(STATE_READY, state_);
1023 state_ = STATE_IO_PENDING;
1025 uint64 max_sparse_data_size = kint64max;
1026 if (backend_.get()) {
1027 uint64 max_cache_size = backend_->index()->max_size();
1028 max_sparse_data_size = max_cache_size / kMaxSparseDataSizeDivisor;
1031 scoped_ptr<SimpleEntryStat> entry_stat(
1032 new SimpleEntryStat(last_used_, last_modified_, data_size_,
1033 sparse_data_size_));
1035 last_used_ = last_modified_ = base::Time::Now();
1037 scoped_ptr<int> result(new int());
1038 Closure task = base::Bind(&SimpleSynchronousEntry::WriteSparseData,
1039 base::Unretained(synchronous_entry_),
1040 SimpleSynchronousEntry::EntryOperationData(
1041 sparse_offset, buf_len),
1042 make_scoped_refptr(buf),
1043 max_sparse_data_size,
1044 entry_stat.get(),
1045 result.get());
1046 Closure reply = base::Bind(&SimpleEntryImpl::WriteSparseOperationComplete,
1047 this,
1048 callback,
1049 base::Passed(&entry_stat),
1050 base::Passed(&result));
1051 worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
1054 void SimpleEntryImpl::GetAvailableRangeInternal(
1055 int64 sparse_offset,
1056 int len,
1057 int64* out_start,
1058 const CompletionCallback& callback) {
1059 DCHECK(io_thread_checker_.CalledOnValidThread());
1060 ScopedOperationRunner operation_runner(this);
1062 DCHECK_EQ(STATE_READY, state_);
1063 state_ = STATE_IO_PENDING;
1065 scoped_ptr<int> result(new int());
1066 Closure task = base::Bind(&SimpleSynchronousEntry::GetAvailableRange,
1067 base::Unretained(synchronous_entry_),
1068 SimpleSynchronousEntry::EntryOperationData(
1069 sparse_offset, len),
1070 out_start,
1071 result.get());
1072 Closure reply = base::Bind(
1073 &SimpleEntryImpl::GetAvailableRangeOperationComplete,
1074 this,
1075 callback,
1076 base::Passed(&result));
1077 worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
1080 void SimpleEntryImpl::DoomEntryInternal(const CompletionCallback& callback) {
1081 PostTaskAndReplyWithResult(
1082 worker_pool_.get(),
1083 FROM_HERE,
1084 base::Bind(&SimpleSynchronousEntry::DoomEntry, path_, entry_hash_),
1085 base::Bind(
1086 &SimpleEntryImpl::DoomOperationComplete, this, callback, state_));
1087 state_ = STATE_IO_PENDING;
1090 void SimpleEntryImpl::CreationOperationComplete(
1091 const CompletionCallback& completion_callback,
1092 const base::TimeTicks& start_time,
1093 scoped_ptr<SimpleEntryCreationResults> in_results,
1094 Entry** out_entry,
1095 net::NetLog::EventType end_event_type) {
1096 DCHECK(io_thread_checker_.CalledOnValidThread());
1097 DCHECK_EQ(state_, STATE_IO_PENDING);
1098 DCHECK(in_results);
1099 ScopedOperationRunner operation_runner(this);
1100 SIMPLE_CACHE_UMA(BOOLEAN,
1101 "EntryCreationResult", cache_type_,
1102 in_results->result == net::OK);
1103 if (in_results->result != net::OK) {
1104 if (in_results->result != net::ERR_FILE_EXISTS)
1105 MarkAsDoomed();
1107 net_log_.AddEventWithNetErrorCode(end_event_type, net::ERR_FAILED);
1108 PostClientCallback(completion_callback, net::ERR_FAILED);
1109 MakeUninitialized();
1110 return;
1112 // If out_entry is NULL, it means we already called ReturnEntryToCaller from
1113 // the optimistic Create case.
1114 if (out_entry)
1115 ReturnEntryToCaller(out_entry);
1117 state_ = STATE_READY;
1118 synchronous_entry_ = in_results->sync_entry;
1119 if (in_results->stream_0_data.get()) {
1120 stream_0_data_ = in_results->stream_0_data;
1121 // The crc was read in SimpleSynchronousEntry.
1122 crc_check_state_[0] = CRC_CHECK_DONE;
1123 crc32s_[0] = in_results->stream_0_crc32;
1124 crc32s_end_offset_[0] = in_results->entry_stat.data_size(0);
1126 if (key_.empty()) {
1127 SetKey(synchronous_entry_->key());
1128 } else {
1129 // This should only be triggered when creating an entry. The key check in
1130 // the open case is handled in SimpleBackendImpl.
1131 DCHECK_EQ(key_, synchronous_entry_->key());
1133 UpdateDataFromEntryStat(in_results->entry_stat);
1134 SIMPLE_CACHE_UMA(TIMES,
1135 "EntryCreationTime", cache_type_,
1136 (base::TimeTicks::Now() - start_time));
1137 AdjustOpenEntryCountBy(cache_type_, 1);
1139 net_log_.AddEvent(end_event_type);
1140 PostClientCallback(completion_callback, net::OK);
1143 void SimpleEntryImpl::EntryOperationComplete(
1144 const CompletionCallback& completion_callback,
1145 const SimpleEntryStat& entry_stat,
1146 scoped_ptr<int> result) {
1147 DCHECK(io_thread_checker_.CalledOnValidThread());
1148 DCHECK(synchronous_entry_);
1149 DCHECK_EQ(STATE_IO_PENDING, state_);
1150 DCHECK(result);
1151 if (*result < 0) {
1152 state_ = STATE_FAILURE;
1153 MarkAsDoomed();
1154 } else {
1155 state_ = STATE_READY;
1156 UpdateDataFromEntryStat(entry_stat);
1159 if (!completion_callback.is_null()) {
1160 base::ThreadTaskRunnerHandle::Get()->PostTask(
1161 FROM_HERE, base::Bind(completion_callback, *result));
1163 RunNextOperationIfNeeded();
1166 void SimpleEntryImpl::ReadOperationComplete(
1167 int stream_index,
1168 int offset,
1169 const CompletionCallback& completion_callback,
1170 scoped_ptr<uint32> read_crc32,
1171 scoped_ptr<SimpleEntryStat> entry_stat,
1172 scoped_ptr<int> result) {
1173 DCHECK(io_thread_checker_.CalledOnValidThread());
1174 DCHECK(synchronous_entry_);
1175 DCHECK_EQ(STATE_IO_PENDING, state_);
1176 DCHECK(read_crc32);
1177 DCHECK(result);
1179 if (*result > 0 &&
1180 crc_check_state_[stream_index] == CRC_CHECK_NEVER_READ_AT_ALL) {
1181 crc_check_state_[stream_index] = CRC_CHECK_NEVER_READ_TO_END;
1184 if (*result > 0 && crc32s_end_offset_[stream_index] == offset) {
1185 uint32 current_crc = offset == 0 ? crc32(0, Z_NULL, 0)
1186 : crc32s_[stream_index];
1187 crc32s_[stream_index] = crc32_combine(current_crc, *read_crc32, *result);
1188 crc32s_end_offset_[stream_index] += *result;
1189 if (!have_written_[stream_index] &&
1190 GetDataSize(stream_index) == crc32s_end_offset_[stream_index]) {
1191 // We have just read a file from start to finish, and so we have
1192 // computed a crc of the entire file. We can check it now. If a cache
1193 // entry has a single reader, the normal pattern is to read from start
1194 // to finish.
1196 // Other cases are possible. In the case of two readers on the same
1197 // entry, one reader can be behind the other. In this case we compute
1198 // the crc as the most advanced reader progresses, and check it for
1199 // both readers as they read the last byte.
1201 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_CHECKSUM_BEGIN);
1203 scoped_ptr<int> new_result(new int());
1204 Closure task = base::Bind(&SimpleSynchronousEntry::CheckEOFRecord,
1205 base::Unretained(synchronous_entry_),
1206 stream_index,
1207 *entry_stat,
1208 crc32s_[stream_index],
1209 new_result.get());
1210 Closure reply = base::Bind(&SimpleEntryImpl::ChecksumOperationComplete,
1211 this, *result, stream_index,
1212 completion_callback,
1213 base::Passed(&new_result));
1214 worker_pool_->PostTaskAndReply(FROM_HERE, task, reply);
1215 crc_check_state_[stream_index] = CRC_CHECK_DONE;
1216 return;
1220 if (*result < 0) {
1221 crc32s_end_offset_[stream_index] = 0;
1224 if (*result < 0) {
1225 RecordReadResult(cache_type_, READ_RESULT_SYNC_READ_FAILURE);
1226 } else {
1227 RecordReadResult(cache_type_, READ_RESULT_SUCCESS);
1228 if (crc_check_state_[stream_index] == CRC_CHECK_NEVER_READ_TO_END &&
1229 offset + *result == GetDataSize(stream_index)) {
1230 crc_check_state_[stream_index] = CRC_CHECK_NOT_DONE;
1233 if (net_log_.IsLogging()) {
1234 net_log_.AddEvent(
1235 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_READ_END,
1236 CreateNetLogReadWriteCompleteCallback(*result));
1239 EntryOperationComplete(completion_callback, *entry_stat, result.Pass());
1242 void SimpleEntryImpl::WriteOperationComplete(
1243 int stream_index,
1244 const CompletionCallback& completion_callback,
1245 scoped_ptr<SimpleEntryStat> entry_stat,
1246 scoped_ptr<int> result) {
1247 if (*result >= 0)
1248 RecordWriteResult(cache_type_, WRITE_RESULT_SUCCESS);
1249 else
1250 RecordWriteResult(cache_type_, WRITE_RESULT_SYNC_WRITE_FAILURE);
1251 if (net_log_.IsLogging()) {
1252 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_WRITE_END,
1253 CreateNetLogReadWriteCompleteCallback(*result));
1256 if (*result < 0) {
1257 crc32s_end_offset_[stream_index] = 0;
1260 EntryOperationComplete(completion_callback, *entry_stat, result.Pass());
1263 void SimpleEntryImpl::ReadSparseOperationComplete(
1264 const CompletionCallback& completion_callback,
1265 scoped_ptr<base::Time> last_used,
1266 scoped_ptr<int> result) {
1267 DCHECK(io_thread_checker_.CalledOnValidThread());
1268 DCHECK(synchronous_entry_);
1269 DCHECK(result);
1271 SimpleEntryStat entry_stat(*last_used, last_modified_, data_size_,
1272 sparse_data_size_);
1273 EntryOperationComplete(completion_callback, entry_stat, result.Pass());
1276 void SimpleEntryImpl::WriteSparseOperationComplete(
1277 const CompletionCallback& completion_callback,
1278 scoped_ptr<SimpleEntryStat> entry_stat,
1279 scoped_ptr<int> result) {
1280 DCHECK(io_thread_checker_.CalledOnValidThread());
1281 DCHECK(synchronous_entry_);
1282 DCHECK(result);
1284 EntryOperationComplete(completion_callback, *entry_stat, result.Pass());
1287 void SimpleEntryImpl::GetAvailableRangeOperationComplete(
1288 const CompletionCallback& completion_callback,
1289 scoped_ptr<int> result) {
1290 DCHECK(io_thread_checker_.CalledOnValidThread());
1291 DCHECK(synchronous_entry_);
1292 DCHECK(result);
1294 SimpleEntryStat entry_stat(last_used_, last_modified_, data_size_,
1295 sparse_data_size_);
1296 EntryOperationComplete(completion_callback, entry_stat, result.Pass());
1299 void SimpleEntryImpl::DoomOperationComplete(
1300 const CompletionCallback& callback,
1301 State state_to_restore,
1302 int result) {
1303 state_ = state_to_restore;
1304 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_DOOM_END);
1305 if (!callback.is_null())
1306 callback.Run(result);
1307 RunNextOperationIfNeeded();
1308 if (backend_)
1309 backend_->OnDoomComplete(entry_hash_);
1312 void SimpleEntryImpl::ChecksumOperationComplete(
1313 int orig_result,
1314 int stream_index,
1315 const CompletionCallback& completion_callback,
1316 scoped_ptr<int> result) {
1317 DCHECK(io_thread_checker_.CalledOnValidThread());
1318 DCHECK(synchronous_entry_);
1319 DCHECK_EQ(STATE_IO_PENDING, state_);
1320 DCHECK(result);
1322 if (net_log_.IsLogging()) {
1323 net_log_.AddEventWithNetErrorCode(
1324 net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_CHECKSUM_END,
1325 *result);
1328 if (*result == net::OK) {
1329 *result = orig_result;
1330 if (orig_result >= 0)
1331 RecordReadResult(cache_type_, READ_RESULT_SUCCESS);
1332 else
1333 RecordReadResult(cache_type_, READ_RESULT_SYNC_READ_FAILURE);
1334 } else {
1335 RecordReadResult(cache_type_, READ_RESULT_SYNC_CHECKSUM_FAILURE);
1337 if (net_log_.IsLogging()) {
1338 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_READ_END,
1339 CreateNetLogReadWriteCompleteCallback(*result));
1342 SimpleEntryStat entry_stat(last_used_, last_modified_, data_size_,
1343 sparse_data_size_);
1344 EntryOperationComplete(completion_callback, entry_stat, result.Pass());
1347 void SimpleEntryImpl::CloseOperationComplete() {
1348 DCHECK(!synchronous_entry_);
1349 DCHECK_EQ(0, open_count_);
1350 DCHECK(STATE_IO_PENDING == state_ || STATE_FAILURE == state_ ||
1351 STATE_UNINITIALIZED == state_);
1352 net_log_.AddEvent(net::NetLog::TYPE_SIMPLE_CACHE_ENTRY_CLOSE_END);
1353 AdjustOpenEntryCountBy(cache_type_, -1);
1354 MakeUninitialized();
1355 RunNextOperationIfNeeded();
1358 void SimpleEntryImpl::UpdateDataFromEntryStat(
1359 const SimpleEntryStat& entry_stat) {
1360 DCHECK(io_thread_checker_.CalledOnValidThread());
1361 DCHECK(synchronous_entry_);
1362 DCHECK_EQ(STATE_READY, state_);
1364 last_used_ = entry_stat.last_used();
1365 last_modified_ = entry_stat.last_modified();
1366 for (int i = 0; i < kSimpleEntryStreamCount; ++i) {
1367 data_size_[i] = entry_stat.data_size(i);
1369 sparse_data_size_ = entry_stat.sparse_data_size();
1370 if (!doomed_ && backend_.get())
1371 backend_->index()->UpdateEntrySize(entry_hash_, GetDiskUsage());
1374 int64 SimpleEntryImpl::GetDiskUsage() const {
1375 int64 file_size = 0;
1376 for (int i = 0; i < kSimpleEntryStreamCount; ++i) {
1377 file_size +=
1378 simple_util::GetFileSizeFromKeyAndDataSize(key_, data_size_[i]);
1380 file_size += sparse_data_size_;
1381 return file_size;
1384 void SimpleEntryImpl::RecordReadIsParallelizable(
1385 const SimpleEntryOperation& operation) const {
1386 if (!executing_operation_)
1387 return;
1388 // Used in histograms, please only add entries at the end.
1389 enum ReadDependencyType {
1390 // READ_STANDALONE = 0, Deprecated.
1391 READ_FOLLOWS_READ = 1,
1392 READ_FOLLOWS_CONFLICTING_WRITE = 2,
1393 READ_FOLLOWS_NON_CONFLICTING_WRITE = 3,
1394 READ_FOLLOWS_OTHER = 4,
1395 READ_ALONE_IN_QUEUE = 5,
1396 READ_DEPENDENCY_TYPE_MAX = 6,
1399 ReadDependencyType type = READ_FOLLOWS_OTHER;
1400 if (operation.alone_in_queue()) {
1401 type = READ_ALONE_IN_QUEUE;
1402 } else if (executing_operation_->type() == SimpleEntryOperation::TYPE_READ) {
1403 type = READ_FOLLOWS_READ;
1404 } else if (executing_operation_->type() == SimpleEntryOperation::TYPE_WRITE) {
1405 if (executing_operation_->ConflictsWith(operation))
1406 type = READ_FOLLOWS_CONFLICTING_WRITE;
1407 else
1408 type = READ_FOLLOWS_NON_CONFLICTING_WRITE;
1410 SIMPLE_CACHE_UMA(ENUMERATION,
1411 "ReadIsParallelizable", cache_type_,
1412 type, READ_DEPENDENCY_TYPE_MAX);
1415 void SimpleEntryImpl::RecordWriteDependencyType(
1416 const SimpleEntryOperation& operation) const {
1417 if (!executing_operation_)
1418 return;
1419 // Used in histograms, please only add entries at the end.
1420 enum WriteDependencyType {
1421 WRITE_OPTIMISTIC = 0,
1422 WRITE_FOLLOWS_CONFLICTING_OPTIMISTIC = 1,
1423 WRITE_FOLLOWS_NON_CONFLICTING_OPTIMISTIC = 2,
1424 WRITE_FOLLOWS_CONFLICTING_WRITE = 3,
1425 WRITE_FOLLOWS_NON_CONFLICTING_WRITE = 4,
1426 WRITE_FOLLOWS_CONFLICTING_READ = 5,
1427 WRITE_FOLLOWS_NON_CONFLICTING_READ = 6,
1428 WRITE_FOLLOWS_OTHER = 7,
1429 WRITE_DEPENDENCY_TYPE_MAX = 8,
1432 WriteDependencyType type = WRITE_FOLLOWS_OTHER;
1433 if (operation.optimistic()) {
1434 type = WRITE_OPTIMISTIC;
1435 } else if (executing_operation_->type() == SimpleEntryOperation::TYPE_READ ||
1436 executing_operation_->type() == SimpleEntryOperation::TYPE_WRITE) {
1437 bool conflicting = executing_operation_->ConflictsWith(operation);
1439 if (executing_operation_->type() == SimpleEntryOperation::TYPE_READ) {
1440 type = conflicting ? WRITE_FOLLOWS_CONFLICTING_READ
1441 : WRITE_FOLLOWS_NON_CONFLICTING_READ;
1442 } else if (executing_operation_->optimistic()) {
1443 type = conflicting ? WRITE_FOLLOWS_CONFLICTING_OPTIMISTIC
1444 : WRITE_FOLLOWS_NON_CONFLICTING_OPTIMISTIC;
1445 } else {
1446 type = conflicting ? WRITE_FOLLOWS_CONFLICTING_WRITE
1447 : WRITE_FOLLOWS_NON_CONFLICTING_WRITE;
1450 SIMPLE_CACHE_UMA(ENUMERATION,
1451 "WriteDependencyType", cache_type_,
1452 type, WRITE_DEPENDENCY_TYPE_MAX);
1455 int SimpleEntryImpl::ReadStream0Data(net::IOBuffer* buf,
1456 int offset,
1457 int buf_len) {
1458 if (buf_len < 0) {
1459 RecordReadResult(cache_type_, READ_RESULT_SYNC_READ_FAILURE);
1460 return 0;
1462 memcpy(buf->data(), stream_0_data_->data() + offset, buf_len);
1463 UpdateDataFromEntryStat(
1464 SimpleEntryStat(base::Time::Now(), last_modified_, data_size_,
1465 sparse_data_size_));
1466 RecordReadResult(cache_type_, READ_RESULT_SUCCESS);
1467 return buf_len;
1470 int SimpleEntryImpl::SetStream0Data(net::IOBuffer* buf,
1471 int offset,
1472 int buf_len,
1473 bool truncate) {
1474 // Currently, stream 0 is only used for HTTP headers, and always writes them
1475 // with a single, truncating write. Detect these writes and record the size
1476 // changes of the headers. Also, support writes to stream 0 that have
1477 // different access patterns, as required by the API contract.
1478 // All other clients of the Simple Cache are encouraged to use stream 1.
1479 have_written_[0] = true;
1480 int data_size = GetDataSize(0);
1481 if (offset == 0 && truncate) {
1482 RecordHeaderSizeChange(cache_type_, data_size, buf_len);
1483 stream_0_data_->SetCapacity(buf_len);
1484 memcpy(stream_0_data_->data(), buf->data(), buf_len);
1485 data_size_[0] = buf_len;
1486 } else {
1487 RecordUnexpectedStream0Write(cache_type_);
1488 const int buffer_size =
1489 truncate ? offset + buf_len : std::max(offset + buf_len, data_size);
1490 stream_0_data_->SetCapacity(buffer_size);
1491 // If |stream_0_data_| was extended, the extension until offset needs to be
1492 // zero-filled.
1493 const int fill_size = offset <= data_size ? 0 : offset - data_size;
1494 if (fill_size > 0)
1495 memset(stream_0_data_->data() + data_size, 0, fill_size);
1496 if (buf)
1497 memcpy(stream_0_data_->data() + offset, buf->data(), buf_len);
1498 data_size_[0] = buffer_size;
1500 base::Time modification_time = base::Time::Now();
1501 AdvanceCrc(buf, offset, buf_len, 0);
1502 UpdateDataFromEntryStat(
1503 SimpleEntryStat(modification_time, modification_time, data_size_,
1504 sparse_data_size_));
1505 RecordWriteResult(cache_type_, WRITE_RESULT_SUCCESS);
1506 return buf_len;
1509 void SimpleEntryImpl::AdvanceCrc(net::IOBuffer* buffer,
1510 int offset,
1511 int length,
1512 int stream_index) {
1513 // It is easy to incrementally compute the CRC from [0 .. |offset + buf_len|)
1514 // if |offset == 0| or we have already computed the CRC for [0 .. offset).
1515 // We rely on most write operations being sequential, start to end to compute
1516 // the crc of the data. When we write to an entry and close without having
1517 // done a sequential write, we don't check the CRC on read.
1518 if (offset == 0 || crc32s_end_offset_[stream_index] == offset) {
1519 uint32 initial_crc =
1520 (offset != 0) ? crc32s_[stream_index] : crc32(0, Z_NULL, 0);
1521 if (length > 0) {
1522 crc32s_[stream_index] = crc32(
1523 initial_crc, reinterpret_cast<const Bytef*>(buffer->data()), length);
1525 crc32s_end_offset_[stream_index] = offset + length;
1526 } else if (offset < crc32s_end_offset_[stream_index]) {
1527 // If a range for which the crc32 was already computed is rewritten, the
1528 // computation of the crc32 need to start from 0 again.
1529 crc32s_end_offset_[stream_index] = 0;
1533 } // namespace disk_cache