1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/message_loop/message_loop.h"
10 #include "base/compiler_specific.h"
11 #include "base/lazy_instance.h"
12 #include "base/logging.h"
13 #include "base/memory/scoped_ptr.h"
14 #include "base/message_loop/message_pump_default.h"
15 #include "base/metrics/histogram.h"
16 #include "base/metrics/statistics_recorder.h"
17 #include "base/run_loop.h"
18 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
19 #include "base/thread_task_runner_handle.h"
20 #include "base/threading/thread_local.h"
21 #include "base/time/time.h"
22 #include "base/tracked_objects.h"
24 #if defined(OS_MACOSX)
25 #include "base/message_loop/message_pump_mac.h"
27 #if defined(OS_POSIX) && !defined(OS_IOS)
28 #include "base/message_loop/message_pump_libevent.h"
30 #if defined(OS_ANDROID)
31 #include "base/message_loop/message_pump_android.h"
34 #include "base/message_loop/message_pump_glib.h"
41 // A lazily created thread local storage for quick access to a thread's message
42 // loop, if one exists. This should be safe and free of static constructors.
43 LazyInstance
<base::ThreadLocalPointer
<MessageLoop
> >::Leaky lazy_tls_ptr
=
44 LAZY_INSTANCE_INITIALIZER
;
46 // Logical events for Histogram profiling. Run with -message-loop-histogrammer
47 // to get an accounting of messages and actions taken on each thread.
48 const int kTaskRunEvent
= 0x1;
50 const int kTimerEvent
= 0x2;
52 // Provide range of message IDs for use in histogramming and debug display.
53 const int kLeastNonZeroMessageId
= 1;
54 const int kMaxMessageId
= 1099;
55 const int kNumberOfDistinctMessagesDisplayed
= 1100;
57 // Provide a macro that takes an expression (such as a constant, or macro
58 // constant) and creates a pair to initalize an array of pairs. In this case,
59 // our pair consists of the expressions value, and the "stringized" version
60 // of the expression (i.e., the exrpression put in quotes). For example, if
64 // then the following:
65 // VALUE_TO_NUMBER_AND_NAME(FOO + BAR)
68 // We use the resulting array as an argument to our histogram, which reads the
69 // number as a bucket identifier, and proceeds to use the corresponding name
70 // in the pair (i.e., the quoted string) when printing out a histogram.
71 #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name},
73 const LinearHistogram::DescriptionPair event_descriptions_
[] = {
74 // Provide some pretty print capability in our histogram for our internal
77 // A few events we handle (kindred to messages), and used to profile actions.
78 VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent
)
79 VALUE_TO_NUMBER_AND_NAME(kTimerEvent
)
81 {-1, NULL
} // The list must be null terminated, per API to histogram.
83 #endif // !defined(OS_NACL)
85 bool enable_histogrammer_
= false;
87 MessageLoop::MessagePumpFactory
* message_pump_for_ui_factory_
= NULL
;
89 // Returns true if MessagePump::ScheduleWork() must be called one
90 // time for every task that is added to the MessageLoop incoming queue.
91 bool AlwaysNotifyPump(MessageLoop::Type type
) {
92 #if defined(OS_ANDROID)
93 // The Android UI message loop needs to get notified each time a task is added
94 // to the incoming queue.
95 return type
== MessageLoop::TYPE_UI
|| type
== MessageLoop::TYPE_JAVA
;
102 typedef MessagePumpIOSForIO MessagePumpForIO
;
103 #elif defined(OS_NACL)
104 typedef MessagePumpDefault MessagePumpForIO
;
105 #elif defined(OS_POSIX)
106 typedef MessagePumpLibevent MessagePumpForIO
;
109 MessagePumpForIO
* ToPumpIO(MessagePump
* pump
) {
110 return static_cast<MessagePumpForIO
*>(pump
);
115 //------------------------------------------------------------------------------
117 MessageLoop::TaskObserver::TaskObserver() {
120 MessageLoop::TaskObserver::~TaskObserver() {
123 MessageLoop::DestructionObserver::~DestructionObserver() {
126 //------------------------------------------------------------------------------
128 MessageLoop::MessageLoop(Type type
)
130 pending_high_res_tasks_(0),
131 in_high_res_mode_(false),
132 nestable_tasks_allowed_(true),
134 os_modal_loop_(false),
136 message_histogram_(NULL
),
140 pump_
= CreateMessagePumpForType(type
).Pass();
143 MessageLoop::MessageLoop(scoped_ptr
<MessagePump
> pump
)
144 : pump_(pump
.Pass()),
146 pending_high_res_tasks_(0),
147 in_high_res_mode_(false),
148 nestable_tasks_allowed_(true),
150 os_modal_loop_(false),
152 message_histogram_(NULL
),
158 MessageLoop::~MessageLoop() {
159 DCHECK_EQ(this, current());
163 if (in_high_res_mode_
)
164 Time::ActivateHighResolutionTimer(false);
166 // Clean up any unprocessed tasks, but take care: deleting a task could
167 // result in the addition of more tasks (e.g., via DeleteSoon). We set a
168 // limit on the number of times we will allow a deleted task to generate more
169 // tasks. Normally, we should only pass through this loop once or twice. If
170 // we end up hitting the loop limit, then it is probably due to one task that
171 // is being stubborn. Inspect the queues to see who is left.
173 for (int i
= 0; i
< 100; ++i
) {
174 DeletePendingTasks();
176 // If we end up with empty queues, then break out of the loop.
177 did_work
= DeletePendingTasks();
183 // Let interested parties have one last shot at accessing this.
184 FOR_EACH_OBSERVER(DestructionObserver
, destruction_observers_
,
185 WillDestroyCurrentMessageLoop());
187 thread_task_runner_handle_
.reset();
189 // Tell the incoming queue that we are dying.
190 incoming_task_queue_
->WillDestroyCurrentMessageLoop();
191 incoming_task_queue_
= NULL
;
192 message_loop_proxy_
= NULL
;
194 // OK, now make it so that no one can find us.
195 lazy_tls_ptr
.Pointer()->Set(NULL
);
199 MessageLoop
* MessageLoop::current() {
200 // TODO(darin): sadly, we cannot enable this yet since people call us even
201 // when they have no intention of using us.
202 // DCHECK(loop) << "Ouch, did you forget to initialize me?";
203 return lazy_tls_ptr
.Pointer()->Get();
207 void MessageLoop::EnableHistogrammer(bool enable
) {
208 enable_histogrammer_
= enable
;
212 bool MessageLoop::InitMessagePumpForUIFactory(MessagePumpFactory
* factory
) {
213 if (message_pump_for_ui_factory_
)
216 message_pump_for_ui_factory_
= factory
;
221 scoped_ptr
<MessagePump
> MessageLoop::CreateMessagePumpForType(Type type
) {
222 // TODO(rvargas): Get rid of the OS guards.
223 #if defined(USE_GLIB) && !defined(OS_NACL)
224 typedef MessagePumpGlib MessagePumpForUI
;
225 #elif defined(OS_LINUX) && !defined(OS_NACL)
226 typedef MessagePumpLibevent MessagePumpForUI
;
229 #if defined(OS_IOS) || defined(OS_MACOSX)
230 #define MESSAGE_PUMP_UI scoped_ptr<MessagePump>(MessagePumpMac::Create())
231 #elif defined(OS_NACL)
232 // Currently NaCl doesn't have a UI MessageLoop.
233 // TODO(abarth): Figure out if we need this.
234 #define MESSAGE_PUMP_UI scoped_ptr<MessagePump>()
236 #define MESSAGE_PUMP_UI scoped_ptr<MessagePump>(new MessagePumpForUI())
239 #if defined(OS_MACOSX)
240 // Use an OS native runloop on Mac to support timer coalescing.
241 #define MESSAGE_PUMP_DEFAULT \
242 scoped_ptr<MessagePump>(new MessagePumpCFRunLoop())
244 #define MESSAGE_PUMP_DEFAULT scoped_ptr<MessagePump>(new MessagePumpDefault())
247 if (type
== MessageLoop::TYPE_UI
) {
248 if (message_pump_for_ui_factory_
)
249 return message_pump_for_ui_factory_();
250 return MESSAGE_PUMP_UI
;
252 if (type
== MessageLoop::TYPE_IO
)
253 return scoped_ptr
<MessagePump
>(new MessagePumpForIO());
255 #if defined(OS_ANDROID)
256 if (type
== MessageLoop::TYPE_JAVA
)
257 return scoped_ptr
<MessagePump
>(new MessagePumpForUI());
260 DCHECK_EQ(MessageLoop::TYPE_DEFAULT
, type
);
261 return MESSAGE_PUMP_DEFAULT
;
264 void MessageLoop::AddDestructionObserver(
265 DestructionObserver
* destruction_observer
) {
266 DCHECK_EQ(this, current());
267 destruction_observers_
.AddObserver(destruction_observer
);
270 void MessageLoop::RemoveDestructionObserver(
271 DestructionObserver
* destruction_observer
) {
272 DCHECK_EQ(this, current());
273 destruction_observers_
.RemoveObserver(destruction_observer
);
276 void MessageLoop::PostTask(
277 const tracked_objects::Location
& from_here
,
278 const Closure
& task
) {
279 DCHECK(!task
.is_null()) << from_here
.ToString();
280 incoming_task_queue_
->AddToIncomingQueue(from_here
, task
, TimeDelta(), true);
283 void MessageLoop::PostDelayedTask(
284 const tracked_objects::Location
& from_here
,
287 DCHECK(!task
.is_null()) << from_here
.ToString();
288 incoming_task_queue_
->AddToIncomingQueue(from_here
, task
, delay
, true);
291 void MessageLoop::PostNonNestableTask(
292 const tracked_objects::Location
& from_here
,
293 const Closure
& task
) {
294 DCHECK(!task
.is_null()) << from_here
.ToString();
295 incoming_task_queue_
->AddToIncomingQueue(from_here
, task
, TimeDelta(), false);
298 void MessageLoop::PostNonNestableDelayedTask(
299 const tracked_objects::Location
& from_here
,
302 DCHECK(!task
.is_null()) << from_here
.ToString();
303 incoming_task_queue_
->AddToIncomingQueue(from_here
, task
, delay
, false);
306 void MessageLoop::Run() {
311 void MessageLoop::RunUntilIdle() {
313 run_loop
.RunUntilIdle();
316 void MessageLoop::QuitWhenIdle() {
317 DCHECK_EQ(this, current());
319 run_loop_
->quit_when_idle_received_
= true;
321 NOTREACHED() << "Must be inside Run to call Quit";
325 void MessageLoop::QuitNow() {
326 DCHECK_EQ(this, current());
330 NOTREACHED() << "Must be inside Run to call Quit";
334 bool MessageLoop::IsType(Type type
) const {
335 return type_
== type
;
338 static void QuitCurrentWhenIdle() {
339 MessageLoop::current()->QuitWhenIdle();
343 Closure
MessageLoop::QuitWhenIdleClosure() {
344 return Bind(&QuitCurrentWhenIdle
);
347 void MessageLoop::SetNestableTasksAllowed(bool allowed
) {
349 // Kick the native pump just in case we enter a OS-driven nested message
351 pump_
->ScheduleWork();
353 nestable_tasks_allowed_
= allowed
;
356 bool MessageLoop::NestableTasksAllowed() const {
357 return nestable_tasks_allowed_
;
360 bool MessageLoop::IsNested() {
361 return run_loop_
->run_depth_
> 1;
364 void MessageLoop::AddTaskObserver(TaskObserver
* task_observer
) {
365 DCHECK_EQ(this, current());
366 task_observers_
.AddObserver(task_observer
);
369 void MessageLoop::RemoveTaskObserver(TaskObserver
* task_observer
) {
370 DCHECK_EQ(this, current());
371 task_observers_
.RemoveObserver(task_observer
);
374 bool MessageLoop::is_running() const {
375 DCHECK_EQ(this, current());
376 return run_loop_
!= NULL
;
379 bool MessageLoop::HasHighResolutionTasks() {
380 return incoming_task_queue_
->HasHighResolutionTasks();
383 bool MessageLoop::IsIdleForTesting() {
384 // We only check the imcoming queue|, since we don't want to lock the work
386 return incoming_task_queue_
->IsIdleForTesting();
389 //------------------------------------------------------------------------------
391 void MessageLoop::Init() {
392 DCHECK(!current()) << "should only have one message loop per thread";
393 lazy_tls_ptr
.Pointer()->Set(this);
395 incoming_task_queue_
= new internal::IncomingTaskQueue(this);
396 message_loop_proxy_
=
397 new internal::MessageLoopProxyImpl(incoming_task_queue_
);
398 thread_task_runner_handle_
.reset(
399 new ThreadTaskRunnerHandle(message_loop_proxy_
));
402 void MessageLoop::RunHandler() {
403 DCHECK_EQ(this, current());
408 if (run_loop_
->dispatcher_
&& type() == TYPE_UI
) {
409 static_cast<MessagePumpForUI
*>(pump_
.get())->
410 RunWithDispatcher(this, run_loop_
->dispatcher_
);
418 bool MessageLoop::ProcessNextDelayedNonNestableTask() {
419 if (run_loop_
->run_depth_
!= 1)
422 if (deferred_non_nestable_work_queue_
.empty())
425 PendingTask pending_task
= deferred_non_nestable_work_queue_
.front();
426 deferred_non_nestable_work_queue_
.pop();
428 RunTask(pending_task
);
432 void MessageLoop::RunTask(const PendingTask
& pending_task
) {
433 DCHECK(nestable_tasks_allowed_
);
435 if (pending_task
.is_high_res
) {
436 pending_high_res_tasks_
--;
437 CHECK(pending_high_res_tasks_
>= 0);
439 // Execute the task and assume the worst: It is probably not reentrant.
440 nestable_tasks_allowed_
= false;
442 HistogramEvent(kTaskRunEvent
);
444 FOR_EACH_OBSERVER(TaskObserver
, task_observers_
,
445 WillProcessTask(pending_task
));
446 task_annotator_
.RunTask(
447 "MessageLoop::PostTask", "MessageLoop::RunTask", pending_task
);
448 FOR_EACH_OBSERVER(TaskObserver
, task_observers_
,
449 DidProcessTask(pending_task
));
451 nestable_tasks_allowed_
= true;
454 bool MessageLoop::DeferOrRunPendingTask(const PendingTask
& pending_task
) {
455 if (pending_task
.nestable
|| run_loop_
->run_depth_
== 1) {
456 RunTask(pending_task
);
457 // Show that we ran a task (Note: a new one might arrive as a
462 // We couldn't run the task now because we're in a nested message loop
463 // and the task isn't nestable.
464 deferred_non_nestable_work_queue_
.push(pending_task
);
468 void MessageLoop::AddToDelayedWorkQueue(const PendingTask
& pending_task
) {
469 // Move to the delayed work queue.
470 delayed_work_queue_
.push(pending_task
);
473 bool MessageLoop::DeletePendingTasks() {
474 bool did_work
= !work_queue_
.empty();
475 while (!work_queue_
.empty()) {
476 PendingTask pending_task
= work_queue_
.front();
478 if (!pending_task
.delayed_run_time
.is_null()) {
479 // We want to delete delayed tasks in the same order in which they would
480 // normally be deleted in case of any funny dependencies between delayed
482 AddToDelayedWorkQueue(pending_task
);
485 did_work
|= !deferred_non_nestable_work_queue_
.empty();
486 while (!deferred_non_nestable_work_queue_
.empty()) {
487 deferred_non_nestable_work_queue_
.pop();
489 did_work
|= !delayed_work_queue_
.empty();
491 // Historically, we always delete the task regardless of valgrind status. It's
492 // not completely clear why we want to leak them in the loops above. This
493 // code is replicating legacy behavior, and should not be considered
494 // absolutely "correct" behavior. See TODO above about deleting all tasks
496 while (!delayed_work_queue_
.empty()) {
497 delayed_work_queue_
.pop();
502 void MessageLoop::ReloadWorkQueue() {
503 // We can improve performance of our loading tasks from the incoming queue to
504 // |*work_queue| by waiting until the last minute (|*work_queue| is empty) to
505 // load. That reduces the number of locks-per-task significantly when our
507 if (work_queue_
.empty()) {
508 pending_high_res_tasks_
+=
509 incoming_task_queue_
->ReloadWorkQueue(&work_queue_
);
513 void MessageLoop::ScheduleWork(bool was_empty
) {
514 if (was_empty
|| AlwaysNotifyPump(type_
))
515 pump_
->ScheduleWork();
518 //------------------------------------------------------------------------------
519 // Method and data for histogramming events and actions taken by each instance
522 void MessageLoop::StartHistogrammer() {
523 #if !defined(OS_NACL) // NaCl build has no metrics code.
524 if (enable_histogrammer_
&& !message_histogram_
525 && StatisticsRecorder::IsActive()) {
526 DCHECK(!thread_name_
.empty());
527 message_histogram_
= LinearHistogram::FactoryGetWithRangeDescription(
528 "MsgLoop:" + thread_name_
,
529 kLeastNonZeroMessageId
, kMaxMessageId
,
530 kNumberOfDistinctMessagesDisplayed
,
531 message_histogram_
->kHexRangePrintingFlag
,
532 event_descriptions_
);
537 void MessageLoop::HistogramEvent(int event
) {
538 #if !defined(OS_NACL)
539 if (message_histogram_
)
540 message_histogram_
->Add(event
);
544 bool MessageLoop::DoWork() {
545 if (!nestable_tasks_allowed_
) {
546 // Task can't be executed right now.
552 if (work_queue_
.empty())
555 // Execute oldest task.
557 PendingTask pending_task
= work_queue_
.front();
559 if (!pending_task
.delayed_run_time
.is_null()) {
560 AddToDelayedWorkQueue(pending_task
);
561 // If we changed the topmost task, then it is time to reschedule.
562 if (delayed_work_queue_
.top().task
.Equals(pending_task
.task
))
563 pump_
->ScheduleDelayedWork(pending_task
.delayed_run_time
);
565 if (DeferOrRunPendingTask(pending_task
))
568 } while (!work_queue_
.empty());
575 bool MessageLoop::DoDelayedWork(TimeTicks
* next_delayed_work_time
) {
576 if (!nestable_tasks_allowed_
|| delayed_work_queue_
.empty()) {
577 recent_time_
= *next_delayed_work_time
= TimeTicks();
581 // When we "fall behind," there will be a lot of tasks in the delayed work
582 // queue that are ready to run. To increase efficiency when we fall behind,
583 // we will only call Time::Now() intermittently, and then process all tasks
584 // that are ready to run before calling it again. As a result, the more we
585 // fall behind (and have a lot of ready-to-run delayed tasks), the more
586 // efficient we'll be at handling the tasks.
588 TimeTicks next_run_time
= delayed_work_queue_
.top().delayed_run_time
;
589 if (next_run_time
> recent_time_
) {
590 recent_time_
= TimeTicks::Now(); // Get a better view of Now();
591 if (next_run_time
> recent_time_
) {
592 *next_delayed_work_time
= next_run_time
;
597 PendingTask pending_task
= delayed_work_queue_
.top();
598 delayed_work_queue_
.pop();
600 if (!delayed_work_queue_
.empty())
601 *next_delayed_work_time
= delayed_work_queue_
.top().delayed_run_time
;
603 return DeferOrRunPendingTask(pending_task
);
606 bool MessageLoop::DoIdleWork() {
607 if (ProcessNextDelayedNonNestableTask())
610 if (run_loop_
->quit_when_idle_received_
)
613 // When we return we will do a kernel wait for more tasks.
615 // On Windows we activate the high resolution timer so that the wait
616 // _if_ triggered by the timer happens with good resolution. If we don't
617 // do this the default resolution is 15ms which might not be acceptable
619 bool high_res
= pending_high_res_tasks_
> 0;
620 if (high_res
!= in_high_res_mode_
) {
621 in_high_res_mode_
= high_res
;
622 Time::ActivateHighResolutionTimer(in_high_res_mode_
);
628 void MessageLoop::DeleteSoonInternal(const tracked_objects::Location
& from_here
,
629 void(*deleter
)(const void*),
630 const void* object
) {
631 PostNonNestableTask(from_here
, Bind(deleter
, object
));
634 void MessageLoop::ReleaseSoonInternal(
635 const tracked_objects::Location
& from_here
,
636 void(*releaser
)(const void*),
637 const void* object
) {
638 PostNonNestableTask(from_here
, Bind(releaser
, object
));
641 #if !defined(OS_NACL)
642 //------------------------------------------------------------------------------
645 #if defined(OS_ANDROID)
646 void MessageLoopForUI::Start() {
647 // No Histogram support for UI message loop as it is managed by Java side
648 static_cast<MessagePumpForUI
*>(pump_
.get())->Start(this);
653 void MessageLoopForUI::Attach() {
654 static_cast<MessagePumpUIApplication
*>(pump_
.get())->Attach(this);
658 #if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB))
659 bool MessageLoopForUI::WatchFileDescriptor(
662 MessagePumpLibevent::Mode mode
,
663 MessagePumpLibevent::FileDescriptorWatcher
*controller
,
664 MessagePumpLibevent::Watcher
*delegate
) {
665 return static_cast<MessagePumpLibevent
*>(pump_
.get())->WatchFileDescriptor(
674 #endif // !defined(OS_NACL)
676 //------------------------------------------------------------------------------
679 #if !defined(OS_NACL)
680 void MessageLoopForIO::AddIOObserver(
681 MessageLoopForIO::IOObserver
* io_observer
) {
682 ToPumpIO(pump_
.get())->AddIOObserver(io_observer
);
685 void MessageLoopForIO::RemoveIOObserver(
686 MessageLoopForIO::IOObserver
* io_observer
) {
687 ToPumpIO(pump_
.get())->RemoveIOObserver(io_observer
);
691 void MessageLoopForIO::RegisterIOHandler(HANDLE file
, IOHandler
* handler
) {
692 ToPumpIO(pump_
.get())->RegisterIOHandler(file
, handler
);
695 bool MessageLoopForIO::RegisterJobObject(HANDLE job
, IOHandler
* handler
) {
696 return ToPumpIO(pump_
.get())->RegisterJobObject(job
, handler
);
699 bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout
, IOHandler
* filter
) {
700 return ToPumpIO(pump_
.get())->WaitForIOCompletion(timeout
, filter
);
702 #elif defined(OS_POSIX)
703 bool MessageLoopForIO::WatchFileDescriptor(int fd
,
706 FileDescriptorWatcher
*controller
,
708 return ToPumpIO(pump_
.get())->WatchFileDescriptor(
717 #endif // !defined(OS_NACL)