Roll breakpad a513e85:7caf028 (svn 1384:1385)
[chromium-blink-merge.git] / base / numerics / safe_math_impl.h
blob3b5e64dd5b51de808e440f318f0bef9125213943
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef SAFE_MATH_IMPL_H_
6 #define SAFE_MATH_IMPL_H_
8 #include <stdint.h>
10 #include <cmath>
11 #include <cstdlib>
12 #include <limits>
14 #include "base/macros.h"
15 #include "base/numerics/safe_conversions.h"
16 #include "base/template_util.h"
18 namespace base {
19 namespace internal {
21 // Everything from here up to the floating point operations is portable C++,
22 // but it may not be fast. This code could be split based on
23 // platform/architecture and replaced with potentially faster implementations.
25 // Integer promotion templates used by the portable checked integer arithmetic.
26 template <size_t Size, bool IsSigned>
27 struct IntegerForSizeAndSign;
28 template <>
29 struct IntegerForSizeAndSign<1, true> {
30 typedef int8_t type;
32 template <>
33 struct IntegerForSizeAndSign<1, false> {
34 typedef uint8_t type;
36 template <>
37 struct IntegerForSizeAndSign<2, true> {
38 typedef int16_t type;
40 template <>
41 struct IntegerForSizeAndSign<2, false> {
42 typedef uint16_t type;
44 template <>
45 struct IntegerForSizeAndSign<4, true> {
46 typedef int32_t type;
48 template <>
49 struct IntegerForSizeAndSign<4, false> {
50 typedef uint32_t type;
52 template <>
53 struct IntegerForSizeAndSign<8, true> {
54 typedef int64_t type;
56 template <>
57 struct IntegerForSizeAndSign<8, false> {
58 typedef uint64_t type;
61 // WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
62 // support 128-bit math, then the ArithmeticPromotion template below will need
63 // to be updated (or more likely replaced with a decltype expression).
65 template <typename Integer>
66 struct UnsignedIntegerForSize {
67 typedef typename enable_if<
68 std::numeric_limits<Integer>::is_integer,
69 typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type;
72 template <typename Integer>
73 struct SignedIntegerForSize {
74 typedef typename enable_if<
75 std::numeric_limits<Integer>::is_integer,
76 typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type;
79 template <typename Integer>
80 struct TwiceWiderInteger {
81 typedef typename enable_if<
82 std::numeric_limits<Integer>::is_integer,
83 typename IntegerForSizeAndSign<
84 sizeof(Integer) * 2,
85 std::numeric_limits<Integer>::is_signed>::type>::type type;
88 template <typename Integer>
89 struct PositionOfSignBit {
90 static const typename enable_if<std::numeric_limits<Integer>::is_integer,
91 size_t>::type value = 8 * sizeof(Integer) - 1;
94 // Helper templates for integer manipulations.
96 template <typename T>
97 bool HasSignBit(T x) {
98 // Cast to unsigned since right shift on signed is undefined.
99 return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >>
100 PositionOfSignBit<T>::value);
103 // This wrapper undoes the standard integer promotions.
104 template <typename T>
105 T BinaryComplement(T x) {
106 return ~x;
109 // Here are the actual portable checked integer math implementations.
110 // TODO(jschuh): Break this code out from the enable_if pattern and find a clean
111 // way to coalesce things into the CheckedNumericState specializations below.
113 template <typename T>
114 typename enable_if<std::numeric_limits<T>::is_integer, T>::type
115 CheckedAdd(T x, T y, RangeConstraint* validity) {
116 // Since the value of x+y is undefined if we have a signed type, we compute
117 // it using the unsigned type of the same size.
118 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
119 UnsignedDst ux = static_cast<UnsignedDst>(x);
120 UnsignedDst uy = static_cast<UnsignedDst>(y);
121 UnsignedDst uresult = ux + uy;
122 // Addition is valid if the sign of (x + y) is equal to either that of x or
123 // that of y.
124 if (std::numeric_limits<T>::is_signed) {
125 if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy))))
126 *validity = RANGE_VALID;
127 else // Direction of wrap is inverse of result sign.
128 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
130 } else { // Unsigned is either valid or overflow.
131 *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW;
133 return static_cast<T>(uresult);
136 template <typename T>
137 typename enable_if<std::numeric_limits<T>::is_integer, T>::type
138 CheckedSub(T x, T y, RangeConstraint* validity) {
139 // Since the value of x+y is undefined if we have a signed type, we compute
140 // it using the unsigned type of the same size.
141 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
142 UnsignedDst ux = static_cast<UnsignedDst>(x);
143 UnsignedDst uy = static_cast<UnsignedDst>(y);
144 UnsignedDst uresult = ux - uy;
145 // Subtraction is valid if either x and y have same sign, or (x-y) and x have
146 // the same sign.
147 if (std::numeric_limits<T>::is_signed) {
148 if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy))))
149 *validity = RANGE_VALID;
150 else // Direction of wrap is inverse of result sign.
151 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
153 } else { // Unsigned is either valid or underflow.
154 *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW;
156 return static_cast<T>(uresult);
159 // Integer multiplication is a bit complicated. In the fast case we just
160 // we just promote to a twice wider type, and range check the result. In the
161 // slow case we need to manually check that the result won't be truncated by
162 // checking with division against the appropriate bound.
163 template <typename T>
164 typename enable_if<
165 std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t),
166 T>::type
167 CheckedMul(T x, T y, RangeConstraint* validity) {
168 typedef typename TwiceWiderInteger<T>::type IntermediateType;
169 IntermediateType tmp =
170 static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y);
171 *validity = DstRangeRelationToSrcRange<T>(tmp);
172 return static_cast<T>(tmp);
175 template <typename T>
176 typename enable_if<std::numeric_limits<T>::is_integer&& std::numeric_limits<
177 T>::is_signed&&(sizeof(T) * 2 > sizeof(uintmax_t)),
178 T>::type
179 CheckedMul(T x, T y, RangeConstraint* validity) {
180 // if either side is zero then the result will be zero.
181 if (!(x || y)) {
182 return RANGE_VALID;
184 } else if (x > 0) {
185 if (y > 0)
186 *validity =
187 x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW;
188 else
189 *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID
190 : RANGE_UNDERFLOW;
192 } else {
193 if (y > 0)
194 *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID
195 : RANGE_UNDERFLOW;
196 else
197 *validity =
198 y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW;
201 return x * y;
204 template <typename T>
205 typename enable_if<std::numeric_limits<T>::is_integer &&
206 !std::numeric_limits<T>::is_signed &&
207 (sizeof(T) * 2 > sizeof(uintmax_t)),
208 T>::type
209 CheckedMul(T x, T y, RangeConstraint* validity) {
210 *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y)
211 ? RANGE_VALID
212 : RANGE_OVERFLOW;
213 return x * y;
216 // Division just requires a check for an invalid negation on signed min/-1.
217 template <typename T>
218 T CheckedDiv(
219 T x,
220 T y,
221 RangeConstraint* validity,
222 typename enable_if<std::numeric_limits<T>::is_integer, int>::type = 0) {
223 if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() &&
224 y == static_cast<T>(-1)) {
225 *validity = RANGE_OVERFLOW;
226 return std::numeric_limits<T>::min();
229 *validity = RANGE_VALID;
230 return x / y;
233 template <typename T>
234 typename enable_if<
235 std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed,
236 T>::type
237 CheckedMod(T x, T y, RangeConstraint* validity) {
238 *validity = y > 0 ? RANGE_VALID : RANGE_INVALID;
239 return x % y;
242 template <typename T>
243 typename enable_if<
244 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
245 T>::type
246 CheckedMod(T x, T y, RangeConstraint* validity) {
247 *validity = RANGE_VALID;
248 return x % y;
251 template <typename T>
252 typename enable_if<
253 std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed,
254 T>::type
255 CheckedNeg(T value, RangeConstraint* validity) {
256 *validity =
257 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
258 // The negation of signed min is min, so catch that one.
259 return -value;
262 template <typename T>
263 typename enable_if<
264 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
265 T>::type
266 CheckedNeg(T value, RangeConstraint* validity) {
267 // The only legal unsigned negation is zero.
268 *validity = value ? RANGE_UNDERFLOW : RANGE_VALID;
269 return static_cast<T>(
270 -static_cast<typename SignedIntegerForSize<T>::type>(value));
273 template <typename T>
274 typename enable_if<
275 std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed,
276 T>::type
277 CheckedAbs(T value, RangeConstraint* validity) {
278 *validity =
279 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
280 return std::abs(value);
283 template <typename T>
284 typename enable_if<
285 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
286 T>::type
287 CheckedAbs(T value, RangeConstraint* validity) {
288 // Absolute value of a positive is just its identiy.
289 *validity = RANGE_VALID;
290 return value;
293 // These are the floating point stubs that the compiler needs to see. Only the
294 // negation operation is ever called.
295 #define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \
296 template <typename T> \
297 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type \
298 Checked##NAME(T, T, RangeConstraint*) { \
299 NOTREACHED(); \
300 return 0; \
303 BASE_FLOAT_ARITHMETIC_STUBS(Add)
304 BASE_FLOAT_ARITHMETIC_STUBS(Sub)
305 BASE_FLOAT_ARITHMETIC_STUBS(Mul)
306 BASE_FLOAT_ARITHMETIC_STUBS(Div)
307 BASE_FLOAT_ARITHMETIC_STUBS(Mod)
309 #undef BASE_FLOAT_ARITHMETIC_STUBS
311 template <typename T>
312 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg(
313 T value,
314 RangeConstraint*) {
315 return -value;
318 template <typename T>
319 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs(
320 T value,
321 RangeConstraint*) {
322 return std::abs(value);
325 // Floats carry around their validity state with them, but integers do not. So,
326 // we wrap the underlying value in a specialization in order to hide that detail
327 // and expose an interface via accessors.
328 enum NumericRepresentation {
329 NUMERIC_INTEGER,
330 NUMERIC_FLOATING,
331 NUMERIC_UNKNOWN
334 template <typename NumericType>
335 struct GetNumericRepresentation {
336 static const NumericRepresentation value =
337 std::numeric_limits<NumericType>::is_integer
338 ? NUMERIC_INTEGER
339 : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING
340 : NUMERIC_UNKNOWN);
343 template <typename T, NumericRepresentation type =
344 GetNumericRepresentation<T>::value>
345 class CheckedNumericState {};
347 // Integrals require quite a bit of additional housekeeping to manage state.
348 template <typename T>
349 class CheckedNumericState<T, NUMERIC_INTEGER> {
350 private:
351 T value_;
352 RangeConstraint validity_;
354 public:
355 template <typename Src, NumericRepresentation type>
356 friend class CheckedNumericState;
358 CheckedNumericState() : value_(0), validity_(RANGE_VALID) {}
360 template <typename Src>
361 CheckedNumericState(Src value, RangeConstraint validity)
362 : value_(value),
363 validity_(GetRangeConstraint(validity |
364 DstRangeRelationToSrcRange<T>(value))) {
365 COMPILE_ASSERT(std::numeric_limits<Src>::is_specialized,
366 argument_must_be_numeric);
369 // Copy constructor.
370 template <typename Src>
371 CheckedNumericState(const CheckedNumericState<Src>& rhs)
372 : value_(static_cast<T>(rhs.value())),
373 validity_(GetRangeConstraint(
374 rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {}
376 template <typename Src>
377 explicit CheckedNumericState(
378 Src value,
379 typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
381 : value_(static_cast<T>(value)),
382 validity_(DstRangeRelationToSrcRange<T>(value)) {}
384 RangeConstraint validity() const { return validity_; }
385 T value() const { return value_; }
388 // Floating points maintain their own validity, but need translation wrappers.
389 template <typename T>
390 class CheckedNumericState<T, NUMERIC_FLOATING> {
391 private:
392 T value_;
394 public:
395 template <typename Src, NumericRepresentation type>
396 friend class CheckedNumericState;
398 CheckedNumericState() : value_(0.0) {}
400 template <typename Src>
401 CheckedNumericState(
402 Src value,
403 RangeConstraint validity,
404 typename enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0) {
405 switch (DstRangeRelationToSrcRange<T>(value)) {
406 case RANGE_VALID:
407 value_ = static_cast<T>(value);
408 break;
410 case RANGE_UNDERFLOW:
411 value_ = -std::numeric_limits<T>::infinity();
412 break;
414 case RANGE_OVERFLOW:
415 value_ = std::numeric_limits<T>::infinity();
416 break;
418 case RANGE_INVALID:
419 value_ = std::numeric_limits<T>::quiet_NaN();
420 break;
422 default:
423 NOTREACHED();
427 template <typename Src>
428 explicit CheckedNumericState(
429 Src value,
430 typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
432 : value_(static_cast<T>(value)) {}
434 // Copy constructor.
435 template <typename Src>
436 CheckedNumericState(const CheckedNumericState<Src>& rhs)
437 : value_(static_cast<T>(rhs.value())) {}
439 RangeConstraint validity() const {
440 return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(),
441 value_ >= -std::numeric_limits<T>::max());
443 T value() const { return value_; }
446 // For integers less than 128-bit and floats 32-bit or larger, we can distil
447 // C/C++ arithmetic promotions down to two simple rules:
448 // 1. The type with the larger maximum exponent always takes precedence.
449 // 2. The resulting type must be promoted to at least an int.
450 // The following template specializations implement that promotion logic.
451 enum ArithmeticPromotionCategory {
452 LEFT_PROMOTION,
453 RIGHT_PROMOTION,
454 DEFAULT_PROMOTION
457 template <typename Lhs,
458 typename Rhs = Lhs,
459 ArithmeticPromotionCategory Promotion =
460 (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
461 ? (MaxExponent<Lhs>::value > MaxExponent<int>::value
462 ? LEFT_PROMOTION
463 : DEFAULT_PROMOTION)
464 : (MaxExponent<Rhs>::value > MaxExponent<int>::value
465 ? RIGHT_PROMOTION
466 : DEFAULT_PROMOTION) >
467 struct ArithmeticPromotion;
469 template <typename Lhs, typename Rhs>
470 struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> {
471 typedef Lhs type;
474 template <typename Lhs, typename Rhs>
475 struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
476 typedef Rhs type;
479 template <typename Lhs, typename Rhs>
480 struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> {
481 typedef int type;
484 // We can statically check if operations on the provided types can wrap, so we
485 // can skip the checked operations if they're not needed. So, for an integer we
486 // care if the destination type preserves the sign and is twice the width of
487 // the source.
488 template <typename T, typename Lhs, typename Rhs>
489 struct IsIntegerArithmeticSafe {
490 static const bool value = !std::numeric_limits<T>::is_iec559 &&
491 StaticDstRangeRelationToSrcRange<T, Lhs>::value ==
492 NUMERIC_RANGE_CONTAINED &&
493 sizeof(T) >= (2 * sizeof(Lhs)) &&
494 StaticDstRangeRelationToSrcRange<T, Rhs>::value !=
495 NUMERIC_RANGE_CONTAINED &&
496 sizeof(T) >= (2 * sizeof(Rhs));
499 } // namespace internal
500 } // namespace base
502 #endif // SAFE_MATH_IMPL_H_