Roll breakpad a513e85:7caf028 (svn 1384:1385)
[chromium-blink-merge.git] / base / threading / worker_pool_posix_unittest.cc
blob862ffddcf894925298f2ab7b9cc7e3f6c7cd459b
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/threading/worker_pool_posix.h"
7 #include <set>
9 #include "base/bind.h"
10 #include "base/callback.h"
11 #include "base/synchronization/condition_variable.h"
12 #include "base/synchronization/lock.h"
13 #include "base/threading/platform_thread.h"
14 #include "base/synchronization/waitable_event.h"
15 #include "testing/gtest/include/gtest/gtest.h"
17 namespace base {
19 // Peer class to provide passthrough access to PosixDynamicThreadPool internals.
20 class PosixDynamicThreadPool::PosixDynamicThreadPoolPeer {
21 public:
22 explicit PosixDynamicThreadPoolPeer(PosixDynamicThreadPool* pool)
23 : pool_(pool) {}
25 Lock* lock() { return &pool_->lock_; }
26 ConditionVariable* pending_tasks_available_cv() {
27 return &pool_->pending_tasks_available_cv_;
29 const std::queue<PendingTask>& pending_tasks() const {
30 return pool_->pending_tasks_;
32 int num_idle_threads() const { return pool_->num_idle_threads_; }
33 ConditionVariable* num_idle_threads_cv() {
34 return pool_->num_idle_threads_cv_.get();
36 void set_num_idle_threads_cv(ConditionVariable* cv) {
37 pool_->num_idle_threads_cv_.reset(cv);
40 private:
41 PosixDynamicThreadPool* pool_;
43 DISALLOW_COPY_AND_ASSIGN(PosixDynamicThreadPoolPeer);
46 namespace {
48 // IncrementingTask's main purpose is to increment a counter. It also updates a
49 // set of unique thread ids, and signals a ConditionVariable on completion.
50 // Note that since it does not block, there is no way to control the number of
51 // threads used if more than one IncrementingTask is consecutively posted to the
52 // thread pool, since the first one might finish executing before the subsequent
53 // PostTask() calls get invoked.
54 void IncrementingTask(Lock* counter_lock,
55 int* counter,
56 Lock* unique_threads_lock,
57 std::set<PlatformThreadId>* unique_threads) {
59 base::AutoLock locked(*unique_threads_lock);
60 unique_threads->insert(PlatformThread::CurrentId());
62 base::AutoLock locked(*counter_lock);
63 (*counter)++;
66 // BlockingIncrementingTask is a simple wrapper around IncrementingTask that
67 // allows for waiting at the start of Run() for a WaitableEvent to be signalled.
68 struct BlockingIncrementingTaskArgs {
69 Lock* counter_lock;
70 int* counter;
71 Lock* unique_threads_lock;
72 std::set<PlatformThreadId>* unique_threads;
73 Lock* num_waiting_to_start_lock;
74 int* num_waiting_to_start;
75 ConditionVariable* num_waiting_to_start_cv;
76 base::WaitableEvent* start;
79 void BlockingIncrementingTask(const BlockingIncrementingTaskArgs& args) {
81 base::AutoLock num_waiting_to_start_locked(*args.num_waiting_to_start_lock);
82 (*args.num_waiting_to_start)++;
84 args.num_waiting_to_start_cv->Signal();
85 args.start->Wait();
86 IncrementingTask(args.counter_lock, args.counter, args.unique_threads_lock,
87 args.unique_threads);
90 class PosixDynamicThreadPoolTest : public testing::Test {
91 protected:
92 PosixDynamicThreadPoolTest()
93 : pool_(new base::PosixDynamicThreadPool("dynamic_pool", 60*60)),
94 peer_(pool_.get()),
95 counter_(0),
96 num_waiting_to_start_(0),
97 num_waiting_to_start_cv_(&num_waiting_to_start_lock_),
98 start_(true, false) {}
100 virtual void SetUp() OVERRIDE {
101 peer_.set_num_idle_threads_cv(new ConditionVariable(peer_.lock()));
104 virtual void TearDown() OVERRIDE {
105 // Wake up the idle threads so they can terminate.
106 if (pool_.get()) pool_->Terminate();
109 void WaitForTasksToStart(int num_tasks) {
110 base::AutoLock num_waiting_to_start_locked(num_waiting_to_start_lock_);
111 while (num_waiting_to_start_ < num_tasks) {
112 num_waiting_to_start_cv_.Wait();
116 void WaitForIdleThreads(int num_idle_threads) {
117 base::AutoLock pool_locked(*peer_.lock());
118 while (peer_.num_idle_threads() < num_idle_threads) {
119 peer_.num_idle_threads_cv()->Wait();
123 base::Closure CreateNewIncrementingTaskCallback() {
124 return base::Bind(&IncrementingTask, &counter_lock_, &counter_,
125 &unique_threads_lock_, &unique_threads_);
128 base::Closure CreateNewBlockingIncrementingTaskCallback() {
129 BlockingIncrementingTaskArgs args = {
130 &counter_lock_, &counter_, &unique_threads_lock_, &unique_threads_,
131 &num_waiting_to_start_lock_, &num_waiting_to_start_,
132 &num_waiting_to_start_cv_, &start_
134 return base::Bind(&BlockingIncrementingTask, args);
137 scoped_refptr<base::PosixDynamicThreadPool> pool_;
138 base::PosixDynamicThreadPool::PosixDynamicThreadPoolPeer peer_;
139 Lock counter_lock_;
140 int counter_;
141 Lock unique_threads_lock_;
142 std::set<PlatformThreadId> unique_threads_;
143 Lock num_waiting_to_start_lock_;
144 int num_waiting_to_start_;
145 ConditionVariable num_waiting_to_start_cv_;
146 base::WaitableEvent start_;
149 } // namespace
151 TEST_F(PosixDynamicThreadPoolTest, Basic) {
152 EXPECT_EQ(0, peer_.num_idle_threads());
153 EXPECT_EQ(0U, unique_threads_.size());
154 EXPECT_EQ(0U, peer_.pending_tasks().size());
156 // Add one task and wait for it to be completed.
157 pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
159 WaitForIdleThreads(1);
161 EXPECT_EQ(1U, unique_threads_.size()) <<
162 "There should be only one thread allocated for one task.";
163 EXPECT_EQ(1, counter_);
166 TEST_F(PosixDynamicThreadPoolTest, ReuseIdle) {
167 // Add one task and wait for it to be completed.
168 pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
170 WaitForIdleThreads(1);
172 // Add another 2 tasks. One should reuse the existing worker thread.
173 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
174 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
176 WaitForTasksToStart(2);
177 start_.Signal();
178 WaitForIdleThreads(2);
180 EXPECT_EQ(2U, unique_threads_.size());
181 EXPECT_EQ(2, peer_.num_idle_threads());
182 EXPECT_EQ(3, counter_);
185 TEST_F(PosixDynamicThreadPoolTest, TwoActiveTasks) {
186 // Add two blocking tasks.
187 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
188 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
190 EXPECT_EQ(0, counter_) << "Blocking tasks should not have started yet.";
192 WaitForTasksToStart(2);
193 start_.Signal();
194 WaitForIdleThreads(2);
196 EXPECT_EQ(2U, unique_threads_.size());
197 EXPECT_EQ(2, peer_.num_idle_threads()) << "Existing threads are now idle.";
198 EXPECT_EQ(2, counter_);
201 TEST_F(PosixDynamicThreadPoolTest, Complex) {
202 // Add two non blocking tasks and wait for them to finish.
203 pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
205 WaitForIdleThreads(1);
207 // Add two blocking tasks, start them simultaneously, and wait for them to
208 // finish.
209 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
210 pool_->PostTask(FROM_HERE, CreateNewBlockingIncrementingTaskCallback());
212 WaitForTasksToStart(2);
213 start_.Signal();
214 WaitForIdleThreads(2);
216 EXPECT_EQ(3, counter_);
217 EXPECT_EQ(2, peer_.num_idle_threads());
218 EXPECT_EQ(2U, unique_threads_.size());
220 // Wake up all idle threads so they can exit.
222 base::AutoLock locked(*peer_.lock());
223 while (peer_.num_idle_threads() > 0) {
224 peer_.pending_tasks_available_cv()->Signal();
225 peer_.num_idle_threads_cv()->Wait();
229 // Add another non blocking task. There are no threads to reuse.
230 pool_->PostTask(FROM_HERE, CreateNewIncrementingTaskCallback());
231 WaitForIdleThreads(1);
233 // The POSIX implementation of PlatformThread::CurrentId() uses pthread_self()
234 // which is not guaranteed to be unique after a thread joins. The OS X
235 // implemntation of pthread_self() returns the address of the pthread_t, which
236 // is merely a malloc()ed pointer stored in the first TLS slot. When a thread
237 // joins and that structure is freed, the block of memory can be put on the
238 // OS free list, meaning the same address could be reused in a subsequent
239 // allocation. This in fact happens when allocating in a loop as this test
240 // does.
242 // Because there are two concurrent threads, there's at least the guarantee
243 // of having two unique thread IDs in the set. But after those two threads are
244 // joined, the next-created thread can get a re-used ID if the allocation of
245 // the pthread_t structure is taken from the free list. Therefore, there can
246 // be either 2 or 3 unique thread IDs in the set at this stage in the test.
247 EXPECT_TRUE(unique_threads_.size() >= 2 && unique_threads_.size() <= 3)
248 << "unique_threads_.size() = " << unique_threads_.size();
249 EXPECT_EQ(1, peer_.num_idle_threads());
250 EXPECT_EQ(4, counter_);
253 } // namespace base