Roll breakpad a513e85:7caf028 (svn 1384:1385)
[chromium-blink-merge.git] / base / time / time_win_unittest.cc
blobc6bb66cffa53d741182596b6038722fb5446b18c
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <windows.h>
6 #include <mmsystem.h>
7 #include <process.h>
9 #include "base/threading/platform_thread.h"
10 #include "base/time/time.h"
11 #include "testing/gtest/include/gtest/gtest.h"
13 using base::Time;
14 using base::TimeDelta;
15 using base::TimeTicks;
17 namespace {
19 class MockTimeTicks : public TimeTicks {
20 public:
21 static DWORD Ticker() {
22 return static_cast<int>(InterlockedIncrement(&ticker_));
25 static void InstallTicker() {
26 old_tick_function_ = SetMockTickFunction(&Ticker);
27 ticker_ = -5;
30 static void UninstallTicker() {
31 SetMockTickFunction(old_tick_function_);
34 private:
35 static volatile LONG ticker_;
36 static TickFunctionType old_tick_function_;
39 volatile LONG MockTimeTicks::ticker_;
40 MockTimeTicks::TickFunctionType MockTimeTicks::old_tick_function_;
42 HANDLE g_rollover_test_start;
44 unsigned __stdcall RolloverTestThreadMain(void* param) {
45 int64 counter = reinterpret_cast<int64>(param);
46 DWORD rv = WaitForSingleObject(g_rollover_test_start, INFINITE);
47 EXPECT_EQ(rv, WAIT_OBJECT_0);
49 TimeTicks last = TimeTicks::Now();
50 for (int index = 0; index < counter; index++) {
51 TimeTicks now = TimeTicks::Now();
52 int64 milliseconds = (now - last).InMilliseconds();
53 // This is a tight loop; we could have looped faster than our
54 // measurements, so the time might be 0 millis.
55 EXPECT_GE(milliseconds, 0);
56 EXPECT_LT(milliseconds, 250);
57 last = now;
59 return 0;
62 } // namespace
64 TEST(TimeTicks, WinRollover) {
65 // The internal counter rolls over at ~49days. We'll use a mock
66 // timer to test this case.
67 // Basic test algorithm:
68 // 1) Set clock to rollover - N
69 // 2) Create N threads
70 // 3) Start the threads
71 // 4) Each thread loops through TimeTicks() N times
72 // 5) Each thread verifies integrity of result.
74 const int kThreads = 8;
75 // Use int64 so we can cast into a void* without a compiler warning.
76 const int64 kChecks = 10;
78 // It takes a lot of iterations to reproduce the bug!
79 // (See bug 1081395)
80 for (int loop = 0; loop < 4096; loop++) {
81 // Setup
82 MockTimeTicks::InstallTicker();
83 g_rollover_test_start = CreateEvent(0, TRUE, FALSE, 0);
84 HANDLE threads[kThreads];
86 for (int index = 0; index < kThreads; index++) {
87 void* argument = reinterpret_cast<void*>(kChecks);
88 unsigned thread_id;
89 threads[index] = reinterpret_cast<HANDLE>(
90 _beginthreadex(NULL, 0, RolloverTestThreadMain, argument, 0,
91 &thread_id));
92 EXPECT_NE((HANDLE)NULL, threads[index]);
95 // Start!
96 SetEvent(g_rollover_test_start);
98 // Wait for threads to finish
99 for (int index = 0; index < kThreads; index++) {
100 DWORD rv = WaitForSingleObject(threads[index], INFINITE);
101 EXPECT_EQ(rv, WAIT_OBJECT_0);
102 // Since using _beginthreadex() (as opposed to _beginthread),
103 // an explicit CloseHandle() is supposed to be called.
104 CloseHandle(threads[index]);
107 CloseHandle(g_rollover_test_start);
109 // Teardown
110 MockTimeTicks::UninstallTicker();
114 TEST(TimeTicks, SubMillisecondTimers) {
115 // HighResNow doesn't work on some systems. Since the product still works
116 // even if it doesn't work, it makes this entire test questionable.
117 if (!TimeTicks::IsHighResClockWorking())
118 return;
120 const int kRetries = 1000;
121 bool saw_submillisecond_timer = false;
123 // Run kRetries attempts to see a sub-millisecond timer.
124 for (int index = 0; index < 1000; index++) {
125 TimeTicks last_time = TimeTicks::HighResNow();
126 TimeDelta delta;
127 // Spin until the clock has detected a change.
128 do {
129 delta = TimeTicks::HighResNow() - last_time;
130 } while (delta.InMicroseconds() == 0);
131 if (delta.InMicroseconds() < 1000) {
132 saw_submillisecond_timer = true;
133 break;
136 EXPECT_TRUE(saw_submillisecond_timer);
139 TEST(TimeTicks, TimeGetTimeCaps) {
140 // Test some basic assumptions that we expect about how timeGetDevCaps works.
142 TIMECAPS caps;
143 MMRESULT status = timeGetDevCaps(&caps, sizeof(caps));
144 EXPECT_EQ(TIMERR_NOERROR, status);
145 if (status != TIMERR_NOERROR) {
146 printf("Could not get timeGetDevCaps\n");
147 return;
150 EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
151 EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
152 EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
153 EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
154 printf("timeGetTime range is %d to %dms\n", caps.wPeriodMin,
155 caps.wPeriodMax);
158 TEST(TimeTicks, QueryPerformanceFrequency) {
159 // Test some basic assumptions that we expect about QPC.
161 LARGE_INTEGER frequency;
162 BOOL rv = QueryPerformanceFrequency(&frequency);
163 EXPECT_EQ(TRUE, rv);
164 EXPECT_GT(frequency.QuadPart, 1000000); // Expect at least 1MHz
165 printf("QueryPerformanceFrequency is %5.2fMHz\n",
166 frequency.QuadPart / 1000000.0);
169 TEST(TimeTicks, TimerPerformance) {
170 // Verify that various timer mechanisms can always complete quickly.
171 // Note: This is a somewhat arbitrary test.
172 const int kLoops = 10000;
173 // Due to the fact that these run on bbots, which are horribly slow,
174 // we can't really make any guarantees about minimum runtime.
175 // Really, we want these to finish in ~10ms, and that is generous.
176 const int kMaxTime = 35; // Maximum acceptible milliseconds for test.
178 typedef TimeTicks (*TestFunc)();
179 struct TestCase {
180 TestFunc func;
181 const char *description;
183 // Cheating a bit here: assumes sizeof(TimeTicks) == sizeof(Time)
184 // in order to create a single test case list.
185 COMPILE_ASSERT(sizeof(TimeTicks) == sizeof(Time),
186 test_only_works_with_same_sizes);
187 TestCase cases[] = {
188 { reinterpret_cast<TestFunc>(Time::Now), "Time::Now" },
189 { TimeTicks::Now, "TimeTicks::Now" },
190 { TimeTicks::HighResNow, "TimeTicks::HighResNow" },
191 { NULL, "" }
194 int test_case = 0;
195 while (cases[test_case].func) {
196 TimeTicks start = TimeTicks::HighResNow();
197 for (int index = 0; index < kLoops; index++)
198 cases[test_case].func();
199 TimeTicks stop = TimeTicks::HighResNow();
200 // Turning off the check for acceptible delays. Without this check,
201 // the test really doesn't do much other than measure. But the
202 // measurements are still useful for testing timers on various platforms.
203 // The reason to remove the check is because the tests run on many
204 // buildbots, some of which are VMs. These machines can run horribly
205 // slow, and there is really no value for checking against a max timer.
206 //EXPECT_LT((stop - start).InMilliseconds(), kMaxTime);
207 printf("%s: %1.2fus per call\n", cases[test_case].description,
208 (stop - start).InMillisecondsF() * 1000 / kLoops);
209 test_case++;
213 // http://crbug.com/396384
214 TEST(TimeTicks, DISABLED_Drift) {
215 // If QPC is disabled, this isn't measuring anything.
216 if (!TimeTicks::IsHighResClockWorking())
217 return;
219 const int kIterations = 100;
220 int64 total_drift = 0;
222 for (int i = 0; i < kIterations; ++i) {
223 int64 drift_microseconds = TimeTicks::GetQPCDriftMicroseconds();
225 // Make sure the drift never exceeds our limit.
226 EXPECT_LT(drift_microseconds, 50000);
228 // Sleep for a few milliseconds (note that it means 1000 microseconds).
229 // If we check the drift too frequently, it's going to increase
230 // monotonically, making our measurement less realistic.
231 base::PlatformThread::Sleep(
232 base::TimeDelta::FromMilliseconds((i % 2 == 0) ? 1 : 2));
234 total_drift += drift_microseconds;
237 // Sanity check. We expect some time drift to occur, especially across
238 // the number of iterations we do.
239 EXPECT_LT(0, total_drift);
241 printf("average time drift in microseconds: %lld\n",
242 total_drift / kIterations);
245 int64 QPCValueToMicrosecondsSafely(LONGLONG qpc_value,
246 int64 ticks_per_second) {
247 int64 whole_seconds = qpc_value / ticks_per_second;
248 int64 leftover_ticks = qpc_value % ticks_per_second;
249 int64 microseconds = (whole_seconds * Time::kMicrosecondsPerSecond) +
250 ((leftover_ticks * Time::kMicrosecondsPerSecond) /
251 ticks_per_second);
252 return microseconds;
255 TEST(TimeTicks, FromQPCValue) {
256 if (!TimeTicks::IsHighResClockWorking())
257 return;
258 LARGE_INTEGER frequency;
259 QueryPerformanceFrequency(&frequency);
260 int64 ticks_per_second = frequency.QuadPart;
261 LONGLONG qpc_value = Time::kQPCOverflowThreshold;
262 TimeTicks expected_value = TimeTicks::FromInternalValue(
263 QPCValueToMicrosecondsSafely(qpc_value + 1, ticks_per_second));
264 EXPECT_EQ(expected_value,
265 TimeTicks::FromQPCValue(qpc_value + 1));
266 expected_value = TimeTicks::FromInternalValue(
267 QPCValueToMicrosecondsSafely(qpc_value, ticks_per_second));
268 EXPECT_EQ(expected_value,
269 TimeTicks::FromQPCValue(qpc_value));
270 expected_value = TimeTicks::FromInternalValue(
271 QPCValueToMicrosecondsSafely(qpc_value - 1, ticks_per_second));
272 EXPECT_EQ(expected_value,
273 TimeTicks::FromQPCValue(qpc_value - 1));