1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/playback/picture_pile.h"
11 #include "cc/base/histograms.h"
12 #include "cc/base/region.h"
13 #include "cc/playback/picture_pile_impl.h"
14 #include "skia/ext/analysis_canvas.h"
17 // Layout pixel buffer around the visible layer rect to record. Any base
18 // picture that intersects the visible layer rect expanded by this distance
20 const int kPixelDistanceToRecord
= 8000;
22 // Dimensions of the tiles in this picture pile as well as the dimensions of
23 // the base picture in each tile.
24 const int kBasePictureSize
= 512;
26 // TODO(humper): The density threshold here is somewhat arbitrary; need a
27 // way to set // this from the command line so we can write a benchmark
28 // script and find a sweet spot.
29 const float kDensityThreshold
= 0.5f
;
31 bool rect_sort_y(const gfx::Rect
& r1
, const gfx::Rect
& r2
) {
32 return r1
.y() < r2
.y() || (r1
.y() == r2
.y() && r1
.x() < r2
.x());
35 bool rect_sort_x(const gfx::Rect
& r1
, const gfx::Rect
& r2
) {
36 return r1
.x() < r2
.x() || (r1
.x() == r2
.x() && r1
.y() < r2
.y());
39 float PerformClustering(const std::vector
<gfx::Rect
>& tiles
,
40 std::vector
<gfx::Rect
>* clustered_rects
) {
41 // These variables track the record area and invalid area
42 // for the entire clustering
43 int total_record_area
= 0;
44 int total_invalid_area
= 0;
46 // These variables track the record area and invalid area
47 // for the current cluster being constructed.
48 gfx::Rect cur_record_rect
;
49 int cluster_record_area
= 0, cluster_invalid_area
= 0;
51 for (std::vector
<gfx::Rect
>::const_iterator it
= tiles
.begin();
54 gfx::Rect invalid_tile
= *it
;
56 // For each tile, we consider adding the invalid tile to the
57 // current record rectangle. Only add it if the amount of empty
58 // space created is below a density threshold.
59 int tile_area
= invalid_tile
.width() * invalid_tile
.height();
61 gfx::Rect proposed_union
= cur_record_rect
;
62 proposed_union
.Union(invalid_tile
);
63 int proposed_area
= proposed_union
.width() * proposed_union
.height();
64 float proposed_density
=
65 static_cast<float>(cluster_invalid_area
+ tile_area
) /
66 static_cast<float>(proposed_area
);
68 if (proposed_density
>= kDensityThreshold
) {
69 // It's okay to add this invalid tile to the
70 // current recording rectangle.
71 cur_record_rect
= proposed_union
;
72 cluster_record_area
= proposed_area
;
73 cluster_invalid_area
+= tile_area
;
74 total_invalid_area
+= tile_area
;
76 // Adding this invalid tile to the current recording rectangle
77 // would exceed our badness threshold, so put the current rectangle
78 // in the list of recording rects, and start a new one.
79 clustered_rects
->push_back(cur_record_rect
);
80 total_record_area
+= cluster_record_area
;
81 cur_record_rect
= invalid_tile
;
82 cluster_invalid_area
= tile_area
;
83 cluster_record_area
= tile_area
;
87 DCHECK(!cur_record_rect
.IsEmpty());
88 clustered_rects
->push_back(cur_record_rect
);
89 total_record_area
+= cluster_record_area
;;
91 DCHECK_NE(total_record_area
, 0);
93 return static_cast<float>(total_invalid_area
) /
94 static_cast<float>(total_record_area
);
97 void ClusterTiles(const std::vector
<gfx::Rect
>& invalid_tiles
,
98 std::vector
<gfx::Rect
>* record_rects
) {
99 TRACE_EVENT1("cc", "ClusterTiles",
101 invalid_tiles
.size());
102 if (invalid_tiles
.size() <= 1) {
103 // Quickly handle the special case for common
104 // single-invalidation update, and also the less common
105 // case of no tiles passed in.
106 *record_rects
= invalid_tiles
;
110 // Sort the invalid tiles by y coordinate.
111 std::vector
<gfx::Rect
> invalid_tiles_vertical
= invalid_tiles
;
112 std::sort(invalid_tiles_vertical
.begin(),
113 invalid_tiles_vertical
.end(),
116 std::vector
<gfx::Rect
> vertical_clustering
;
117 float vertical_density
=
118 PerformClustering(invalid_tiles_vertical
, &vertical_clustering
);
120 // If vertical density is optimal, then we can return early.
121 if (vertical_density
== 1.f
) {
122 *record_rects
= vertical_clustering
;
126 // Now try again with a horizontal sort, see which one is best
127 std::vector
<gfx::Rect
> invalid_tiles_horizontal
= invalid_tiles
;
128 std::sort(invalid_tiles_horizontal
.begin(),
129 invalid_tiles_horizontal
.end(),
132 std::vector
<gfx::Rect
> horizontal_clustering
;
133 float horizontal_density
=
134 PerformClustering(invalid_tiles_horizontal
, &horizontal_clustering
);
136 if (vertical_density
< horizontal_density
) {
137 *record_rects
= horizontal_clustering
;
141 *record_rects
= vertical_clustering
;
145 const bool kDefaultClearCanvasSetting
= false;
147 const bool kDefaultClearCanvasSetting
= true;
150 DEFINE_SCOPED_UMA_HISTOGRAM_AREA_TIMER(
151 ScopedPicturePileUpdateTimer
,
152 "Compositing.%s.PicturePile.UpdateUs",
153 "Compositing.%s.PicturePile.UpdateInvalidatedAreaPerMs");
159 PicturePile::PicturePile(float min_contents_scale
,
160 const gfx::Size
& tile_grid_size
)
161 : min_contents_scale_(0),
162 slow_down_raster_scale_factor_for_debug_(0),
163 gather_images_(false),
164 has_any_recordings_(false),
165 clear_canvas_with_debug_color_(kDefaultClearCanvasSetting
),
166 requires_clear_(true),
167 is_solid_color_(false),
168 solid_color_(SK_ColorTRANSPARENT
),
169 background_color_(SK_ColorTRANSPARENT
),
170 pixel_record_distance_(kPixelDistanceToRecord
),
171 is_suitable_for_gpu_rasterization_(true) {
172 tiling_
.SetMaxTextureSize(gfx::Size(kBasePictureSize
, kBasePictureSize
));
173 SetMinContentsScale(min_contents_scale
);
174 SetTileGridSize(tile_grid_size
);
177 PicturePile::~PicturePile() {
180 bool PicturePile::UpdateAndExpandInvalidation(
181 ContentLayerClient
* painter
,
182 Region
* invalidation
,
183 const gfx::Size
& layer_size
,
184 const gfx::Rect
& visible_layer_rect
,
186 RecordingSource::RecordingMode recording_mode
) {
187 ScopedPicturePileUpdateTimer timer
;
189 gfx::Rect interest_rect
= visible_layer_rect
;
190 interest_rect
.Inset(-pixel_record_distance_
, -pixel_record_distance_
);
191 recorded_viewport_
= interest_rect
;
192 recorded_viewport_
.Intersect(gfx::Rect(layer_size
));
194 bool updated
= ApplyInvalidationAndResize(interest_rect
, invalidation
,
195 layer_size
, frame_number
);
197 // Count the area that is being invalidated.
198 Region
recorded_invalidation(*invalidation
);
199 recorded_invalidation
.Intersect(recorded_viewport_
);
200 for (Region::Iterator
it(recorded_invalidation
); it
.has_rect(); it
.next())
201 timer
.AddArea(it
.rect().size().GetArea());
203 std::vector
<gfx::Rect
> invalid_tiles
;
204 GetInvalidTileRects(interest_rect
, &invalid_tiles
);
205 std::vector
<gfx::Rect
> record_rects
;
206 ClusterTiles(invalid_tiles
, &record_rects
);
208 if (record_rects
.empty())
211 CreatePictures(painter
, recording_mode
, record_rects
);
213 DetermineIfSolidColor();
215 has_any_recordings_
= true;
216 DCHECK(CanRasterSlowTileCheck(recorded_viewport_
));
220 bool PicturePile::ApplyInvalidationAndResize(const gfx::Rect
& interest_rect
,
221 Region
* invalidation
,
222 const gfx::Size
& layer_size
,
224 bool updated
= false;
226 Region synthetic_invalidation
;
227 gfx::Size old_tiling_size
= GetSize();
228 if (old_tiling_size
!= layer_size
) {
229 tiling_
.SetTilingSize(layer_size
);
233 gfx::Rect interest_rect_over_tiles
=
234 tiling_
.ExpandRectToTileBounds(interest_rect
);
236 if (old_tiling_size
!= layer_size
) {
237 gfx::Size
min_tiling_size(
238 std::min(GetSize().width(), old_tiling_size
.width()),
239 std::min(GetSize().height(), old_tiling_size
.height()));
240 gfx::Size
max_tiling_size(
241 std::max(GetSize().width(), old_tiling_size
.width()),
242 std::max(GetSize().height(), old_tiling_size
.height()));
244 has_any_recordings_
= false;
246 // Drop recordings that are outside the new or old layer bounds or that
247 // changed size. Newly exposed areas are considered invalidated.
248 // Previously exposed areas that are now outside of bounds also need to
249 // be invalidated, as they may become part of raster when scale < 1.
250 std::vector
<PictureMapKey
> to_erase
;
251 int min_toss_x
= tiling_
.num_tiles_x();
252 if (max_tiling_size
.width() > min_tiling_size
.width()) {
254 tiling_
.FirstBorderTileXIndexFromSrcCoord(min_tiling_size
.width());
256 int min_toss_y
= tiling_
.num_tiles_y();
257 if (max_tiling_size
.height() > min_tiling_size
.height()) {
259 tiling_
.FirstBorderTileYIndexFromSrcCoord(min_tiling_size
.height());
261 for (const auto& key_picture_pair
: picture_map_
) {
262 const PictureMapKey
& key
= key_picture_pair
.first
;
263 if (key
.first
< min_toss_x
&& key
.second
< min_toss_y
) {
264 has_any_recordings_
= true;
267 to_erase
.push_back(key
);
270 for (size_t i
= 0; i
< to_erase
.size(); ++i
)
271 picture_map_
.erase(to_erase
[i
]);
273 // If a recording is dropped and not re-recorded below, invalidate that
274 // full recording to cause any raster tiles that would use it to be
276 // If the recording will be replaced below, invalidate newly exposed
277 // areas and previously exposed areas to force raster tiles that include the
278 // old recording to know there is new recording to display.
279 gfx::Rect min_tiling_rect_over_tiles
=
280 tiling_
.ExpandRectToTileBounds(gfx::Rect(min_tiling_size
));
281 if (min_toss_x
< tiling_
.num_tiles_x()) {
282 // The bounds which we want to invalidate are the tiles along the old
283 // edge of the pile when expanding, or the new edge of the pile when
284 // shrinking. In either case, it's the difference of the two, so we'll
285 // call this bounding box the DELTA EDGE RECT.
287 // In the picture below, the delta edge rect would be the bounding box of
288 // tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index of
291 // min pile edge-v max pile edge-v
292 // ---------------+ - - - - - - - -+
293 // mmppssvvyybbeeh|h .
294 // mmppssvvyybbeeh|h .
295 // nnqqttwwzzccffi|i .
296 // nnqqttwwzzccffi|i .
297 // oorruuxxaaddggj|j .
298 // oorruuxxaaddggj|j .
299 // ---------------+ - - - - - - - -+ <- min pile edge
301 // - - - - - - - - - - - - - - - -+ <- max pile edge
303 // If you were to slide a vertical beam from the left edge of the
304 // delta edge rect toward the right, it would either hit the right edge
305 // of the delta edge rect, or the interest rect (expanded to the bounds
306 // of the tiles it touches). The same is true for a beam parallel to
307 // any of the four edges, sliding across the delta edge rect. We use
308 // the union of these four rectangles generated by these beams to
309 // determine which part of the delta edge rect is outside of the expanded
312 // Case 1: Intersect rect is outside the delta edge rect. It can be
313 // either on the left or the right. The |left_rect| and |right_rect|,
314 // cover this case, one will be empty and one will cover the full
315 // delta edge rect. In the picture below, |left_rect| would cover the
316 // delta edge rect, and |right_rect| would be empty.
317 // +----------------------+ |^^^^^^^^^^^^^^^|
318 // |===> DELTA EDGE RECT | | |
319 // |===> | | INTEREST RECT |
322 // +----------------------+ |vvvvvvvvvvvvvvv|
324 // Case 2: Interest rect is inside the delta edge rect. It will always
325 // fill the entire delta edge rect horizontally since the old edge rect
326 // is a single tile wide, and the interest rect has been expanded to the
327 // bounds of the tiles it touches. In this case the |left_rect| and
328 // |right_rect| will be empty, but the case is handled by the |top_rect|
329 // and |bottom_rect|. In the picture below, neither the |top_rect| nor
330 // |bottom_rect| would empty, they would each cover the area of the old
331 // edge rect outside the expanded interest rect.
332 // +-----------------+
333 // |:::::::::::::::::|
334 // |:::::::::::::::::|
335 // |vvvvvvvvvvvvvvvvv|
337 // +-----------------+
340 // +-----------------+
342 // | DELTA EDGE RECT |
343 // +-----------------+
345 // Lastly, we need to consider tiles inside the expanded interest rect.
346 // For those tiles, we want to invalidate exactly the newly exposed
347 // pixels. In the picture below the tiles in the delta edge rect have
348 // been resized and the area covered by periods must be invalidated. The
349 // |exposed_rect| will cover exactly that area.
351 // +---------+-------+
354 // | DELTA EDGE.RECT.|
361 // +---------+-------+
363 int left
= tiling_
.TilePositionX(min_toss_x
);
364 int right
= left
+ tiling_
.TileSizeX(min_toss_x
);
365 int top
= min_tiling_rect_over_tiles
.y();
366 int bottom
= min_tiling_rect_over_tiles
.bottom();
368 int left_until
= std::min(interest_rect_over_tiles
.x(), right
);
369 int right_until
= std::max(interest_rect_over_tiles
.right(), left
);
370 int top_until
= std::min(interest_rect_over_tiles
.y(), bottom
);
371 int bottom_until
= std::max(interest_rect_over_tiles
.bottom(), top
);
373 int exposed_left
= min_tiling_size
.width();
374 int exposed_left_until
= max_tiling_size
.width();
375 int exposed_top
= top
;
376 int exposed_bottom
= max_tiling_size
.height();
377 DCHECK_GE(exposed_left
, left
);
379 gfx::Rect
left_rect(left
, top
, left_until
- left
, bottom
- top
);
380 gfx::Rect
right_rect(right_until
, top
, right
- right_until
, bottom
- top
);
381 gfx::Rect
top_rect(left
, top
, right
- left
, top_until
- top
);
382 gfx::Rect
bottom_rect(
383 left
, bottom_until
, right
- left
, bottom
- bottom_until
);
384 gfx::Rect
exposed_rect(exposed_left
,
386 exposed_left_until
- exposed_left
,
387 exposed_bottom
- exposed_top
);
388 synthetic_invalidation
.Union(left_rect
);
389 synthetic_invalidation
.Union(right_rect
);
390 synthetic_invalidation
.Union(top_rect
);
391 synthetic_invalidation
.Union(bottom_rect
);
392 synthetic_invalidation
.Union(exposed_rect
);
394 if (min_toss_y
< tiling_
.num_tiles_y()) {
395 // The same thing occurs here as in the case above, but the invalidation
396 // rect is the bounding box around the bottom row of tiles in the min
397 // pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture.
399 int top
= tiling_
.TilePositionY(min_toss_y
);
400 int bottom
= top
+ tiling_
.TileSizeY(min_toss_y
);
401 int left
= min_tiling_rect_over_tiles
.x();
402 int right
= min_tiling_rect_over_tiles
.right();
404 int top_until
= std::min(interest_rect_over_tiles
.y(), bottom
);
405 int bottom_until
= std::max(interest_rect_over_tiles
.bottom(), top
);
406 int left_until
= std::min(interest_rect_over_tiles
.x(), right
);
407 int right_until
= std::max(interest_rect_over_tiles
.right(), left
);
409 int exposed_top
= min_tiling_size
.height();
410 int exposed_top_until
= max_tiling_size
.height();
411 int exposed_left
= left
;
412 int exposed_right
= max_tiling_size
.width();
413 DCHECK_GE(exposed_top
, top
);
415 gfx::Rect
left_rect(left
, top
, left_until
- left
, bottom
- top
);
416 gfx::Rect
right_rect(right_until
, top
, right
- right_until
, bottom
- top
);
417 gfx::Rect
top_rect(left
, top
, right
- left
, top_until
- top
);
418 gfx::Rect
bottom_rect(
419 left
, bottom_until
, right
- left
, bottom
- bottom_until
);
420 gfx::Rect
exposed_rect(exposed_left
,
422 exposed_right
- exposed_left
,
423 exposed_top_until
- exposed_top
);
424 synthetic_invalidation
.Union(left_rect
);
425 synthetic_invalidation
.Union(right_rect
);
426 synthetic_invalidation
.Union(top_rect
);
427 synthetic_invalidation
.Union(bottom_rect
);
428 synthetic_invalidation
.Union(exposed_rect
);
432 // Detect cases where the full pile is invalidated, in this situation we
433 // can just drop/invalidate everything.
434 if (invalidation
->Contains(gfx::Rect(old_tiling_size
)) ||
435 invalidation
->Contains(gfx::Rect(GetSize()))) {
436 updated
= !picture_map_
.empty();
437 picture_map_
.clear();
439 // Expand invalidation that is on tiles that aren't in the interest rect and
440 // will not be re-recorded below. These tiles are no longer valid and should
441 // be considerered fully invalid, so we can know to not keep around raster
442 // tiles that intersect with these recording tiles.
443 Region invalidation_expanded_to_full_tiles
;
445 for (Region::Iterator
i(*invalidation
); i
.has_rect(); i
.next()) {
446 gfx::Rect invalid_rect
= i
.rect();
448 // This rect covers the bounds (excluding borders) of all tiles whose
449 // bounds (including borders) touch the |interest_rect|. This matches
450 // the iteration of the |invalid_rect| below which includes borders when
451 // calling Invalidate() on pictures.
452 gfx::Rect invalid_rect_outside_interest_rect_tiles
=
453 tiling_
.ExpandRectToTileBounds(invalid_rect
);
454 // We subtract the |interest_rect_over_tiles| which represents the bounds
455 // of tiles that will be re-recorded below. This matches the iteration of
456 // |interest_rect| below which includes borders.
457 // TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator
458 // instead of using Rect::Subtract which gives you the bounding box of the
460 invalid_rect_outside_interest_rect_tiles
.Subtract(
461 interest_rect_over_tiles
);
462 invalidation_expanded_to_full_tiles
.Union(
463 invalid_rect_outside_interest_rect_tiles
);
465 // Split this inflated invalidation across tile boundaries and apply it
466 // to all tiles that it touches.
467 bool include_borders
= true;
468 for (TilingData::Iterator
iter(&tiling_
, invalid_rect
, include_borders
);
471 const PictureMapKey
& key
= iter
.index();
473 PictureMap::iterator picture_it
= picture_map_
.find(key
);
474 if (picture_it
== picture_map_
.end())
478 picture_map_
.erase(key
);
480 // Invalidate drops the picture so the whole tile better be invalidated
481 // if it won't be re-recorded below.
482 DCHECK_IMPLIES(!tiling_
.TileBounds(key
.first
, key
.second
)
483 .Intersects(interest_rect_over_tiles
),
484 invalidation_expanded_to_full_tiles
.Contains(
485 tiling_
.TileBounds(key
.first
, key
.second
)));
488 invalidation
->Union(invalidation_expanded_to_full_tiles
);
491 invalidation
->Union(synthetic_invalidation
);
495 void PicturePile::GetInvalidTileRects(const gfx::Rect
& interest_rect
,
496 std::vector
<gfx::Rect
>* invalid_tiles
) {
497 // Make a list of all invalid tiles; we will attempt to
498 // cluster these into multiple invalidation regions.
499 bool include_borders
= true;
500 for (TilingData::Iterator
it(&tiling_
, interest_rect
, include_borders
); it
;
502 const PictureMapKey
& key
= it
.index();
503 if (picture_map_
.find(key
) == picture_map_
.end())
504 invalid_tiles
->push_back(tiling_
.TileBounds(key
.first
, key
.second
));
508 void PicturePile::CreatePictures(ContentLayerClient
* painter
,
509 RecordingSource::RecordingMode recording_mode
,
510 const std::vector
<gfx::Rect
>& record_rects
) {
511 for (const auto& record_rect
: record_rects
) {
512 gfx::Rect padded_record_rect
= PadRect(record_rect
);
514 // TODO(vmpstr): Add a slow_down_recording_scale_factor_for_debug_ to be
515 // able to slow down recording.
516 scoped_refptr
<Picture
> picture
=
517 Picture::Create(padded_record_rect
, painter
, tile_grid_size_
,
518 gather_images_
, recording_mode
);
519 // Note the '&&' with previous is-suitable state.
520 // This means that once a picture-pile becomes unsuitable for gpu
521 // rasterization due to some content, it will continue to be unsuitable even
522 // if that content is replaced by gpu-friendly content. This is an
523 // optimization to avoid iterating though all pictures in the pile after
524 // each invalidation.
525 if (is_suitable_for_gpu_rasterization_
) {
526 const char* reason
= nullptr;
527 is_suitable_for_gpu_rasterization_
&=
528 picture
->IsSuitableForGpuRasterization(&reason
);
530 if (!is_suitable_for_gpu_rasterization_
) {
531 TRACE_EVENT_INSTANT1("cc", "GPU Rasterization Veto",
532 TRACE_EVENT_SCOPE_THREAD
, "reason", reason
);
536 bool found_tile_for_recorded_picture
= false;
538 bool include_borders
= true;
539 for (TilingData::Iterator
it(&tiling_
, padded_record_rect
, include_borders
);
541 const PictureMapKey
& key
= it
.index();
542 gfx::Rect tile
= PaddedRect(key
);
543 if (padded_record_rect
.Contains(tile
)) {
544 picture_map_
[key
] = picture
;
545 found_tile_for_recorded_picture
= true;
548 DCHECK(found_tile_for_recorded_picture
);
552 scoped_refptr
<RasterSource
> PicturePile::CreateRasterSource(
553 bool can_use_lcd_text
) const {
554 return scoped_refptr
<RasterSource
>(
555 PicturePileImpl::CreateFromPicturePile(this, can_use_lcd_text
));
558 gfx::Size
PicturePile::GetSize() const {
559 return tiling_
.tiling_size();
562 void PicturePile::SetEmptyBounds() {
563 tiling_
.SetTilingSize(gfx::Size());
567 void PicturePile::SetMinContentsScale(float min_contents_scale
) {
568 DCHECK(min_contents_scale
);
569 if (min_contents_scale_
== min_contents_scale
)
572 // Picture contents are played back scaled. When the final contents scale is
573 // less than 1 (i.e. low res), then multiple recorded pixels will be used
574 // to raster one final pixel. To avoid splitting a final pixel across
575 // pictures (which would result in incorrect rasterization due to blending), a
576 // buffer margin is added so that any picture can be snapped to integral
579 // For example, if a 1/4 contents scale is used, then that would be 3 buffer
580 // pixels, since that's the minimum number of pixels to add so that resulting
581 // content can be snapped to a four pixel aligned grid.
582 int buffer_pixels
= static_cast<int>(ceil(1 / min_contents_scale
) - 1);
583 buffer_pixels
= std::max(0, buffer_pixels
);
584 SetBufferPixels(buffer_pixels
);
585 min_contents_scale_
= min_contents_scale
;
588 void PicturePile::SetSlowdownRasterScaleFactor(int factor
) {
589 slow_down_raster_scale_factor_for_debug_
= factor
;
592 void PicturePile::SetGatherDiscardableImages(bool gather_images
) {
593 gather_images_
= gather_images
;
596 void PicturePile::SetBackgroundColor(SkColor background_color
) {
597 background_color_
= background_color
;
600 void PicturePile::SetRequiresClear(bool requires_clear
) {
601 requires_clear_
= requires_clear
;
604 bool PicturePile::IsSuitableForGpuRasterization() const {
605 return is_suitable_for_gpu_rasterization_
;
608 void PicturePile::SetTileGridSize(const gfx::Size
& tile_grid_size
) {
609 DCHECK_GT(tile_grid_size
.width(), 0);
610 DCHECK_GT(tile_grid_size
.height(), 0);
612 tile_grid_size_
= tile_grid_size
;
615 void PicturePile::SetUnsuitableForGpuRasterizationForTesting() {
616 is_suitable_for_gpu_rasterization_
= false;
619 gfx::Size
PicturePile::GetTileGridSizeForTesting() const {
620 return tile_grid_size_
;
623 bool PicturePile::CanRasterSlowTileCheck(const gfx::Rect
& layer_rect
) const {
624 bool include_borders
= false;
625 for (TilingData::Iterator
tile_iter(&tiling_
, layer_rect
, include_borders
);
626 tile_iter
; ++tile_iter
) {
627 PictureMap::const_iterator map_iter
= picture_map_
.find(tile_iter
.index());
628 if (map_iter
== picture_map_
.end())
634 void PicturePile::DetermineIfSolidColor() {
635 is_solid_color_
= false;
636 solid_color_
= SK_ColorTRANSPARENT
;
638 if (picture_map_
.empty()) {
642 PictureMap::const_iterator it
= picture_map_
.begin();
643 const Picture
* picture
= it
->second
.get();
645 // Missing recordings due to frequent invalidations or being too far away
646 // from the interest rect will cause the a null picture to exist.
650 // Don't bother doing more work if the first image is too complicated.
651 if (!picture
->ShouldBeAnalyzedForSolidColor())
654 // Make sure all of the mapped images point to the same picture.
655 for (++it
; it
!= picture_map_
.end(); ++it
) {
656 if (it
->second
.get() != picture
)
660 gfx::Size layer_size
= GetSize();
661 skia::AnalysisCanvas
canvas(layer_size
.width(), layer_size
.height());
663 picture
->Raster(&canvas
, nullptr, Region(), 1.0f
);
664 is_solid_color_
= canvas
.GetColorIfSolid(&solid_color_
);
667 gfx::Rect
PicturePile::PaddedRect(const PictureMapKey
& key
) const {
668 gfx::Rect tile
= tiling_
.TileBounds(key
.first
, key
.second
);
669 return PadRect(tile
);
672 gfx::Rect
PicturePile::PadRect(const gfx::Rect
& rect
) const {
673 gfx::Rect padded_rect
= rect
;
674 padded_rect
.Inset(-buffer_pixels(), -buffer_pixels(), -buffer_pixels(),
679 void PicturePile::Clear() {
680 picture_map_
.clear();
681 recorded_viewport_
= gfx::Rect();
682 has_any_recordings_
= false;
683 is_solid_color_
= false;
686 void PicturePile::SetBufferPixels(int new_buffer_pixels
) {
687 if (new_buffer_pixels
== buffer_pixels())
691 tiling_
.SetBorderTexels(new_buffer_pixels
);