Have GPUTracer process traces during CommandBuffer Idle time.
[chromium-blink-merge.git] / third_party / libwebp / dec / frame.c
blob2359acc5b0d4c297aa4c7abc7b5df6a3b798c6e5
1 // Copyright 2010 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Frame-reconstruction function. Memory allocation.
12 // Author: Skal (pascal.massimino@gmail.com)
14 #include <stdlib.h>
15 #include "./vp8i.h"
16 #include "../utils/utils.h"
18 #define ALIGN_MASK (32 - 1)
20 static void ReconstructRow(const VP8Decoder* const dec,
21 const VP8ThreadContext* ctx); // TODO(skal): remove
23 //------------------------------------------------------------------------------
24 // Filtering
26 // kFilterExtraRows[] = How many extra lines are needed on the MB boundary
27 // for caching, given a filtering level.
28 // Simple filter: up to 2 luma samples are read and 1 is written.
29 // Complex filter: up to 4 luma samples are read and 3 are written. Same for
30 // U/V, so it's 8 samples total (because of the 2x upsampling).
31 static const uint8_t kFilterExtraRows[3] = { 0, 2, 8 };
33 static void DoFilter(const VP8Decoder* const dec, int mb_x, int mb_y) {
34 const VP8ThreadContext* const ctx = &dec->thread_ctx_;
35 const int cache_id = ctx->id_;
36 const int y_bps = dec->cache_y_stride_;
37 const VP8FInfo* const f_info = ctx->f_info_ + mb_x;
38 uint8_t* const y_dst = dec->cache_y_ + cache_id * 16 * y_bps + mb_x * 16;
39 const int ilevel = f_info->f_ilevel_;
40 const int limit = f_info->f_limit_;
41 if (limit == 0) {
42 return;
44 assert(limit >= 3);
45 if (dec->filter_type_ == 1) { // simple
46 if (mb_x > 0) {
47 VP8SimpleHFilter16(y_dst, y_bps, limit + 4);
49 if (f_info->f_inner_) {
50 VP8SimpleHFilter16i(y_dst, y_bps, limit);
52 if (mb_y > 0) {
53 VP8SimpleVFilter16(y_dst, y_bps, limit + 4);
55 if (f_info->f_inner_) {
56 VP8SimpleVFilter16i(y_dst, y_bps, limit);
58 } else { // complex
59 const int uv_bps = dec->cache_uv_stride_;
60 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
61 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
62 const int hev_thresh = f_info->hev_thresh_;
63 if (mb_x > 0) {
64 VP8HFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
65 VP8HFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
67 if (f_info->f_inner_) {
68 VP8HFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
69 VP8HFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
71 if (mb_y > 0) {
72 VP8VFilter16(y_dst, y_bps, limit + 4, ilevel, hev_thresh);
73 VP8VFilter8(u_dst, v_dst, uv_bps, limit + 4, ilevel, hev_thresh);
75 if (f_info->f_inner_) {
76 VP8VFilter16i(y_dst, y_bps, limit, ilevel, hev_thresh);
77 VP8VFilter8i(u_dst, v_dst, uv_bps, limit, ilevel, hev_thresh);
82 // Filter the decoded macroblock row (if needed)
83 static void FilterRow(const VP8Decoder* const dec) {
84 int mb_x;
85 const int mb_y = dec->thread_ctx_.mb_y_;
86 assert(dec->thread_ctx_.filter_row_);
87 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
88 DoFilter(dec, mb_x, mb_y);
92 //------------------------------------------------------------------------------
93 // Precompute the filtering strength for each segment and each i4x4/i16x16 mode.
95 static void PrecomputeFilterStrengths(VP8Decoder* const dec) {
96 if (dec->filter_type_ > 0) {
97 int s;
98 const VP8FilterHeader* const hdr = &dec->filter_hdr_;
99 for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
100 int i4x4;
101 // First, compute the initial level
102 int base_level;
103 if (dec->segment_hdr_.use_segment_) {
104 base_level = dec->segment_hdr_.filter_strength_[s];
105 if (!dec->segment_hdr_.absolute_delta_) {
106 base_level += hdr->level_;
108 } else {
109 base_level = hdr->level_;
111 for (i4x4 = 0; i4x4 <= 1; ++i4x4) {
112 VP8FInfo* const info = &dec->fstrengths_[s][i4x4];
113 int level = base_level;
114 if (hdr->use_lf_delta_) {
115 // TODO(skal): only CURRENT is handled for now.
116 level += hdr->ref_lf_delta_[0];
117 if (i4x4) {
118 level += hdr->mode_lf_delta_[0];
121 level = (level < 0) ? 0 : (level > 63) ? 63 : level;
122 if (level > 0) {
123 int ilevel = level;
124 if (hdr->sharpness_ > 0) {
125 if (hdr->sharpness_ > 4) {
126 ilevel >>= 2;
127 } else {
128 ilevel >>= 1;
130 if (ilevel > 9 - hdr->sharpness_) {
131 ilevel = 9 - hdr->sharpness_;
134 if (ilevel < 1) ilevel = 1;
135 info->f_ilevel_ = ilevel;
136 info->f_limit_ = 2 * level + ilevel;
137 info->hev_thresh_ = (level >= 40) ? 2 : (level >= 15) ? 1 : 0;
138 } else {
139 info->f_limit_ = 0; // no filtering
141 info->f_inner_ = i4x4;
147 //------------------------------------------------------------------------------
148 // Dithering
150 #define DITHER_AMP_TAB_SIZE 12
151 static const int kQuantToDitherAmp[DITHER_AMP_TAB_SIZE] = {
152 // roughly, it's dqm->uv_mat_[1]
153 8, 7, 6, 4, 4, 2, 2, 2, 1, 1, 1, 1
156 void VP8InitDithering(const WebPDecoderOptions* const options,
157 VP8Decoder* const dec) {
158 assert(dec != NULL);
159 if (options != NULL) {
160 const int d = options->dithering_strength;
161 const int max_amp = (1 << VP8_RANDOM_DITHER_FIX) - 1;
162 const int f = (d < 0) ? 0 : (d > 100) ? max_amp : (d * max_amp / 100);
163 if (f > 0) {
164 int s;
165 int all_amp = 0;
166 for (s = 0; s < NUM_MB_SEGMENTS; ++s) {
167 VP8QuantMatrix* const dqm = &dec->dqm_[s];
168 if (dqm->uv_quant_ < DITHER_AMP_TAB_SIZE) {
169 // TODO(skal): should we specially dither more for uv_quant_ < 0?
170 const int idx = (dqm->uv_quant_ < 0) ? 0 : dqm->uv_quant_;
171 dqm->dither_ = (f * kQuantToDitherAmp[idx]) >> 3;
173 all_amp |= dqm->dither_;
175 if (all_amp != 0) {
176 VP8InitRandom(&dec->dithering_rg_, 1.0f);
177 dec->dither_ = 1;
180 #if WEBP_DECODER_ABI_VERSION > 0x0204
181 // potentially allow alpha dithering
182 dec->alpha_dithering_ = options->alpha_dithering_strength;
183 if (dec->alpha_dithering_ > 100) {
184 dec->alpha_dithering_ = 100;
185 } else if (dec->alpha_dithering_ < 0) {
186 dec->alpha_dithering_ = 0;
188 #endif
192 // minimal amp that will provide a non-zero dithering effect
193 #define MIN_DITHER_AMP 4
194 #define DITHER_DESCALE 4
195 #define DITHER_DESCALE_ROUNDER (1 << (DITHER_DESCALE - 1))
196 #define DITHER_AMP_BITS 8
197 #define DITHER_AMP_CENTER (1 << DITHER_AMP_BITS)
199 static void Dither8x8(VP8Random* const rg, uint8_t* dst, int bps, int amp) {
200 int i, j;
201 for (j = 0; j < 8; ++j) {
202 for (i = 0; i < 8; ++i) {
203 // TODO: could be made faster with SSE2
204 const int bits =
205 VP8RandomBits2(rg, DITHER_AMP_BITS + 1, amp) - DITHER_AMP_CENTER;
206 // Convert to range: [-2,2] for dither=50, [-4,4] for dither=100
207 const int delta = (bits + DITHER_DESCALE_ROUNDER) >> DITHER_DESCALE;
208 const int v = (int)dst[i] + delta;
209 dst[i] = (v < 0) ? 0 : (v > 255) ? 255u : (uint8_t)v;
211 dst += bps;
215 static void DitherRow(VP8Decoder* const dec) {
216 int mb_x;
217 assert(dec->dither_);
218 for (mb_x = dec->tl_mb_x_; mb_x < dec->br_mb_x_; ++mb_x) {
219 const VP8ThreadContext* const ctx = &dec->thread_ctx_;
220 const VP8MBData* const data = ctx->mb_data_ + mb_x;
221 const int cache_id = ctx->id_;
222 const int uv_bps = dec->cache_uv_stride_;
223 if (data->dither_ >= MIN_DITHER_AMP) {
224 uint8_t* const u_dst = dec->cache_u_ + cache_id * 8 * uv_bps + mb_x * 8;
225 uint8_t* const v_dst = dec->cache_v_ + cache_id * 8 * uv_bps + mb_x * 8;
226 Dither8x8(&dec->dithering_rg_, u_dst, uv_bps, data->dither_);
227 Dither8x8(&dec->dithering_rg_, v_dst, uv_bps, data->dither_);
232 //------------------------------------------------------------------------------
233 // This function is called after a row of macroblocks is finished decoding.
234 // It also takes into account the following restrictions:
235 // * In case of in-loop filtering, we must hold off sending some of the bottom
236 // pixels as they are yet unfiltered. They will be when the next macroblock
237 // row is decoded. Meanwhile, we must preserve them by rotating them in the
238 // cache area. This doesn't hold for the very bottom row of the uncropped
239 // picture of course.
240 // * we must clip the remaining pixels against the cropping area. The VP8Io
241 // struct must have the following fields set correctly before calling put():
243 #define MACROBLOCK_VPOS(mb_y) ((mb_y) * 16) // vertical position of a MB
245 // Finalize and transmit a complete row. Return false in case of user-abort.
246 static int FinishRow(VP8Decoder* const dec, VP8Io* const io) {
247 int ok = 1;
248 const VP8ThreadContext* const ctx = &dec->thread_ctx_;
249 const int cache_id = ctx->id_;
250 const int extra_y_rows = kFilterExtraRows[dec->filter_type_];
251 const int ysize = extra_y_rows * dec->cache_y_stride_;
252 const int uvsize = (extra_y_rows / 2) * dec->cache_uv_stride_;
253 const int y_offset = cache_id * 16 * dec->cache_y_stride_;
254 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
255 uint8_t* const ydst = dec->cache_y_ - ysize + y_offset;
256 uint8_t* const udst = dec->cache_u_ - uvsize + uv_offset;
257 uint8_t* const vdst = dec->cache_v_ - uvsize + uv_offset;
258 const int mb_y = ctx->mb_y_;
259 const int is_first_row = (mb_y == 0);
260 const int is_last_row = (mb_y >= dec->br_mb_y_ - 1);
262 if (dec->mt_method_ == 2) {
263 ReconstructRow(dec, ctx);
266 if (ctx->filter_row_) {
267 FilterRow(dec);
270 if (dec->dither_) {
271 DitherRow(dec);
274 if (io->put != NULL) {
275 int y_start = MACROBLOCK_VPOS(mb_y);
276 int y_end = MACROBLOCK_VPOS(mb_y + 1);
277 if (!is_first_row) {
278 y_start -= extra_y_rows;
279 io->y = ydst;
280 io->u = udst;
281 io->v = vdst;
282 } else {
283 io->y = dec->cache_y_ + y_offset;
284 io->u = dec->cache_u_ + uv_offset;
285 io->v = dec->cache_v_ + uv_offset;
288 if (!is_last_row) {
289 y_end -= extra_y_rows;
291 if (y_end > io->crop_bottom) {
292 y_end = io->crop_bottom; // make sure we don't overflow on last row.
294 io->a = NULL;
295 if (dec->alpha_data_ != NULL && y_start < y_end) {
296 // TODO(skal): testing presence of alpha with dec->alpha_data_ is not a
297 // good idea.
298 io->a = VP8DecompressAlphaRows(dec, y_start, y_end - y_start);
299 if (io->a == NULL) {
300 return VP8SetError(dec, VP8_STATUS_BITSTREAM_ERROR,
301 "Could not decode alpha data.");
304 if (y_start < io->crop_top) {
305 const int delta_y = io->crop_top - y_start;
306 y_start = io->crop_top;
307 assert(!(delta_y & 1));
308 io->y += dec->cache_y_stride_ * delta_y;
309 io->u += dec->cache_uv_stride_ * (delta_y >> 1);
310 io->v += dec->cache_uv_stride_ * (delta_y >> 1);
311 if (io->a != NULL) {
312 io->a += io->width * delta_y;
315 if (y_start < y_end) {
316 io->y += io->crop_left;
317 io->u += io->crop_left >> 1;
318 io->v += io->crop_left >> 1;
319 if (io->a != NULL) {
320 io->a += io->crop_left;
322 io->mb_y = y_start - io->crop_top;
323 io->mb_w = io->crop_right - io->crop_left;
324 io->mb_h = y_end - y_start;
325 ok = io->put(io);
328 // rotate top samples if needed
329 if (cache_id + 1 == dec->num_caches_) {
330 if (!is_last_row) {
331 memcpy(dec->cache_y_ - ysize, ydst + 16 * dec->cache_y_stride_, ysize);
332 memcpy(dec->cache_u_ - uvsize, udst + 8 * dec->cache_uv_stride_, uvsize);
333 memcpy(dec->cache_v_ - uvsize, vdst + 8 * dec->cache_uv_stride_, uvsize);
337 return ok;
340 #undef MACROBLOCK_VPOS
342 //------------------------------------------------------------------------------
344 int VP8ProcessRow(VP8Decoder* const dec, VP8Io* const io) {
345 int ok = 1;
346 VP8ThreadContext* const ctx = &dec->thread_ctx_;
347 const int filter_row =
348 (dec->filter_type_ > 0) &&
349 (dec->mb_y_ >= dec->tl_mb_y_) && (dec->mb_y_ <= dec->br_mb_y_);
350 if (dec->mt_method_ == 0) {
351 // ctx->id_ and ctx->f_info_ are already set
352 ctx->mb_y_ = dec->mb_y_;
353 ctx->filter_row_ = filter_row;
354 ReconstructRow(dec, ctx);
355 ok = FinishRow(dec, io);
356 } else {
357 WebPWorker* const worker = &dec->worker_;
358 // Finish previous job *before* updating context
359 ok &= WebPGetWorkerInterface()->Sync(worker);
360 assert(worker->status_ == OK);
361 if (ok) { // spawn a new deblocking/output job
362 ctx->io_ = *io;
363 ctx->id_ = dec->cache_id_;
364 ctx->mb_y_ = dec->mb_y_;
365 ctx->filter_row_ = filter_row;
366 if (dec->mt_method_ == 2) { // swap macroblock data
367 VP8MBData* const tmp = ctx->mb_data_;
368 ctx->mb_data_ = dec->mb_data_;
369 dec->mb_data_ = tmp;
370 } else {
371 // perform reconstruction directly in main thread
372 ReconstructRow(dec, ctx);
374 if (filter_row) { // swap filter info
375 VP8FInfo* const tmp = ctx->f_info_;
376 ctx->f_info_ = dec->f_info_;
377 dec->f_info_ = tmp;
379 // (reconstruct)+filter in parallel
380 WebPGetWorkerInterface()->Launch(worker);
381 if (++dec->cache_id_ == dec->num_caches_) {
382 dec->cache_id_ = 0;
386 return ok;
389 //------------------------------------------------------------------------------
390 // Finish setting up the decoding parameter once user's setup() is called.
392 VP8StatusCode VP8EnterCritical(VP8Decoder* const dec, VP8Io* const io) {
393 // Call setup() first. This may trigger additional decoding features on 'io'.
394 // Note: Afterward, we must call teardown() no matter what.
395 if (io->setup != NULL && !io->setup(io)) {
396 VP8SetError(dec, VP8_STATUS_USER_ABORT, "Frame setup failed");
397 return dec->status_;
400 // Disable filtering per user request
401 if (io->bypass_filtering) {
402 dec->filter_type_ = 0;
404 // TODO(skal): filter type / strength / sharpness forcing
406 // Define the area where we can skip in-loop filtering, in case of cropping.
408 // 'Simple' filter reads two luma samples outside of the macroblock
409 // and filters one. It doesn't filter the chroma samples. Hence, we can
410 // avoid doing the in-loop filtering before crop_top/crop_left position.
411 // For the 'Complex' filter, 3 samples are read and up to 3 are filtered.
412 // Means: there's a dependency chain that goes all the way up to the
413 // top-left corner of the picture (MB #0). We must filter all the previous
414 // macroblocks.
415 // TODO(skal): add an 'approximate_decoding' option, that won't produce
416 // a 1:1 bit-exactness for complex filtering?
418 const int extra_pixels = kFilterExtraRows[dec->filter_type_];
419 if (dec->filter_type_ == 2) {
420 // For complex filter, we need to preserve the dependency chain.
421 dec->tl_mb_x_ = 0;
422 dec->tl_mb_y_ = 0;
423 } else {
424 // For simple filter, we can filter only the cropped region.
425 // We include 'extra_pixels' on the other side of the boundary, since
426 // vertical or horizontal filtering of the previous macroblock can
427 // modify some abutting pixels.
428 dec->tl_mb_x_ = (io->crop_left - extra_pixels) >> 4;
429 dec->tl_mb_y_ = (io->crop_top - extra_pixels) >> 4;
430 if (dec->tl_mb_x_ < 0) dec->tl_mb_x_ = 0;
431 if (dec->tl_mb_y_ < 0) dec->tl_mb_y_ = 0;
433 // We need some 'extra' pixels on the right/bottom.
434 dec->br_mb_y_ = (io->crop_bottom + 15 + extra_pixels) >> 4;
435 dec->br_mb_x_ = (io->crop_right + 15 + extra_pixels) >> 4;
436 if (dec->br_mb_x_ > dec->mb_w_) {
437 dec->br_mb_x_ = dec->mb_w_;
439 if (dec->br_mb_y_ > dec->mb_h_) {
440 dec->br_mb_y_ = dec->mb_h_;
443 PrecomputeFilterStrengths(dec);
444 return VP8_STATUS_OK;
447 int VP8ExitCritical(VP8Decoder* const dec, VP8Io* const io) {
448 int ok = 1;
449 if (dec->mt_method_ > 0) {
450 ok = WebPGetWorkerInterface()->Sync(&dec->worker_);
453 if (io->teardown != NULL) {
454 io->teardown(io);
456 return ok;
459 //------------------------------------------------------------------------------
460 // For multi-threaded decoding we need to use 3 rows of 16 pixels as delay line.
462 // Reason is: the deblocking filter cannot deblock the bottom horizontal edges
463 // immediately, and needs to wait for first few rows of the next macroblock to
464 // be decoded. Hence, deblocking is lagging behind by 4 or 8 pixels (depending
465 // on strength).
466 // With two threads, the vertical positions of the rows being decoded are:
467 // Decode: [ 0..15][16..31][32..47][48..63][64..79][...
468 // Deblock: [ 0..11][12..27][28..43][44..59][...
469 // If we use two threads and two caches of 16 pixels, the sequence would be:
470 // Decode: [ 0..15][16..31][ 0..15!!][16..31][ 0..15][...
471 // Deblock: [ 0..11][12..27!!][-4..11][12..27][...
472 // The problem occurs during row [12..15!!] that both the decoding and
473 // deblocking threads are writing simultaneously.
474 // With 3 cache lines, one get a safe write pattern:
475 // Decode: [ 0..15][16..31][32..47][ 0..15][16..31][32..47][0..
476 // Deblock: [ 0..11][12..27][28..43][-4..11][12..27][28...
477 // Note that multi-threaded output _without_ deblocking can make use of two
478 // cache lines of 16 pixels only, since there's no lagging behind. The decoding
479 // and output process have non-concurrent writing:
480 // Decode: [ 0..15][16..31][ 0..15][16..31][...
481 // io->put: [ 0..15][16..31][ 0..15][...
483 #define MT_CACHE_LINES 3
484 #define ST_CACHE_LINES 1 // 1 cache row only for single-threaded case
486 // Initialize multi/single-thread worker
487 static int InitThreadContext(VP8Decoder* const dec) {
488 dec->cache_id_ = 0;
489 if (dec->mt_method_ > 0) {
490 WebPWorker* const worker = &dec->worker_;
491 if (!WebPGetWorkerInterface()->Reset(worker)) {
492 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
493 "thread initialization failed.");
495 worker->data1 = dec;
496 worker->data2 = (void*)&dec->thread_ctx_.io_;
497 worker->hook = (WebPWorkerHook)FinishRow;
498 dec->num_caches_ =
499 (dec->filter_type_ > 0) ? MT_CACHE_LINES : MT_CACHE_LINES - 1;
500 } else {
501 dec->num_caches_ = ST_CACHE_LINES;
503 return 1;
506 int VP8GetThreadMethod(const WebPDecoderOptions* const options,
507 const WebPHeaderStructure* const headers,
508 int width, int height) {
509 if (options == NULL || options->use_threads == 0) {
510 return 0;
512 (void)headers;
513 (void)width;
514 (void)height;
515 assert(headers == NULL || !headers->is_lossless);
516 #if defined(WEBP_USE_THREAD)
517 if (width < MIN_WIDTH_FOR_THREADS) return 0;
518 // TODO(skal): tune the heuristic further
519 #if 0
520 if (height < 2 * width) return 2;
521 #endif
522 return 2;
523 #else // !WEBP_USE_THREAD
524 return 0;
525 #endif
528 #undef MT_CACHE_LINES
529 #undef ST_CACHE_LINES
531 //------------------------------------------------------------------------------
532 // Memory setup
534 static int AllocateMemory(VP8Decoder* const dec) {
535 const int num_caches = dec->num_caches_;
536 const int mb_w = dec->mb_w_;
537 // Note: we use 'size_t' when there's no overflow risk, uint64_t otherwise.
538 const size_t intra_pred_mode_size = 4 * mb_w * sizeof(uint8_t);
539 const size_t top_size = sizeof(VP8TopSamples) * mb_w;
540 const size_t mb_info_size = (mb_w + 1) * sizeof(VP8MB);
541 const size_t f_info_size =
542 (dec->filter_type_ > 0) ?
543 mb_w * (dec->mt_method_ > 0 ? 2 : 1) * sizeof(VP8FInfo)
544 : 0;
545 const size_t yuv_size = YUV_SIZE * sizeof(*dec->yuv_b_);
546 const size_t mb_data_size =
547 (dec->mt_method_ == 2 ? 2 : 1) * mb_w * sizeof(*dec->mb_data_);
548 const size_t cache_height = (16 * num_caches
549 + kFilterExtraRows[dec->filter_type_]) * 3 / 2;
550 const size_t cache_size = top_size * cache_height;
551 // alpha_size is the only one that scales as width x height.
552 const uint64_t alpha_size = (dec->alpha_data_ != NULL) ?
553 (uint64_t)dec->pic_hdr_.width_ * dec->pic_hdr_.height_ : 0ULL;
554 const uint64_t needed = (uint64_t)intra_pred_mode_size
555 + top_size + mb_info_size + f_info_size
556 + yuv_size + mb_data_size
557 + cache_size + alpha_size + ALIGN_MASK;
558 uint8_t* mem;
560 if (needed != (size_t)needed) return 0; // check for overflow
561 if (needed > dec->mem_size_) {
562 WebPSafeFree(dec->mem_);
563 dec->mem_size_ = 0;
564 dec->mem_ = WebPSafeMalloc(needed, sizeof(uint8_t));
565 if (dec->mem_ == NULL) {
566 return VP8SetError(dec, VP8_STATUS_OUT_OF_MEMORY,
567 "no memory during frame initialization.");
569 // down-cast is ok, thanks to WebPSafeAlloc() above.
570 dec->mem_size_ = (size_t)needed;
573 mem = (uint8_t*)dec->mem_;
574 dec->intra_t_ = (uint8_t*)mem;
575 mem += intra_pred_mode_size;
577 dec->yuv_t_ = (VP8TopSamples*)mem;
578 mem += top_size;
580 dec->mb_info_ = ((VP8MB*)mem) + 1;
581 mem += mb_info_size;
583 dec->f_info_ = f_info_size ? (VP8FInfo*)mem : NULL;
584 mem += f_info_size;
585 dec->thread_ctx_.id_ = 0;
586 dec->thread_ctx_.f_info_ = dec->f_info_;
587 if (dec->mt_method_ > 0) {
588 // secondary cache line. The deblocking process need to make use of the
589 // filtering strength from previous macroblock row, while the new ones
590 // are being decoded in parallel. We'll just swap the pointers.
591 dec->thread_ctx_.f_info_ += mb_w;
594 mem = (uint8_t*)((uintptr_t)(mem + ALIGN_MASK) & ~ALIGN_MASK);
595 assert((yuv_size & ALIGN_MASK) == 0);
596 dec->yuv_b_ = (uint8_t*)mem;
597 mem += yuv_size;
599 dec->mb_data_ = (VP8MBData*)mem;
600 dec->thread_ctx_.mb_data_ = (VP8MBData*)mem;
601 if (dec->mt_method_ == 2) {
602 dec->thread_ctx_.mb_data_ += mb_w;
604 mem += mb_data_size;
606 dec->cache_y_stride_ = 16 * mb_w;
607 dec->cache_uv_stride_ = 8 * mb_w;
609 const int extra_rows = kFilterExtraRows[dec->filter_type_];
610 const int extra_y = extra_rows * dec->cache_y_stride_;
611 const int extra_uv = (extra_rows / 2) * dec->cache_uv_stride_;
612 dec->cache_y_ = ((uint8_t*)mem) + extra_y;
613 dec->cache_u_ = dec->cache_y_
614 + 16 * num_caches * dec->cache_y_stride_ + extra_uv;
615 dec->cache_v_ = dec->cache_u_
616 + 8 * num_caches * dec->cache_uv_stride_ + extra_uv;
617 dec->cache_id_ = 0;
619 mem += cache_size;
621 // alpha plane
622 dec->alpha_plane_ = alpha_size ? (uint8_t*)mem : NULL;
623 mem += alpha_size;
624 assert(mem <= (uint8_t*)dec->mem_ + dec->mem_size_);
626 // note: left/top-info is initialized once for all.
627 memset(dec->mb_info_ - 1, 0, mb_info_size);
628 VP8InitScanline(dec); // initialize left too.
630 // initialize top
631 memset(dec->intra_t_, B_DC_PRED, intra_pred_mode_size);
633 return 1;
636 static void InitIo(VP8Decoder* const dec, VP8Io* io) {
637 // prepare 'io'
638 io->mb_y = 0;
639 io->y = dec->cache_y_;
640 io->u = dec->cache_u_;
641 io->v = dec->cache_v_;
642 io->y_stride = dec->cache_y_stride_;
643 io->uv_stride = dec->cache_uv_stride_;
644 io->a = NULL;
647 int VP8InitFrame(VP8Decoder* const dec, VP8Io* io) {
648 if (!InitThreadContext(dec)) return 0; // call first. Sets dec->num_caches_.
649 if (!AllocateMemory(dec)) return 0;
650 InitIo(dec, io);
651 VP8DspInit(); // Init critical function pointers and look-up tables.
652 return 1;
655 //------------------------------------------------------------------------------
656 // Main reconstruction function.
658 static const int kScan[16] = {
659 0 + 0 * BPS, 4 + 0 * BPS, 8 + 0 * BPS, 12 + 0 * BPS,
660 0 + 4 * BPS, 4 + 4 * BPS, 8 + 4 * BPS, 12 + 4 * BPS,
661 0 + 8 * BPS, 4 + 8 * BPS, 8 + 8 * BPS, 12 + 8 * BPS,
662 0 + 12 * BPS, 4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS
665 static int CheckMode(int mb_x, int mb_y, int mode) {
666 if (mode == B_DC_PRED) {
667 if (mb_x == 0) {
668 return (mb_y == 0) ? B_DC_PRED_NOTOPLEFT : B_DC_PRED_NOLEFT;
669 } else {
670 return (mb_y == 0) ? B_DC_PRED_NOTOP : B_DC_PRED;
673 return mode;
676 static void Copy32b(uint8_t* dst, uint8_t* src) {
677 memcpy(dst, src, 4);
680 static WEBP_INLINE void DoTransform(uint32_t bits, const int16_t* const src,
681 uint8_t* const dst) {
682 switch (bits >> 30) {
683 case 3:
684 VP8Transform(src, dst, 0);
685 break;
686 case 2:
687 VP8TransformAC3(src, dst);
688 break;
689 case 1:
690 VP8TransformDC(src, dst);
691 break;
692 default:
693 break;
697 static void DoUVTransform(uint32_t bits, const int16_t* const src,
698 uint8_t* const dst) {
699 if (bits & 0xff) { // any non-zero coeff at all?
700 if (bits & 0xaa) { // any non-zero AC coefficient?
701 VP8TransformUV(src, dst); // note we don't use the AC3 variant for U/V
702 } else {
703 VP8TransformDCUV(src, dst);
708 static void ReconstructRow(const VP8Decoder* const dec,
709 const VP8ThreadContext* ctx) {
710 int j;
711 int mb_x;
712 const int mb_y = ctx->mb_y_;
713 const int cache_id = ctx->id_;
714 uint8_t* const y_dst = dec->yuv_b_ + Y_OFF;
715 uint8_t* const u_dst = dec->yuv_b_ + U_OFF;
716 uint8_t* const v_dst = dec->yuv_b_ + V_OFF;
717 for (mb_x = 0; mb_x < dec->mb_w_; ++mb_x) {
718 const VP8MBData* const block = ctx->mb_data_ + mb_x;
720 // Rotate in the left samples from previously decoded block. We move four
721 // pixels at a time for alignment reason, and because of in-loop filter.
722 if (mb_x > 0) {
723 for (j = -1; j < 16; ++j) {
724 Copy32b(&y_dst[j * BPS - 4], &y_dst[j * BPS + 12]);
726 for (j = -1; j < 8; ++j) {
727 Copy32b(&u_dst[j * BPS - 4], &u_dst[j * BPS + 4]);
728 Copy32b(&v_dst[j * BPS - 4], &v_dst[j * BPS + 4]);
730 } else {
731 for (j = 0; j < 16; ++j) {
732 y_dst[j * BPS - 1] = 129;
734 for (j = 0; j < 8; ++j) {
735 u_dst[j * BPS - 1] = 129;
736 v_dst[j * BPS - 1] = 129;
738 // Init top-left sample on left column too
739 if (mb_y > 0) {
740 y_dst[-1 - BPS] = u_dst[-1 - BPS] = v_dst[-1 - BPS] = 129;
744 // bring top samples into the cache
745 VP8TopSamples* const top_yuv = dec->yuv_t_ + mb_x;
746 const int16_t* const coeffs = block->coeffs_;
747 uint32_t bits = block->non_zero_y_;
748 int n;
750 if (mb_y > 0) {
751 memcpy(y_dst - BPS, top_yuv[0].y, 16);
752 memcpy(u_dst - BPS, top_yuv[0].u, 8);
753 memcpy(v_dst - BPS, top_yuv[0].v, 8);
754 } else if (mb_x == 0) {
755 // we only need to do this init once at block (0,0).
756 // Afterward, it remains valid for the whole topmost row.
757 memset(y_dst - BPS - 1, 127, 16 + 4 + 1);
758 memset(u_dst - BPS - 1, 127, 8 + 1);
759 memset(v_dst - BPS - 1, 127, 8 + 1);
762 // predict and add residuals
763 if (block->is_i4x4_) { // 4x4
764 uint32_t* const top_right = (uint32_t*)(y_dst - BPS + 16);
766 if (mb_y > 0) {
767 if (mb_x >= dec->mb_w_ - 1) { // on rightmost border
768 memset(top_right, top_yuv[0].y[15], sizeof(*top_right));
769 } else {
770 memcpy(top_right, top_yuv[1].y, sizeof(*top_right));
773 // replicate the top-right pixels below
774 top_right[BPS] = top_right[2 * BPS] = top_right[3 * BPS] = top_right[0];
776 // predict and add residuals for all 4x4 blocks in turn.
777 for (n = 0; n < 16; ++n, bits <<= 2) {
778 uint8_t* const dst = y_dst + kScan[n];
779 VP8PredLuma4[block->imodes_[n]](dst);
780 DoTransform(bits, coeffs + n * 16, dst);
782 } else { // 16x16
783 const int pred_func = CheckMode(mb_x, mb_y,
784 block->imodes_[0]);
785 VP8PredLuma16[pred_func](y_dst);
786 if (bits != 0) {
787 for (n = 0; n < 16; ++n, bits <<= 2) {
788 DoTransform(bits, coeffs + n * 16, y_dst + kScan[n]);
793 // Chroma
794 const uint32_t bits_uv = block->non_zero_uv_;
795 const int pred_func = CheckMode(mb_x, mb_y, block->uvmode_);
796 VP8PredChroma8[pred_func](u_dst);
797 VP8PredChroma8[pred_func](v_dst);
798 DoUVTransform(bits_uv >> 0, coeffs + 16 * 16, u_dst);
799 DoUVTransform(bits_uv >> 8, coeffs + 20 * 16, v_dst);
802 // stash away top samples for next block
803 if (mb_y < dec->mb_h_ - 1) {
804 memcpy(top_yuv[0].y, y_dst + 15 * BPS, 16);
805 memcpy(top_yuv[0].u, u_dst + 7 * BPS, 8);
806 memcpy(top_yuv[0].v, v_dst + 7 * BPS, 8);
809 // Transfer reconstructed samples from yuv_b_ cache to final destination.
811 const int y_offset = cache_id * 16 * dec->cache_y_stride_;
812 const int uv_offset = cache_id * 8 * dec->cache_uv_stride_;
813 uint8_t* const y_out = dec->cache_y_ + mb_x * 16 + y_offset;
814 uint8_t* const u_out = dec->cache_u_ + mb_x * 8 + uv_offset;
815 uint8_t* const v_out = dec->cache_v_ + mb_x * 8 + uv_offset;
816 for (j = 0; j < 16; ++j) {
817 memcpy(y_out + j * dec->cache_y_stride_, y_dst + j * BPS, 16);
819 for (j = 0; j < 8; ++j) {
820 memcpy(u_out + j * dec->cache_uv_stride_, u_dst + j * BPS, 8);
821 memcpy(v_out + j * dec->cache_uv_stride_, v_dst + j * BPS, 8);
827 //------------------------------------------------------------------------------