1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include "base/basictypes.h"
8 #include "base/logging.h"
9 #include "base/stl_util.h"
10 #include "net/quic/crypto/crypto_framer.h"
11 #include "net/quic/crypto/crypto_handshake_message.h"
12 #include "net/quic/crypto/crypto_protocol.h"
13 #include "net/quic/crypto/quic_decrypter.h"
14 #include "net/quic/crypto/quic_encrypter.h"
15 #include "net/quic/quic_data_reader.h"
16 #include "net/quic/quic_data_writer.h"
17 #include "net/quic/quic_flags.h"
18 #include "net/quic/quic_socket_address_coder.h"
19 #include "net/quic/quic_utils.h"
21 using base::StringPiece
;
25 using std::numeric_limits
;
32 // Mask to select the lowest 48 bits of a sequence number.
33 const QuicPacketSequenceNumber k6ByteSequenceNumberMask
=
34 GG_UINT64_C(0x0000FFFFFFFFFFFF);
35 const QuicPacketSequenceNumber k4ByteSequenceNumberMask
=
36 GG_UINT64_C(0x00000000FFFFFFFF);
37 const QuicPacketSequenceNumber k2ByteSequenceNumberMask
=
38 GG_UINT64_C(0x000000000000FFFF);
39 const QuicPacketSequenceNumber k1ByteSequenceNumberMask
=
40 GG_UINT64_C(0x00000000000000FF);
42 const QuicConnectionId k1ByteConnectionIdMask
= GG_UINT64_C(0x00000000000000FF);
43 const QuicConnectionId k4ByteConnectionIdMask
= GG_UINT64_C(0x00000000FFFFFFFF);
45 // Number of bits the sequence number length bits are shifted from the right
46 // edge of the public header.
47 const uint8 kPublicHeaderSequenceNumberShift
= 4;
49 // New Frame Types, QUIC v. >= 10:
50 // There are two interpretations for the Frame Type byte in the QUIC protocol,
51 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
53 // Regular Frame Types use the Frame Type byte simply. Currently defined
54 // Regular Frame Types are:
55 // Padding : 0b 00000000 (0x00)
56 // ResetStream : 0b 00000001 (0x01)
57 // ConnectionClose : 0b 00000010 (0x02)
58 // GoAway : 0b 00000011 (0x03)
59 // WindowUpdate : 0b 00000100 (0x04)
60 // Blocked : 0b 00000101 (0x05)
62 // Special Frame Types encode both a Frame Type and corresponding flags
63 // all in the Frame Type byte. Currently defined Special Frame Types are:
64 // Stream : 0b 1xxxxxxx
67 // Semantics of the flag bits above (the x bits) depends on the frame type.
69 // Masks to determine if the frame type is a special use
70 // and for specific special frame types.
71 const uint8 kQuicFrameTypeSpecialMask
= 0xE0; // 0b 11100000
72 const uint8 kQuicFrameTypeStreamMask
= 0x80;
73 const uint8 kQuicFrameTypeAckMask
= 0x40;
75 // Stream frame relative shifts and masks for interpreting the stream flags.
76 // StreamID may be 1, 2, 3, or 4 bytes.
77 const uint8 kQuicStreamIdShift
= 2;
78 const uint8 kQuicStreamIDLengthMask
= 0x03;
80 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
81 const uint8 kQuicStreamOffsetShift
= 3;
82 const uint8 kQuicStreamOffsetMask
= 0x07;
84 // Data length may be 0 or 2 bytes.
85 const uint8 kQuicStreamDataLengthShift
= 1;
86 const uint8 kQuicStreamDataLengthMask
= 0x01;
88 // Fin bit may be set or not.
89 const uint8 kQuicStreamFinShift
= 1;
90 const uint8 kQuicStreamFinMask
= 0x01;
92 // Sequence number size shift used in AckFrames.
93 const uint8 kQuicSequenceNumberLengthShift
= 2;
95 // Acks may be truncated.
96 const uint8 kQuicAckTruncatedShift
= 1;
97 const uint8 kQuicAckTruncatedMask
= 0x01;
99 // Acks may not have any nacks.
100 const uint8 kQuicHasNacksMask
= 0x01;
102 // Returns the absolute value of the difference between |a| and |b|.
103 QuicPacketSequenceNumber
Delta(QuicPacketSequenceNumber a
,
104 QuicPacketSequenceNumber b
) {
105 // Since these are unsigned numbers, we can't just return abs(a - b)
112 QuicPacketSequenceNumber
ClosestTo(QuicPacketSequenceNumber target
,
113 QuicPacketSequenceNumber a
,
114 QuicPacketSequenceNumber b
) {
115 return (Delta(target
, a
) < Delta(target
, b
)) ? a
: b
;
118 QuicSequenceNumberLength
ReadSequenceNumberLength(uint8 flags
) {
119 switch (flags
& PACKET_FLAGS_6BYTE_SEQUENCE
) {
120 case PACKET_FLAGS_6BYTE_SEQUENCE
:
121 return PACKET_6BYTE_SEQUENCE_NUMBER
;
122 case PACKET_FLAGS_4BYTE_SEQUENCE
:
123 return PACKET_4BYTE_SEQUENCE_NUMBER
;
124 case PACKET_FLAGS_2BYTE_SEQUENCE
:
125 return PACKET_2BYTE_SEQUENCE_NUMBER
;
126 case PACKET_FLAGS_1BYTE_SEQUENCE
:
127 return PACKET_1BYTE_SEQUENCE_NUMBER
;
129 LOG(DFATAL
) << "Unreachable case statement.";
130 return PACKET_6BYTE_SEQUENCE_NUMBER
;
136 bool QuicFramerVisitorInterface::OnWindowUpdateFrame(
137 const QuicWindowUpdateFrame
& frame
) {
141 bool QuicFramerVisitorInterface::OnBlockedFrame(const QuicBlockedFrame
& frame
) {
145 QuicFramer::QuicFramer(const QuicVersionVector
& supported_versions
,
146 QuicTime creation_time
,
147 Perspective perspective
)
149 entropy_calculator_(nullptr),
150 error_(QUIC_NO_ERROR
),
151 last_sequence_number_(0),
152 last_serialized_connection_id_(0),
153 supported_versions_(supported_versions
),
154 decrypter_level_(ENCRYPTION_NONE
),
155 alternative_decrypter_level_(ENCRYPTION_NONE
),
156 alternative_decrypter_latch_(false),
157 perspective_(perspective
),
158 validate_flags_(true),
159 creation_time_(creation_time
),
160 last_timestamp_(QuicTime::Delta::Zero()) {
161 DCHECK(!supported_versions
.empty());
162 quic_version_
= supported_versions_
[0];
163 decrypter_
.reset(QuicDecrypter::Create(kNULL
));
164 encrypter_
[ENCRYPTION_NONE
].reset(QuicEncrypter::Create(kNULL
));
167 QuicFramer::~QuicFramer() {}
170 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id
,
171 QuicStreamOffset offset
,
172 bool last_frame_in_packet
,
173 InFecGroup is_in_fec_group
) {
174 bool no_stream_frame_length
= last_frame_in_packet
&&
175 is_in_fec_group
== NOT_IN_FEC_GROUP
;
176 return kQuicFrameTypeSize
+ GetStreamIdSize(stream_id
) +
177 GetStreamOffsetSize(offset
) +
178 (no_stream_frame_length
? 0 : kQuicStreamPayloadLengthSize
);
182 size_t QuicFramer::GetMinAckFrameSize(
183 QuicSequenceNumberLength sequence_number_length
,
184 QuicSequenceNumberLength largest_observed_length
) {
185 return kQuicFrameTypeSize
+ kQuicEntropyHashSize
+
186 largest_observed_length
+ kQuicDeltaTimeLargestObservedSize
;
190 size_t QuicFramer::GetStopWaitingFrameSize(
191 QuicSequenceNumberLength sequence_number_length
) {
192 return kQuicFrameTypeSize
+ kQuicEntropyHashSize
+
193 sequence_number_length
;
197 size_t QuicFramer::GetMinRstStreamFrameSize() {
198 return kQuicFrameTypeSize
+ kQuicMaxStreamIdSize
+
199 kQuicMaxStreamOffsetSize
+ kQuicErrorCodeSize
+
200 kQuicErrorDetailsLengthSize
;
204 size_t QuicFramer::GetRstStreamFrameSize() {
205 return kQuicFrameTypeSize
+ kQuicMaxStreamIdSize
+ kQuicMaxStreamOffsetSize
+
210 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
211 return kQuicFrameTypeSize
+ kQuicErrorCodeSize
+ kQuicErrorDetailsLengthSize
;
215 size_t QuicFramer::GetMinGoAwayFrameSize() {
216 return kQuicFrameTypeSize
+ kQuicErrorCodeSize
+ kQuicErrorDetailsLengthSize
+
217 kQuicMaxStreamIdSize
;
221 size_t QuicFramer::GetWindowUpdateFrameSize() {
222 return kQuicFrameTypeSize
+ kQuicMaxStreamIdSize
+ kQuicMaxStreamOffsetSize
;
226 size_t QuicFramer::GetBlockedFrameSize() {
227 return kQuicFrameTypeSize
+ kQuicMaxStreamIdSize
;
231 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id
) {
232 // Sizes are 1 through 4 bytes.
233 for (int i
= 1; i
<= 4; ++i
) {
235 if (stream_id
== 0) {
239 LOG(DFATAL
) << "Failed to determine StreamIDSize.";
244 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset
) {
245 // 0 is a special case.
249 // 2 through 8 are the remaining sizes.
251 for (int i
= 2; i
<= 8; ++i
) {
257 LOG(DFATAL
) << "Failed to determine StreamOffsetSize.";
262 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions
) {
263 return kPublicFlagsSize
+ PACKET_8BYTE_CONNECTION_ID
+
264 number_versions
* kQuicVersionSize
;
267 bool QuicFramer::IsSupportedVersion(const QuicVersion version
) const {
268 for (size_t i
= 0; i
< supported_versions_
.size(); ++i
) {
269 if (version
== supported_versions_
[i
]) {
276 size_t QuicFramer::GetSerializedFrameLength(
277 const QuicFrame
& frame
,
281 InFecGroup is_in_fec_group
,
282 QuicSequenceNumberLength sequence_number_length
) {
283 // Prevent a rare crash reported in b/19458523.
284 if (frame
.stream_frame
== nullptr) {
285 LOG(DFATAL
) << "Cannot compute the length of a null frame. "
286 << "type:" << frame
.type
<< "free_bytes:" << free_bytes
287 << " first_frame:" << first_frame
288 << " last_frame:" << last_frame
289 << " is_in_fec:" << is_in_fec_group
290 << " seq num length:" << sequence_number_length
;
291 set_error(QUIC_INTERNAL_ERROR
);
292 visitor_
->OnError(this);
295 if (frame
.type
== PADDING_FRAME
) {
296 // PADDING implies end of packet.
300 ComputeFrameLength(frame
, last_frame
, is_in_fec_group
,
301 sequence_number_length
);
302 if (frame_len
<= free_bytes
) {
303 // Frame fits within packet. Note that acks may be truncated.
306 // Only truncate the first frame in a packet, so if subsequent ones go
307 // over, stop including more frames.
311 bool can_truncate
= frame
.type
== ACK_FRAME
&&
312 free_bytes
>= GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER
,
313 PACKET_6BYTE_SEQUENCE_NUMBER
);
315 // Truncate the frame so the packet will not exceed kMaxPacketSize.
316 // Note that we may not use every byte of the writer in this case.
317 DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes
;
320 if (!FLAGS_quic_allow_oversized_packets_for_test
) {
323 LOG(DFATAL
) << "Packet size too small to fit frame.";
327 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
329 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
332 QuicPacketEntropyHash
QuicFramer::GetPacketEntropyHash(
333 const QuicPacketHeader
& header
) {
334 return header
.entropy_flag
<< (header
.packet_sequence_number
% 8);
337 QuicPacket
* QuicFramer::BuildDataPacket(const QuicPacketHeader
& header
,
338 const QuicFrames
& frames
,
340 size_t packet_length
) {
341 QuicDataWriter
writer(packet_length
, buffer
);
342 if (!AppendPacketHeader(header
, &writer
)) {
343 LOG(DFATAL
) << "AppendPacketHeader failed";
348 for (const QuicFrame
& frame
: frames
) {
349 // Determine if we should write stream frame length in header.
350 const bool no_stream_frame_length
=
351 (header
.is_in_fec_group
== NOT_IN_FEC_GROUP
) &&
352 (i
== frames
.size() - 1);
353 if (!AppendTypeByte(frame
, no_stream_frame_length
, &writer
)) {
354 LOG(DFATAL
) << "AppendTypeByte failed";
358 switch (frame
.type
) {
360 writer
.WritePadding();
363 if (!AppendStreamFrame(
364 *frame
.stream_frame
, no_stream_frame_length
, &writer
)) {
365 LOG(DFATAL
) << "AppendStreamFrame failed";
370 if (!AppendAckFrameAndTypeByte(
371 header
, *frame
.ack_frame
, &writer
)) {
372 LOG(DFATAL
) << "AppendAckFrameAndTypeByte failed";
376 case STOP_WAITING_FRAME
:
377 if (!AppendStopWaitingFrame(
378 header
, *frame
.stop_waiting_frame
, &writer
)) {
379 LOG(DFATAL
) << "AppendStopWaitingFrame failed";
384 // Ping has no payload.
386 case RST_STREAM_FRAME
:
387 if (!AppendRstStreamFrame(*frame
.rst_stream_frame
, &writer
)) {
388 LOG(DFATAL
) << "AppendRstStreamFrame failed";
392 case CONNECTION_CLOSE_FRAME
:
393 if (!AppendConnectionCloseFrame(
394 *frame
.connection_close_frame
, &writer
)) {
395 LOG(DFATAL
) << "AppendConnectionCloseFrame failed";
400 if (!AppendGoAwayFrame(*frame
.goaway_frame
, &writer
)) {
401 LOG(DFATAL
) << "AppendGoAwayFrame failed";
405 case WINDOW_UPDATE_FRAME
:
406 if (!AppendWindowUpdateFrame(*frame
.window_update_frame
, &writer
)) {
407 LOG(DFATAL
) << "AppendWindowUpdateFrame failed";
412 if (!AppendBlockedFrame(*frame
.blocked_frame
, &writer
)) {
413 LOG(DFATAL
) << "AppendBlockedFrame failed";
418 RaiseError(QUIC_INVALID_FRAME_DATA
);
419 LOG(DFATAL
) << "QUIC_INVALID_FRAME_DATA";
426 new QuicPacket(writer
.data(), writer
.length(), false,
427 header
.public_header
.connection_id_length
,
428 header
.public_header
.version_flag
,
429 header
.public_header
.sequence_number_length
);
434 QuicPacket
* QuicFramer::BuildFecPacket(const QuicPacketHeader
& header
,
435 const QuicFecData
& fec
) {
436 DCHECK_EQ(IN_FEC_GROUP
, header
.is_in_fec_group
);
437 DCHECK_NE(0u, header
.fec_group
);
438 size_t len
= GetPacketHeaderSize(header
);
439 len
+= fec
.redundancy
.length();
441 scoped_ptr
<char[]> buffer(new char[len
]);
442 QuicDataWriter
writer(len
, buffer
.get());
443 if (!AppendPacketHeader(header
, &writer
)) {
444 LOG(DFATAL
) << "AppendPacketHeader failed";
448 if (!writer
.WriteBytes(fec
.redundancy
.data(), fec
.redundancy
.length())) {
449 LOG(DFATAL
) << "Failed to add FEC";
453 return new QuicPacket(buffer
.release(), len
, true,
454 header
.public_header
.connection_id_length
,
455 header
.public_header
.version_flag
,
456 header
.public_header
.sequence_number_length
);
460 QuicEncryptedPacket
* QuicFramer::BuildPublicResetPacket(
461 const QuicPublicResetPacket
& packet
) {
462 DCHECK(packet
.public_header
.reset_flag
);
464 CryptoHandshakeMessage reset
;
465 reset
.set_tag(kPRST
);
466 reset
.SetValue(kRNON
, packet
.nonce_proof
);
467 reset
.SetValue(kRSEQ
, packet
.rejected_sequence_number
);
468 if (!packet
.client_address
.address().empty()) {
469 // packet.client_address is non-empty.
470 QuicSocketAddressCoder
address_coder(packet
.client_address
);
471 string serialized_address
= address_coder
.Encode();
472 if (serialized_address
.empty()) {
475 reset
.SetStringPiece(kCADR
, serialized_address
);
477 const QuicData
& reset_serialized
= reset
.GetSerialized();
480 kPublicFlagsSize
+ PACKET_8BYTE_CONNECTION_ID
+ reset_serialized
.length();
481 scoped_ptr
<char[]> buffer(new char[len
]);
482 QuicDataWriter
writer(len
, buffer
.get());
484 uint8 flags
= static_cast<uint8
>(PACKET_PUBLIC_FLAGS_RST
|
485 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID
);
486 if (!writer
.WriteUInt8(flags
)) {
490 if (!writer
.WriteUInt64(packet
.public_header
.connection_id
)) {
494 if (!writer
.WriteBytes(reset_serialized
.data(), reset_serialized
.length())) {
498 return new QuicEncryptedPacket(buffer
.release(), len
, true);
501 QuicEncryptedPacket
* QuicFramer::BuildVersionNegotiationPacket(
502 const QuicPacketPublicHeader
& header
,
503 const QuicVersionVector
& supported_versions
) {
504 DCHECK(header
.version_flag
);
505 size_t len
= GetVersionNegotiationPacketSize(supported_versions
.size());
506 scoped_ptr
<char[]> buffer(new char[len
]);
507 QuicDataWriter
writer(len
, buffer
.get());
509 uint8 flags
= static_cast<uint8
>(PACKET_PUBLIC_FLAGS_VERSION
|
510 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID
);
511 if (!writer
.WriteUInt8(flags
)) {
515 if (!writer
.WriteUInt64(header
.connection_id
)) {
519 for (size_t i
= 0; i
< supported_versions
.size(); ++i
) {
520 if (!writer
.WriteUInt32(QuicVersionToQuicTag(supported_versions
[i
]))) {
525 return new QuicEncryptedPacket(buffer
.release(), len
, true);
528 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket
& packet
) {
529 DCHECK(!reader_
.get());
530 reader_
.reset(new QuicDataReader(packet
.data(), packet
.length()));
532 visitor_
->OnPacket();
534 // First parse the public header.
535 QuicPacketPublicHeader public_header
;
536 if (!ProcessPublicHeader(&public_header
)) {
537 DLOG(WARNING
) << "Unable to process public header.";
538 DCHECK_NE("", detailed_error_
);
539 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
542 if (!visitor_
->OnUnauthenticatedPublicHeader(public_header
)) {
543 // The visitor suppresses further processing of the packet.
544 reader_
.reset(nullptr);
548 if (perspective_
== Perspective::IS_SERVER
&& public_header
.version_flag
&&
549 public_header
.versions
[0] != quic_version_
) {
550 if (!visitor_
->OnProtocolVersionMismatch(public_header
.versions
[0])) {
551 reader_
.reset(nullptr);
557 if (perspective_
== Perspective::IS_CLIENT
&& public_header
.version_flag
) {
558 rv
= ProcessVersionNegotiationPacket(&public_header
);
559 } else if (public_header
.reset_flag
) {
560 rv
= ProcessPublicResetPacket(public_header
);
561 } else if (packet
.length() <= kMaxPacketSize
) {
562 char buffer
[kMaxPacketSize
];
563 rv
= ProcessDataPacket(public_header
, packet
, buffer
, kMaxPacketSize
);
565 scoped_ptr
<char[]> large_buffer(new char[packet
.length()]);
566 rv
= ProcessDataPacket(public_header
, packet
, large_buffer
.get(),
568 LOG_IF(DFATAL
, rv
) << "QUIC should never successfully process packets "
569 << "larger than kMaxPacketSize. packet size:"
573 reader_
.reset(nullptr);
577 bool QuicFramer::ProcessVersionNegotiationPacket(
578 QuicPacketPublicHeader
* public_header
) {
579 DCHECK_EQ(Perspective::IS_CLIENT
, perspective_
);
580 // Try reading at least once to raise error if the packet is invalid.
583 if (!reader_
->ReadBytes(&version
, kQuicVersionSize
)) {
584 set_detailed_error("Unable to read supported version in negotiation.");
585 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET
);
587 public_header
->versions
.push_back(QuicTagToQuicVersion(version
));
588 } while (!reader_
->IsDoneReading());
590 visitor_
->OnVersionNegotiationPacket(*public_header
);
594 bool QuicFramer::ProcessDataPacket(const QuicPacketPublicHeader
& public_header
,
595 const QuicEncryptedPacket
& packet
,
596 char* decrypted_buffer
,
597 size_t buffer_length
) {
598 QuicPacketHeader
header(public_header
);
599 if (!ProcessPacketHeader(&header
, packet
, decrypted_buffer
, buffer_length
)) {
600 DLOG(WARNING
) << "Unable to process packet header. Stopping parsing.";
604 if (!visitor_
->OnPacketHeader(header
)) {
605 // The visitor suppresses further processing of the packet.
609 if (packet
.length() > kMaxPacketSize
) {
610 DLOG(WARNING
) << "Packet too large: " << packet
.length();
611 return RaiseError(QUIC_PACKET_TOO_LARGE
);
614 // Handle the payload.
615 if (!header
.fec_flag
) {
616 if (header
.is_in_fec_group
== IN_FEC_GROUP
) {
617 StringPiece payload
= reader_
->PeekRemainingPayload();
618 visitor_
->OnFecProtectedPayload(payload
);
620 if (!ProcessFrameData(header
)) {
621 DCHECK_NE(QUIC_NO_ERROR
, error_
); // ProcessFrameData sets the error.
622 DLOG(WARNING
) << "Unable to process frame data.";
626 QuicFecData fec_data
;
627 fec_data
.fec_group
= header
.fec_group
;
628 fec_data
.redundancy
= reader_
->ReadRemainingPayload();
629 visitor_
->OnFecData(fec_data
);
632 visitor_
->OnPacketComplete();
636 bool QuicFramer::ProcessPublicResetPacket(
637 const QuicPacketPublicHeader
& public_header
) {
638 QuicPublicResetPacket
packet(public_header
);
640 scoped_ptr
<CryptoHandshakeMessage
> reset(
641 CryptoFramer::ParseMessage(reader_
->ReadRemainingPayload()));
643 set_detailed_error("Unable to read reset message.");
644 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET
);
646 if (reset
->tag() != kPRST
) {
647 set_detailed_error("Incorrect message tag.");
648 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET
);
651 if (reset
->GetUint64(kRNON
, &packet
.nonce_proof
) != QUIC_NO_ERROR
) {
652 set_detailed_error("Unable to read nonce proof.");
653 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET
);
655 // TODO(satyamshekhar): validate nonce to protect against DoS.
657 if (reset
->GetUint64(kRSEQ
, &packet
.rejected_sequence_number
) !=
659 set_detailed_error("Unable to read rejected sequence number.");
660 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET
);
664 if (reset
->GetStringPiece(kCADR
, &address
)) {
665 QuicSocketAddressCoder address_coder
;
666 if (address_coder
.Decode(address
.data(), address
.length())) {
667 packet
.client_address
= IPEndPoint(address_coder
.ip(),
668 address_coder
.port());
672 visitor_
->OnPublicResetPacket(packet
);
676 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader
* header
,
677 StringPiece payload
) {
678 DCHECK(!reader_
.get());
680 visitor_
->OnRevivedPacket();
682 header
->entropy_hash
= GetPacketEntropyHash(*header
);
684 if (!visitor_
->OnPacketHeader(*header
)) {
688 if (payload
.length() > kMaxPacketSize
) {
689 set_detailed_error("Revived packet too large.");
690 return RaiseError(QUIC_PACKET_TOO_LARGE
);
693 reader_
.reset(new QuicDataReader(payload
.data(), payload
.length()));
694 if (!ProcessFrameData(*header
)) {
695 DCHECK_NE(QUIC_NO_ERROR
, error_
); // ProcessFrameData sets the error.
696 DLOG(WARNING
) << "Unable to process frame data.";
700 visitor_
->OnPacketComplete();
701 reader_
.reset(nullptr);
705 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader
& header
,
706 QuicDataWriter
* writer
) {
707 DVLOG(1) << "Appending header: " << header
;
708 DCHECK(header
.fec_group
> 0 || header
.is_in_fec_group
== NOT_IN_FEC_GROUP
);
709 uint8 public_flags
= 0;
710 if (header
.public_header
.reset_flag
) {
711 public_flags
|= PACKET_PUBLIC_FLAGS_RST
;
713 if (header
.public_header
.version_flag
) {
714 public_flags
|= PACKET_PUBLIC_FLAGS_VERSION
;
718 GetSequenceNumberFlags(header
.public_header
.sequence_number_length
)
719 << kPublicHeaderSequenceNumberShift
;
721 switch (header
.public_header
.connection_id_length
) {
722 case PACKET_0BYTE_CONNECTION_ID
:
723 if (!writer
->WriteUInt8(
724 public_flags
| PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID
)) {
728 case PACKET_1BYTE_CONNECTION_ID
:
729 if (!writer
->WriteUInt8(
730 public_flags
| PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID
)) {
733 if (!writer
->WriteUInt8(
734 header
.public_header
.connection_id
& k1ByteConnectionIdMask
)) {
738 case PACKET_4BYTE_CONNECTION_ID
:
739 if (!writer
->WriteUInt8(
740 public_flags
| PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID
)) {
743 if (!writer
->WriteUInt32(
744 header
.public_header
.connection_id
& k4ByteConnectionIdMask
)) {
748 case PACKET_8BYTE_CONNECTION_ID
:
749 if (!writer
->WriteUInt8(
750 public_flags
| PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID
)) {
753 if (!writer
->WriteUInt64(header
.public_header
.connection_id
)) {
758 last_serialized_connection_id_
= header
.public_header
.connection_id
;
760 if (header
.public_header
.version_flag
) {
761 DCHECK_EQ(Perspective::IS_CLIENT
, perspective_
);
762 QuicTag tag
= QuicVersionToQuicTag(quic_version_
);
763 writer
->WriteUInt32(tag
);
764 DVLOG(1) << "version = " << quic_version_
<< ", tag = '"
765 << QuicUtils::TagToString(tag
) << "'";
768 if (!AppendPacketSequenceNumber(header
.public_header
.sequence_number_length
,
769 header
.packet_sequence_number
, writer
)) {
773 uint8 private_flags
= 0;
774 if (header
.entropy_flag
) {
775 private_flags
|= PACKET_PRIVATE_FLAGS_ENTROPY
;
777 if (header
.is_in_fec_group
== IN_FEC_GROUP
) {
778 private_flags
|= PACKET_PRIVATE_FLAGS_FEC_GROUP
;
780 if (header
.fec_flag
) {
781 private_flags
|= PACKET_PRIVATE_FLAGS_FEC
;
783 if (!writer
->WriteUInt8(private_flags
)) {
787 // The FEC group number is the sequence number of the first fec
788 // protected packet, or 0 if this packet is not protected.
789 if (header
.is_in_fec_group
== IN_FEC_GROUP
) {
790 DCHECK_LE(header
.fec_group
, header
.packet_sequence_number
);
791 DCHECK_LT(header
.packet_sequence_number
- header
.fec_group
, 255u);
792 // Offset from the current packet sequence number to the first fec
794 uint8 first_fec_protected_packet_offset
=
795 static_cast<uint8
>(header
.packet_sequence_number
- header
.fec_group
);
796 if (!writer
->WriteBytes(&first_fec_protected_packet_offset
, 1)) {
804 const QuicTime::Delta
QuicFramer::CalculateTimestampFromWire(
805 uint32 time_delta_us
) {
806 // The new time_delta might have wrapped to the next epoch, or it
807 // might have reverse wrapped to the previous epoch, or it might
808 // remain in the same epoch. Select the time closest to the previous
811 // epoch_delta is the delta between epochs. A delta is 4 bytes of
813 const uint64 epoch_delta
= GG_UINT64_C(1) << 32;
814 uint64 epoch
= last_timestamp_
.ToMicroseconds() & ~(epoch_delta
- 1);
815 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
816 uint64 prev_epoch
= epoch
- epoch_delta
;
817 uint64 next_epoch
= epoch
+ epoch_delta
;
819 uint64 time
= ClosestTo(last_timestamp_
.ToMicroseconds(),
820 epoch
+ time_delta_us
,
821 ClosestTo(last_timestamp_
.ToMicroseconds(),
822 prev_epoch
+ time_delta_us
,
823 next_epoch
+ time_delta_us
));
825 return QuicTime::Delta::FromMicroseconds(time
);
828 QuicPacketSequenceNumber
QuicFramer::CalculatePacketSequenceNumberFromWire(
829 QuicSequenceNumberLength sequence_number_length
,
830 QuicPacketSequenceNumber packet_sequence_number
) const {
831 // The new sequence number might have wrapped to the next epoch, or
832 // it might have reverse wrapped to the previous epoch, or it might
833 // remain in the same epoch. Select the sequence number closest to the
834 // next expected sequence number, the previous sequence number plus 1.
836 // epoch_delta is the delta between epochs the sequence number was serialized
837 // with, so the correct value is likely the same epoch as the last sequence
838 // number or an adjacent epoch.
839 const QuicPacketSequenceNumber epoch_delta
=
840 GG_UINT64_C(1) << (8 * sequence_number_length
);
841 QuicPacketSequenceNumber next_sequence_number
= last_sequence_number_
+ 1;
842 QuicPacketSequenceNumber epoch
= last_sequence_number_
& ~(epoch_delta
- 1);
843 QuicPacketSequenceNumber prev_epoch
= epoch
- epoch_delta
;
844 QuicPacketSequenceNumber next_epoch
= epoch
+ epoch_delta
;
846 return ClosestTo(next_sequence_number
,
847 epoch
+ packet_sequence_number
,
848 ClosestTo(next_sequence_number
,
849 prev_epoch
+ packet_sequence_number
,
850 next_epoch
+ packet_sequence_number
));
853 bool QuicFramer::ProcessPublicHeader(
854 QuicPacketPublicHeader
* public_header
) {
856 if (!reader_
->ReadBytes(&public_flags
, 1)) {
857 set_detailed_error("Unable to read public flags.");
861 public_header
->reset_flag
= (public_flags
& PACKET_PUBLIC_FLAGS_RST
) != 0;
862 public_header
->version_flag
=
863 (public_flags
& PACKET_PUBLIC_FLAGS_VERSION
) != 0;
865 if (validate_flags_
&&
866 !public_header
->version_flag
&& public_flags
> PACKET_PUBLIC_FLAGS_MAX
) {
867 set_detailed_error("Illegal public flags value.");
871 if (public_header
->reset_flag
&& public_header
->version_flag
) {
872 set_detailed_error("Got version flag in reset packet");
876 switch (public_flags
& PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID
) {
877 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID
:
878 if (!reader_
->ReadUInt64(&public_header
->connection_id
)) {
879 set_detailed_error("Unable to read ConnectionId.");
882 public_header
->connection_id_length
= PACKET_8BYTE_CONNECTION_ID
;
884 case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID
:
885 // If the connection_id is truncated, expect to read the last serialized
887 if (!reader_
->ReadBytes(&public_header
->connection_id
,
888 PACKET_4BYTE_CONNECTION_ID
)) {
889 set_detailed_error("Unable to read ConnectionId.");
892 if (last_serialized_connection_id_
&&
893 (public_header
->connection_id
& k4ByteConnectionIdMask
) !=
894 (last_serialized_connection_id_
& k4ByteConnectionIdMask
)) {
895 set_detailed_error("Truncated 4 byte ConnectionId does not match "
896 "previous connection_id.");
899 public_header
->connection_id_length
= PACKET_4BYTE_CONNECTION_ID
;
900 public_header
->connection_id
= last_serialized_connection_id_
;
902 case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID
:
903 if (!reader_
->ReadBytes(&public_header
->connection_id
,
904 PACKET_1BYTE_CONNECTION_ID
)) {
905 set_detailed_error("Unable to read ConnectionId.");
908 if (last_serialized_connection_id_
&&
909 (public_header
->connection_id
& k1ByteConnectionIdMask
) !=
910 (last_serialized_connection_id_
& k1ByteConnectionIdMask
)) {
911 set_detailed_error("Truncated 1 byte ConnectionId does not match "
912 "previous connection_id.");
915 public_header
->connection_id_length
= PACKET_1BYTE_CONNECTION_ID
;
916 public_header
->connection_id
= last_serialized_connection_id_
;
918 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID
:
919 public_header
->connection_id_length
= PACKET_0BYTE_CONNECTION_ID
;
920 public_header
->connection_id
= last_serialized_connection_id_
;
924 public_header
->sequence_number_length
=
925 ReadSequenceNumberLength(
926 public_flags
>> kPublicHeaderSequenceNumberShift
);
928 // Read the version only if the packet is from the client.
929 // version flag from the server means version negotiation packet.
930 if (public_header
->version_flag
&& perspective_
== Perspective::IS_SERVER
) {
932 if (!reader_
->ReadUInt32(&version_tag
)) {
933 set_detailed_error("Unable to read protocol version.");
937 // If the version from the new packet is the same as the version of this
938 // framer, then the public flags should be set to something we understand.
939 // If not, this raises an error.
940 QuicVersion version
= QuicTagToQuicVersion(version_tag
);
941 if (version
== quic_version_
&& public_flags
> PACKET_PUBLIC_FLAGS_MAX
) {
942 set_detailed_error("Illegal public flags value.");
945 public_header
->versions
.push_back(version
);
951 QuicSequenceNumberLength
QuicFramer::GetMinSequenceNumberLength(
952 QuicPacketSequenceNumber sequence_number
) {
953 if (sequence_number
< 1 << (PACKET_1BYTE_SEQUENCE_NUMBER
* 8)) {
954 return PACKET_1BYTE_SEQUENCE_NUMBER
;
955 } else if (sequence_number
< 1 << (PACKET_2BYTE_SEQUENCE_NUMBER
* 8)) {
956 return PACKET_2BYTE_SEQUENCE_NUMBER
;
957 } else if (sequence_number
<
958 GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER
* 8)) {
959 return PACKET_4BYTE_SEQUENCE_NUMBER
;
961 return PACKET_6BYTE_SEQUENCE_NUMBER
;
966 uint8
QuicFramer::GetSequenceNumberFlags(
967 QuicSequenceNumberLength sequence_number_length
) {
968 switch (sequence_number_length
) {
969 case PACKET_1BYTE_SEQUENCE_NUMBER
:
970 return PACKET_FLAGS_1BYTE_SEQUENCE
;
971 case PACKET_2BYTE_SEQUENCE_NUMBER
:
972 return PACKET_FLAGS_2BYTE_SEQUENCE
;
973 case PACKET_4BYTE_SEQUENCE_NUMBER
:
974 return PACKET_FLAGS_4BYTE_SEQUENCE
;
975 case PACKET_6BYTE_SEQUENCE_NUMBER
:
976 return PACKET_FLAGS_6BYTE_SEQUENCE
;
978 LOG(DFATAL
) << "Unreachable case statement.";
979 return PACKET_FLAGS_6BYTE_SEQUENCE
;
984 QuicFramer::AckFrameInfo
QuicFramer::GetAckFrameInfo(
985 const QuicAckFrame
& frame
) {
986 AckFrameInfo ack_info
;
987 if (frame
.missing_packets
.empty()) {
990 DCHECK_GE(frame
.largest_observed
, *frame
.missing_packets
.rbegin());
991 size_t cur_range_length
= 0;
992 SequenceNumberSet::const_iterator iter
= frame
.missing_packets
.begin();
993 QuicPacketSequenceNumber last_missing
= *iter
;
995 for (; iter
!= frame
.missing_packets
.end(); ++iter
) {
996 if (cur_range_length
< numeric_limits
<uint8
>::max() &&
997 *iter
== (last_missing
+ 1)) {
1000 ack_info
.nack_ranges
[last_missing
- cur_range_length
] =
1001 static_cast<uint8
>(cur_range_length
);
1002 cur_range_length
= 0;
1004 ack_info
.max_delta
= max(ack_info
.max_delta
, *iter
- last_missing
);
1005 last_missing
= *iter
;
1007 // Include the last nack range.
1008 ack_info
.nack_ranges
[last_missing
- cur_range_length
] =
1009 static_cast<uint8
>(cur_range_length
);
1010 // Include the range to the largest observed.
1011 ack_info
.max_delta
=
1012 max(ack_info
.max_delta
, frame
.largest_observed
- last_missing
);
1016 bool QuicFramer::ProcessPacketHeader(QuicPacketHeader
* header
,
1017 const QuicEncryptedPacket
& packet
,
1018 char* decrypted_buffer
,
1019 size_t buffer_length
) {
1020 if (!ProcessPacketSequenceNumber(header
->public_header
.sequence_number_length
,
1021 &header
->packet_sequence_number
)) {
1022 set_detailed_error("Unable to read sequence number.");
1023 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
1026 if (header
->packet_sequence_number
== 0u) {
1027 set_detailed_error("Packet sequence numbers cannot be 0.");
1028 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
1031 if (!visitor_
->OnUnauthenticatedHeader(*header
)) {
1035 if (!DecryptPayload(*header
, packet
, decrypted_buffer
, buffer_length
)) {
1036 set_detailed_error("Unable to decrypt payload.");
1037 return RaiseError(QUIC_DECRYPTION_FAILURE
);
1040 uint8 private_flags
;
1041 if (!reader_
->ReadBytes(&private_flags
, 1)) {
1042 set_detailed_error("Unable to read private flags.");
1043 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
1046 if (private_flags
> PACKET_PRIVATE_FLAGS_MAX
) {
1047 set_detailed_error("Illegal private flags value.");
1048 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
1051 header
->entropy_flag
= (private_flags
& PACKET_PRIVATE_FLAGS_ENTROPY
) != 0;
1052 header
->fec_flag
= (private_flags
& PACKET_PRIVATE_FLAGS_FEC
) != 0;
1054 if ((private_flags
& PACKET_PRIVATE_FLAGS_FEC_GROUP
) != 0) {
1055 header
->is_in_fec_group
= IN_FEC_GROUP
;
1056 uint8 first_fec_protected_packet_offset
;
1057 if (!reader_
->ReadBytes(&first_fec_protected_packet_offset
, 1)) {
1058 set_detailed_error("Unable to read first fec protected packet offset.");
1059 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
1061 if (first_fec_protected_packet_offset
>= header
->packet_sequence_number
) {
1062 set_detailed_error("First fec protected packet offset must be less "
1063 "than the sequence number.");
1064 return RaiseError(QUIC_INVALID_PACKET_HEADER
);
1067 header
->packet_sequence_number
- first_fec_protected_packet_offset
;
1070 header
->entropy_hash
= GetPacketEntropyHash(*header
);
1071 // Set the last sequence number after we have decrypted the packet
1072 // so we are confident is not attacker controlled.
1073 last_sequence_number_
= header
->packet_sequence_number
;
1077 bool QuicFramer::ProcessPacketSequenceNumber(
1078 QuicSequenceNumberLength sequence_number_length
,
1079 QuicPacketSequenceNumber
* sequence_number
) {
1080 QuicPacketSequenceNumber wire_sequence_number
= 0u;
1081 if (!reader_
->ReadBytes(&wire_sequence_number
, sequence_number_length
)) {
1085 // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1086 // in case the first guess is incorrect.
1088 CalculatePacketSequenceNumberFromWire(sequence_number_length
,
1089 wire_sequence_number
);
1093 bool QuicFramer::ProcessFrameData(const QuicPacketHeader
& header
) {
1094 if (reader_
->IsDoneReading()) {
1095 set_detailed_error("Packet has no frames.");
1096 return RaiseError(QUIC_MISSING_PAYLOAD
);
1098 while (!reader_
->IsDoneReading()) {
1100 if (!reader_
->ReadBytes(&frame_type
, 1)) {
1101 set_detailed_error("Unable to read frame type.");
1102 return RaiseError(QUIC_INVALID_FRAME_DATA
);
1105 if (frame_type
& kQuicFrameTypeSpecialMask
) {
1107 if (frame_type
& kQuicFrameTypeStreamMask
) {
1108 QuicStreamFrame frame
;
1109 if (!ProcessStreamFrame(frame_type
, &frame
)) {
1110 return RaiseError(QUIC_INVALID_STREAM_DATA
);
1112 if (!visitor_
->OnStreamFrame(frame
)) {
1113 DVLOG(1) << "Visitor asked to stop further processing.";
1114 // Returning true since there was no parsing error.
1121 if (frame_type
& kQuicFrameTypeAckMask
) {
1123 if (!ProcessAckFrame(frame_type
, &frame
)) {
1124 return RaiseError(QUIC_INVALID_ACK_DATA
);
1126 if (!visitor_
->OnAckFrame(frame
)) {
1127 DVLOG(1) << "Visitor asked to stop further processing.";
1128 // Returning true since there was no parsing error.
1134 // This was a special frame type that did not match any
1135 // of the known ones. Error.
1136 set_detailed_error("Illegal frame type.");
1137 DLOG(WARNING
) << "Illegal frame type: "
1138 << static_cast<int>(frame_type
);
1139 return RaiseError(QUIC_INVALID_FRAME_DATA
);
1142 switch (frame_type
) {
1144 // We're done with the packet.
1147 case RST_STREAM_FRAME
: {
1148 QuicRstStreamFrame frame
;
1149 if (!ProcessRstStreamFrame(&frame
)) {
1150 return RaiseError(QUIC_INVALID_RST_STREAM_DATA
);
1152 if (!visitor_
->OnRstStreamFrame(frame
)) {
1153 DVLOG(1) << "Visitor asked to stop further processing.";
1154 // Returning true since there was no parsing error.
1160 case CONNECTION_CLOSE_FRAME
: {
1161 QuicConnectionCloseFrame frame
;
1162 if (!ProcessConnectionCloseFrame(&frame
)) {
1163 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA
);
1166 if (!visitor_
->OnConnectionCloseFrame(frame
)) {
1167 DVLOG(1) << "Visitor asked to stop further processing.";
1168 // Returning true since there was no parsing error.
1174 case GOAWAY_FRAME
: {
1175 QuicGoAwayFrame goaway_frame
;
1176 if (!ProcessGoAwayFrame(&goaway_frame
)) {
1177 return RaiseError(QUIC_INVALID_GOAWAY_DATA
);
1179 if (!visitor_
->OnGoAwayFrame(goaway_frame
)) {
1180 DVLOG(1) << "Visitor asked to stop further processing.";
1181 // Returning true since there was no parsing error.
1187 case WINDOW_UPDATE_FRAME
: {
1188 QuicWindowUpdateFrame window_update_frame
;
1189 if (!ProcessWindowUpdateFrame(&window_update_frame
)) {
1190 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA
);
1192 if (!visitor_
->OnWindowUpdateFrame(window_update_frame
)) {
1193 DVLOG(1) << "Visitor asked to stop further processing.";
1194 // Returning true since there was no parsing error.
1200 case BLOCKED_FRAME
: {
1201 QuicBlockedFrame blocked_frame
;
1202 if (!ProcessBlockedFrame(&blocked_frame
)) {
1203 return RaiseError(QUIC_INVALID_BLOCKED_DATA
);
1205 if (!visitor_
->OnBlockedFrame(blocked_frame
)) {
1206 DVLOG(1) << "Visitor asked to stop further processing.";
1207 // Returning true since there was no parsing error.
1213 case STOP_WAITING_FRAME
: {
1214 QuicStopWaitingFrame stop_waiting_frame
;
1215 if (!ProcessStopWaitingFrame(header
, &stop_waiting_frame
)) {
1216 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA
);
1218 if (!visitor_
->OnStopWaitingFrame(stop_waiting_frame
)) {
1219 DVLOG(1) << "Visitor asked to stop further processing.";
1220 // Returning true since there was no parsing error.
1226 // Ping has no payload.
1227 QuicPingFrame ping_frame
;
1228 if (!visitor_
->OnPingFrame(ping_frame
)) {
1229 DVLOG(1) << "Visitor asked to stop further processing.";
1230 // Returning true since there was no parsing error.
1237 set_detailed_error("Illegal frame type.");
1238 DLOG(WARNING
) << "Illegal frame type: "
1239 << static_cast<int>(frame_type
);
1240 return RaiseError(QUIC_INVALID_FRAME_DATA
);
1247 bool QuicFramer::ProcessStreamFrame(uint8 frame_type
,
1248 QuicStreamFrame
* frame
) {
1249 uint8 stream_flags
= frame_type
;
1251 stream_flags
&= ~kQuicFrameTypeStreamMask
;
1253 // Read from right to left: StreamID, Offset, Data Length, Fin.
1254 const uint8 stream_id_length
= (stream_flags
& kQuicStreamIDLengthMask
) + 1;
1255 stream_flags
>>= kQuicStreamIdShift
;
1257 uint8 offset_length
= (stream_flags
& kQuicStreamOffsetMask
);
1258 // There is no encoding for 1 byte, only 0 and 2 through 8.
1259 if (offset_length
> 0) {
1262 stream_flags
>>= kQuicStreamOffsetShift
;
1264 bool has_data_length
=
1265 (stream_flags
& kQuicStreamDataLengthMask
) == kQuicStreamDataLengthMask
;
1266 stream_flags
>>= kQuicStreamDataLengthShift
;
1268 frame
->fin
= (stream_flags
& kQuicStreamFinMask
) == kQuicStreamFinShift
;
1270 frame
->stream_id
= 0;
1271 if (!reader_
->ReadBytes(&frame
->stream_id
, stream_id_length
)) {
1272 set_detailed_error("Unable to read stream_id.");
1277 if (!reader_
->ReadBytes(&frame
->offset
, offset_length
)) {
1278 set_detailed_error("Unable to read offset.");
1282 StringPiece frame_data
;
1283 if (has_data_length
) {
1284 if (!reader_
->ReadStringPiece16(&frame_data
)) {
1285 set_detailed_error("Unable to read frame data.");
1289 if (!reader_
->ReadStringPiece(&frame_data
, reader_
->BytesRemaining())) {
1290 set_detailed_error("Unable to read frame data.");
1294 // Point frame to the right data.
1295 frame
->data
.Clear();
1296 if (!frame_data
.empty()) {
1297 frame
->data
.Append(const_cast<char*>(frame_data
.data()), frame_data
.size());
1303 bool QuicFramer::ProcessAckFrame(uint8 frame_type
, QuicAckFrame
* ack_frame
) {
1304 // Determine the three lengths from the frame type: largest observed length,
1305 // missing sequence number length, and missing range length.
1306 const QuicSequenceNumberLength missing_sequence_number_length
=
1307 ReadSequenceNumberLength(frame_type
);
1308 frame_type
>>= kQuicSequenceNumberLengthShift
;
1309 const QuicSequenceNumberLength largest_observed_sequence_number_length
=
1310 ReadSequenceNumberLength(frame_type
);
1311 frame_type
>>= kQuicSequenceNumberLengthShift
;
1312 ack_frame
->is_truncated
= frame_type
& kQuicAckTruncatedMask
;
1313 frame_type
>>= kQuicAckTruncatedShift
;
1314 bool has_nacks
= frame_type
& kQuicHasNacksMask
;
1316 if (!reader_
->ReadBytes(&ack_frame
->entropy_hash
, 1)) {
1317 set_detailed_error("Unable to read entropy hash for received packets.");
1321 if (!reader_
->ReadBytes(&ack_frame
->largest_observed
,
1322 largest_observed_sequence_number_length
)) {
1323 set_detailed_error("Unable to read largest observed.");
1327 uint64 delta_time_largest_observed_us
;
1328 if (!reader_
->ReadUFloat16(&delta_time_largest_observed_us
)) {
1329 set_detailed_error("Unable to read delta time largest observed.");
1333 if (delta_time_largest_observed_us
== kUFloat16MaxValue
) {
1334 ack_frame
->delta_time_largest_observed
= QuicTime::Delta::Infinite();
1336 ack_frame
->delta_time_largest_observed
=
1337 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us
);
1340 if (!ProcessTimestampsInAckFrame(ack_frame
)) {
1348 uint8 num_missing_ranges
;
1349 if (!reader_
->ReadBytes(&num_missing_ranges
, 1)) {
1350 set_detailed_error("Unable to read num missing packet ranges.");
1354 QuicPacketSequenceNumber last_sequence_number
= ack_frame
->largest_observed
;
1355 for (size_t i
= 0; i
< num_missing_ranges
; ++i
) {
1356 QuicPacketSequenceNumber missing_delta
= 0;
1357 if (!reader_
->ReadBytes(&missing_delta
, missing_sequence_number_length
)) {
1358 set_detailed_error("Unable to read missing sequence number delta.");
1361 last_sequence_number
-= missing_delta
;
1362 QuicPacketSequenceNumber range_length
= 0;
1363 if (!reader_
->ReadBytes(&range_length
, PACKET_1BYTE_SEQUENCE_NUMBER
)) {
1364 set_detailed_error("Unable to read missing sequence number range.");
1367 for (size_t j
= 0; j
<= range_length
; ++j
) {
1368 ack_frame
->missing_packets
.insert(last_sequence_number
- j
);
1370 // Subtract an extra 1 to ensure ranges are represented efficiently and
1371 // can't overlap by 1 sequence number. This allows a missing_delta of 0
1372 // to represent an adjacent nack range.
1373 last_sequence_number
-= (range_length
+ 1);
1376 // Parse the revived packets list.
1377 uint8 num_revived_packets
;
1378 if (!reader_
->ReadBytes(&num_revived_packets
, 1)) {
1379 set_detailed_error("Unable to read num revived packets.");
1383 for (size_t i
= 0; i
< num_revived_packets
; ++i
) {
1384 QuicPacketSequenceNumber revived_packet
= 0;
1385 if (!reader_
->ReadBytes(&revived_packet
,
1386 largest_observed_sequence_number_length
)) {
1387 set_detailed_error("Unable to read revived packet.");
1391 ack_frame
->revived_packets
.insert(revived_packet
);
1397 bool QuicFramer::ProcessTimestampsInAckFrame(QuicAckFrame
* ack_frame
) {
1398 if (ack_frame
->is_truncated
) {
1401 uint8 num_received_packets
;
1402 if (!reader_
->ReadBytes(&num_received_packets
, 1)) {
1403 set_detailed_error("Unable to read num received packets.");
1407 if (num_received_packets
> 0) {
1408 uint8 delta_from_largest_observed
;
1409 if (!reader_
->ReadBytes(&delta_from_largest_observed
,
1410 PACKET_1BYTE_SEQUENCE_NUMBER
)) {
1411 set_detailed_error("Unable to read sequence delta in received packets.");
1414 QuicPacketSequenceNumber seq_num
=
1415 ack_frame
->largest_observed
- delta_from_largest_observed
;
1417 // Time delta from the framer creation.
1418 uint32 time_delta_us
;
1419 if (!reader_
->ReadBytes(&time_delta_us
, sizeof(time_delta_us
))) {
1420 set_detailed_error("Unable to read time delta in received packets.");
1424 last_timestamp_
= CalculateTimestampFromWire(time_delta_us
);
1426 ack_frame
->received_packet_times
.push_back(
1427 std::make_pair(seq_num
, creation_time_
.Add(last_timestamp_
)));
1429 for (uint8 i
= 1; i
< num_received_packets
; ++i
) {
1430 if (!reader_
->ReadBytes(&delta_from_largest_observed
,
1431 PACKET_1BYTE_SEQUENCE_NUMBER
)) {
1433 "Unable to read sequence delta in received packets.");
1436 seq_num
= ack_frame
->largest_observed
- delta_from_largest_observed
;
1438 // Time delta from the previous timestamp.
1439 uint64 incremental_time_delta_us
;
1440 if (!reader_
->ReadUFloat16(&incremental_time_delta_us
)) {
1442 "Unable to read incremental time delta in received packets.");
1446 last_timestamp_
= last_timestamp_
.Add(
1447 QuicTime::Delta::FromMicroseconds(incremental_time_delta_us
));
1448 ack_frame
->received_packet_times
.push_back(
1449 std::make_pair(seq_num
, creation_time_
.Add(last_timestamp_
)));
1455 bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader
& header
,
1456 QuicStopWaitingFrame
* stop_waiting
) {
1457 if (!reader_
->ReadBytes(&stop_waiting
->entropy_hash
, 1)) {
1458 set_detailed_error("Unable to read entropy hash for sent packets.");
1462 QuicPacketSequenceNumber least_unacked_delta
= 0;
1463 if (!reader_
->ReadBytes(&least_unacked_delta
,
1464 header
.public_header
.sequence_number_length
)) {
1465 set_detailed_error("Unable to read least unacked delta.");
1468 DCHECK_GE(header
.packet_sequence_number
, least_unacked_delta
);
1469 stop_waiting
->least_unacked
=
1470 header
.packet_sequence_number
- least_unacked_delta
;
1475 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame
* frame
) {
1476 if (!reader_
->ReadUInt32(&frame
->stream_id
)) {
1477 set_detailed_error("Unable to read stream_id.");
1481 if (!reader_
->ReadUInt64(&frame
->byte_offset
)) {
1482 set_detailed_error("Unable to read rst stream sent byte offset.");
1487 if (!reader_
->ReadUInt32(&error_code
)) {
1488 set_detailed_error("Unable to read rst stream error code.");
1492 if (error_code
>= QUIC_STREAM_LAST_ERROR
) {
1493 set_detailed_error("Invalid rst stream error code.");
1497 frame
->error_code
= static_cast<QuicRstStreamErrorCode
>(error_code
);
1498 if (quic_version_
<= QUIC_VERSION_24
) {
1499 StringPiece error_details
;
1500 if (!reader_
->ReadStringPiece16(&error_details
)) {
1501 set_detailed_error("Unable to read rst stream error details.");
1504 frame
->error_details
= error_details
.as_string();
1510 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame
* frame
) {
1512 if (!reader_
->ReadUInt32(&error_code
)) {
1513 set_detailed_error("Unable to read connection close error code.");
1517 if (error_code
>= QUIC_LAST_ERROR
) {
1518 set_detailed_error("Invalid error code.");
1522 frame
->error_code
= static_cast<QuicErrorCode
>(error_code
);
1524 StringPiece error_details
;
1525 if (!reader_
->ReadStringPiece16(&error_details
)) {
1526 set_detailed_error("Unable to read connection close error details.");
1529 frame
->error_details
= error_details
.as_string();
1534 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame
* frame
) {
1536 if (!reader_
->ReadUInt32(&error_code
)) {
1537 set_detailed_error("Unable to read go away error code.");
1540 frame
->error_code
= static_cast<QuicErrorCode
>(error_code
);
1542 if (error_code
>= QUIC_LAST_ERROR
) {
1543 set_detailed_error("Invalid error code.");
1548 if (!reader_
->ReadUInt32(&stream_id
)) {
1549 set_detailed_error("Unable to read last good stream id.");
1552 frame
->last_good_stream_id
= static_cast<QuicStreamId
>(stream_id
);
1554 StringPiece reason_phrase
;
1555 if (!reader_
->ReadStringPiece16(&reason_phrase
)) {
1556 set_detailed_error("Unable to read goaway reason.");
1559 frame
->reason_phrase
= reason_phrase
.as_string();
1564 bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame
* frame
) {
1565 if (!reader_
->ReadUInt32(&frame
->stream_id
)) {
1566 set_detailed_error("Unable to read stream_id.");
1570 if (!reader_
->ReadUInt64(&frame
->byte_offset
)) {
1571 set_detailed_error("Unable to read window byte_offset.");
1578 bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame
* frame
) {
1579 if (!reader_
->ReadUInt32(&frame
->stream_id
)) {
1580 set_detailed_error("Unable to read stream_id.");
1588 StringPiece
QuicFramer::GetAssociatedDataFromEncryptedPacket(
1589 const QuicEncryptedPacket
& encrypted
,
1590 QuicConnectionIdLength connection_id_length
,
1591 bool includes_version
,
1592 QuicSequenceNumberLength sequence_number_length
) {
1594 encrypted
.data() + kStartOfHashData
, GetStartOfEncryptedData(
1595 connection_id_length
, includes_version
, sequence_number_length
)
1596 - kStartOfHashData
);
1599 void QuicFramer::SetDecrypter(QuicDecrypter
* decrypter
,
1600 EncryptionLevel level
) {
1601 DCHECK(alternative_decrypter_
.get() == nullptr);
1602 DCHECK_GE(level
, decrypter_level_
);
1603 decrypter_
.reset(decrypter
);
1604 decrypter_level_
= level
;
1607 void QuicFramer::SetAlternativeDecrypter(QuicDecrypter
* decrypter
,
1608 EncryptionLevel level
,
1609 bool latch_once_used
) {
1610 alternative_decrypter_
.reset(decrypter
);
1611 alternative_decrypter_level_
= level
;
1612 alternative_decrypter_latch_
= latch_once_used
;
1615 const QuicDecrypter
* QuicFramer::decrypter() const {
1616 return decrypter_
.get();
1619 const QuicDecrypter
* QuicFramer::alternative_decrypter() const {
1620 return alternative_decrypter_
.get();
1623 void QuicFramer::SetEncrypter(EncryptionLevel level
,
1624 QuicEncrypter
* encrypter
) {
1625 DCHECK_GE(level
, 0);
1626 DCHECK_LT(level
, NUM_ENCRYPTION_LEVELS
);
1627 encrypter_
[level
].reset(encrypter
);
1630 QuicEncryptedPacket
* QuicFramer::EncryptPacket(
1631 EncryptionLevel level
,
1632 QuicPacketSequenceNumber packet_sequence_number
,
1633 const QuicPacket
& packet
,
1635 size_t buffer_len
) {
1636 DCHECK(encrypter_
[level
].get() != nullptr);
1638 const size_t encrypted_len
=
1639 encrypter_
[level
]->GetCiphertextSize(packet
.Plaintext().length());
1640 StringPiece header_data
= packet
.BeforePlaintext();
1641 const size_t total_len
= header_data
.length() + encrypted_len
;
1643 char* encryption_buffer
= buffer
;
1644 // Allocate a large enough buffer for the header and the encrypted data.
1645 const bool is_new_buffer
= total_len
> buffer_len
;
1646 if (is_new_buffer
) {
1647 if (!FLAGS_quic_allow_oversized_packets_for_test
) {
1648 LOG(DFATAL
) << "Buffer of length:" << buffer_len
1649 << " is not large enough to encrypt length " << total_len
;
1652 encryption_buffer
= new char[total_len
];
1654 // Copy in the header, because the encrypter only populates the encrypted
1655 // plaintext content.
1656 memcpy(encryption_buffer
, header_data
.data(), header_data
.length());
1657 // Encrypt the plaintext into the buffer.
1658 size_t output_length
= 0;
1659 if (!encrypter_
[level
]->EncryptPacket(
1660 packet_sequence_number
, packet
.AssociatedData(), packet
.Plaintext(),
1661 encryption_buffer
+ header_data
.length(), &output_length
,
1663 RaiseError(QUIC_ENCRYPTION_FAILURE
);
1667 return new QuicEncryptedPacket(
1668 encryption_buffer
, header_data
.length() + output_length
, is_new_buffer
);
1671 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size
) {
1672 // In order to keep the code simple, we don't have the current encryption
1673 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1674 size_t min_plaintext_size
= ciphertext_size
;
1676 for (int i
= ENCRYPTION_NONE
; i
< NUM_ENCRYPTION_LEVELS
; i
++) {
1677 if (encrypter_
[i
].get() != nullptr) {
1678 size_t size
= encrypter_
[i
]->GetMaxPlaintextSize(ciphertext_size
);
1679 if (size
< min_plaintext_size
) {
1680 min_plaintext_size
= size
;
1685 return min_plaintext_size
;
1688 bool QuicFramer::DecryptPayload(const QuicPacketHeader
& header
,
1689 const QuicEncryptedPacket
& packet
,
1690 char* decrypted_buffer
,
1691 size_t buffer_length
) {
1692 StringPiece encrypted
= reader_
->ReadRemainingPayload();
1693 DCHECK(decrypter_
.get() != nullptr);
1694 const StringPiece
& associated_data
= GetAssociatedDataFromEncryptedPacket(
1695 packet
, header
.public_header
.connection_id_length
,
1696 header
.public_header
.version_flag
,
1697 header
.public_header
.sequence_number_length
);
1698 size_t decrypted_length
= 0;
1699 bool success
= decrypter_
->DecryptPacket(
1700 header
.packet_sequence_number
, associated_data
, encrypted
,
1701 decrypted_buffer
, &decrypted_length
, buffer_length
);
1703 visitor_
->OnDecryptedPacket(decrypter_level_
);
1704 } else if (alternative_decrypter_
.get() != nullptr) {
1705 success
= alternative_decrypter_
->DecryptPacket(
1706 header
.packet_sequence_number
, associated_data
, encrypted
,
1707 decrypted_buffer
, &decrypted_length
, buffer_length
);
1709 visitor_
->OnDecryptedPacket(alternative_decrypter_level_
);
1710 if (alternative_decrypter_latch_
) {
1711 // Switch to the alternative decrypter and latch so that we cannot
1713 decrypter_
.reset(alternative_decrypter_
.release());
1714 decrypter_level_
= alternative_decrypter_level_
;
1715 alternative_decrypter_level_
= ENCRYPTION_NONE
;
1717 // Switch the alternative decrypter so that we use it first next time.
1718 decrypter_
.swap(alternative_decrypter_
);
1719 EncryptionLevel level
= alternative_decrypter_level_
;
1720 alternative_decrypter_level_
= decrypter_level_
;
1721 decrypter_level_
= level
;
1727 DLOG(WARNING
) << "DecryptPacket failed for sequence_number:"
1728 << header
.packet_sequence_number
;
1732 reader_
.reset(new QuicDataReader(decrypted_buffer
, decrypted_length
));
1736 size_t QuicFramer::GetAckFrameSize(
1737 const QuicAckFrame
& ack
,
1738 QuicSequenceNumberLength sequence_number_length
) {
1739 AckFrameInfo ack_info
= GetAckFrameInfo(ack
);
1740 QuicSequenceNumberLength largest_observed_length
=
1741 GetMinSequenceNumberLength(ack
.largest_observed
);
1742 QuicSequenceNumberLength missing_sequence_number_length
=
1743 GetMinSequenceNumberLength(ack_info
.max_delta
);
1745 size_t ack_size
= GetMinAckFrameSize(sequence_number_length
,
1746 largest_observed_length
);
1747 if (!ack_info
.nack_ranges
.empty()) {
1748 ack_size
+= kNumberOfNackRangesSize
+ kNumberOfRevivedPacketsSize
;
1749 ack_size
+= min(ack_info
.nack_ranges
.size(), kMaxNackRanges
) *
1750 (missing_sequence_number_length
+ PACKET_1BYTE_SEQUENCE_NUMBER
);
1751 ack_size
+= min(ack
.revived_packets
.size(),
1752 kMaxRevivedPackets
) * largest_observed_length
;
1755 // In version 23, if the ack will be truncated due to too many nack ranges,
1756 // then do not include the number of timestamps (1 byte).
1757 if (ack_info
.nack_ranges
.size() <= kMaxNackRanges
) {
1758 // 1 byte for the number of timestamps.
1760 if (ack
.received_packet_times
.size() > 0) {
1761 // 1 byte for sequence number, 4 bytes for timestamp for the first
1765 // 1 byte for sequence number, 2 bytes for timestamp for the other
1767 ack_size
+= 3 * (ack
.received_packet_times
.size() - 1);
1774 size_t QuicFramer::ComputeFrameLength(
1775 const QuicFrame
& frame
,
1776 bool last_frame_in_packet
,
1777 InFecGroup is_in_fec_group
,
1778 QuicSequenceNumberLength sequence_number_length
) {
1779 switch (frame
.type
) {
1781 return GetMinStreamFrameSize(frame
.stream_frame
->stream_id
,
1782 frame
.stream_frame
->offset
,
1783 last_frame_in_packet
,
1785 frame
.stream_frame
->data
.TotalBufferSize();
1787 return GetAckFrameSize(*frame
.ack_frame
, sequence_number_length
);
1789 case STOP_WAITING_FRAME
:
1790 return GetStopWaitingFrameSize(sequence_number_length
);
1792 // Ping has no payload.
1793 return kQuicFrameTypeSize
;
1794 case RST_STREAM_FRAME
:
1795 if (quic_version_
<= QUIC_VERSION_24
) {
1796 return GetMinRstStreamFrameSize() +
1797 frame
.rst_stream_frame
->error_details
.size();
1799 return GetRstStreamFrameSize();
1800 case CONNECTION_CLOSE_FRAME
:
1801 return GetMinConnectionCloseFrameSize() +
1802 frame
.connection_close_frame
->error_details
.size();
1804 return GetMinGoAwayFrameSize() + frame
.goaway_frame
->reason_phrase
.size();
1805 case WINDOW_UPDATE_FRAME
:
1806 return GetWindowUpdateFrameSize();
1808 return GetBlockedFrameSize();
1812 case NUM_FRAME_TYPES
:
1817 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1822 bool QuicFramer::AppendTypeByte(const QuicFrame
& frame
,
1823 bool no_stream_frame_length
,
1824 QuicDataWriter
* writer
) {
1825 uint8 type_byte
= 0;
1826 switch (frame
.type
) {
1827 case STREAM_FRAME
: {
1828 if (frame
.stream_frame
== nullptr) {
1829 LOG(DFATAL
) << "Failed to append STREAM frame with no stream_frame.";
1832 type_byte
|= frame
.stream_frame
->fin
? kQuicStreamFinMask
: 0;
1835 type_byte
<<= kQuicStreamDataLengthShift
;
1836 type_byte
|= no_stream_frame_length
? 0: kQuicStreamDataLengthMask
;
1839 type_byte
<<= kQuicStreamOffsetShift
;
1840 const size_t offset_len
= GetStreamOffsetSize(frame
.stream_frame
->offset
);
1841 if (offset_len
> 0) {
1842 type_byte
|= offset_len
- 1;
1845 // stream id 2 bits.
1846 type_byte
<<= kQuicStreamIdShift
;
1847 type_byte
|= GetStreamIdSize(frame
.stream_frame
->stream_id
) - 1;
1848 type_byte
|= kQuicFrameTypeStreamMask
; // Set Stream Frame Type to 1.
1854 type_byte
= static_cast<uint8
>(frame
.type
);
1858 return writer
->WriteUInt8(type_byte
);
1862 bool QuicFramer::AppendPacketSequenceNumber(
1863 QuicSequenceNumberLength sequence_number_length
,
1864 QuicPacketSequenceNumber packet_sequence_number
,
1865 QuicDataWriter
* writer
) {
1866 // Ensure the entire sequence number can be written.
1867 if (writer
->capacity() - writer
->length() <
1868 static_cast<size_t>(sequence_number_length
)) {
1871 switch (sequence_number_length
) {
1872 case PACKET_1BYTE_SEQUENCE_NUMBER
:
1873 return writer
->WriteUInt8(
1874 packet_sequence_number
& k1ByteSequenceNumberMask
);
1876 case PACKET_2BYTE_SEQUENCE_NUMBER
:
1877 return writer
->WriteUInt16(
1878 packet_sequence_number
& k2ByteSequenceNumberMask
);
1880 case PACKET_4BYTE_SEQUENCE_NUMBER
:
1881 return writer
->WriteUInt32(
1882 packet_sequence_number
& k4ByteSequenceNumberMask
);
1884 case PACKET_6BYTE_SEQUENCE_NUMBER
:
1885 return writer
->WriteUInt48(
1886 packet_sequence_number
& k6ByteSequenceNumberMask
);
1889 DCHECK(false) << "sequence_number_length: " << sequence_number_length
;
1894 bool QuicFramer::AppendStreamFrame(
1895 const QuicStreamFrame
& frame
,
1896 bool no_stream_frame_length
,
1897 QuicDataWriter
* writer
) {
1898 if (!writer
->WriteBytes(&frame
.stream_id
, GetStreamIdSize(frame
.stream_id
))) {
1899 LOG(DFATAL
) << "Writing stream id size failed.";
1902 if (!writer
->WriteBytes(&frame
.offset
, GetStreamOffsetSize(frame
.offset
))) {
1903 LOG(DFATAL
) << "Writing offset size failed.";
1906 if (!no_stream_frame_length
) {
1907 if ((frame
.data
.TotalBufferSize() > numeric_limits
<uint16
>::max()) ||
1908 !writer
->WriteUInt16(
1909 static_cast<uint16
>(frame
.data
.TotalBufferSize()))) {
1910 LOG(DFATAL
) << "Writing stream frame length failed";
1915 if (!writer
->WriteIOVector(frame
.data
)) {
1916 LOG(DFATAL
) << "Writing frame data failed.";
1922 void QuicFramer::set_version(const QuicVersion version
) {
1923 DCHECK(IsSupportedVersion(version
)) << QuicVersionToString(version
);
1924 quic_version_
= version
;
1927 bool QuicFramer::AppendAckFrameAndTypeByte(
1928 const QuicPacketHeader
& header
,
1929 const QuicAckFrame
& frame
,
1930 QuicDataWriter
* writer
) {
1931 AckFrameInfo ack_info
= GetAckFrameInfo(frame
);
1932 QuicPacketSequenceNumber ack_largest_observed
= frame
.largest_observed
;
1933 QuicSequenceNumberLength largest_observed_length
=
1934 GetMinSequenceNumberLength(ack_largest_observed
);
1935 QuicSequenceNumberLength missing_sequence_number_length
=
1936 GetMinSequenceNumberLength(ack_info
.max_delta
);
1937 // Determine whether we need to truncate ranges.
1938 size_t available_range_bytes
= writer
->capacity() - writer
->length() -
1939 kNumberOfRevivedPacketsSize
- kNumberOfNackRangesSize
-
1940 GetMinAckFrameSize(header
.public_header
.sequence_number_length
,
1941 largest_observed_length
);
1942 size_t max_num_ranges
= available_range_bytes
/
1943 (missing_sequence_number_length
+ PACKET_1BYTE_SEQUENCE_NUMBER
);
1944 max_num_ranges
= min(kMaxNackRanges
, max_num_ranges
);
1945 bool truncated
= ack_info
.nack_ranges
.size() > max_num_ranges
;
1946 DVLOG_IF(1, truncated
) << "Truncating ack from "
1947 << ack_info
.nack_ranges
.size() << " ranges to "
1949 // Write out the type byte by setting the low order bits and doing shifts
1950 // to make room for the next bit flags to be set.
1951 // Whether there are any nacks.
1952 uint8 type_byte
= ack_info
.nack_ranges
.empty() ? 0 : kQuicHasNacksMask
;
1955 type_byte
<<= kQuicAckTruncatedShift
;
1956 type_byte
|= truncated
? kQuicAckTruncatedMask
: 0;
1958 // Largest observed sequence number length.
1959 type_byte
<<= kQuicSequenceNumberLengthShift
;
1960 type_byte
|= GetSequenceNumberFlags(largest_observed_length
);
1962 // Missing sequence number length.
1963 type_byte
<<= kQuicSequenceNumberLengthShift
;
1964 type_byte
|= GetSequenceNumberFlags(missing_sequence_number_length
);
1966 type_byte
|= kQuicFrameTypeAckMask
;
1968 if (!writer
->WriteUInt8(type_byte
)) {
1972 QuicPacketEntropyHash ack_entropy_hash
= frame
.entropy_hash
;
1973 NackRangeMap::reverse_iterator ack_iter
= ack_info
.nack_ranges
.rbegin();
1975 // Skip the nack ranges which the truncated ack won't include and set
1976 // a correct largest observed for the truncated ack.
1977 for (size_t i
= 1; i
< (ack_info
.nack_ranges
.size() - max_num_ranges
);
1981 // If the last range is followed by acks, include them.
1982 // If the last range is followed by another range, specify the end of the
1983 // range as the largest_observed.
1984 ack_largest_observed
= ack_iter
->first
- 1;
1985 // Also update the entropy so it matches the largest observed.
1986 ack_entropy_hash
= entropy_calculator_
->EntropyHash(ack_largest_observed
);
1990 if (!writer
->WriteUInt8(ack_entropy_hash
)) {
1994 if (!AppendPacketSequenceNumber(largest_observed_length
,
1995 ack_largest_observed
, writer
)) {
1999 uint64 delta_time_largest_observed_us
= kUFloat16MaxValue
;
2000 if (!frame
.delta_time_largest_observed
.IsInfinite()) {
2001 DCHECK_LE(0u, frame
.delta_time_largest_observed
.ToMicroseconds());
2002 delta_time_largest_observed_us
=
2003 frame
.delta_time_largest_observed
.ToMicroseconds();
2006 if (!writer
->WriteUFloat16(delta_time_largest_observed_us
)) {
2010 // Timestamp goes at the end of the required fields.
2012 if (!AppendTimestampToAckFrame(frame
, writer
)) {
2017 if (ack_info
.nack_ranges
.empty()) {
2021 const uint8 num_missing_ranges
=
2022 static_cast<uint8
>(min(ack_info
.nack_ranges
.size(), max_num_ranges
));
2023 if (!writer
->WriteBytes(&num_missing_ranges
, 1)) {
2027 int num_ranges_written
= 0;
2028 QuicPacketSequenceNumber last_sequence_written
= ack_largest_observed
;
2029 for (; ack_iter
!= ack_info
.nack_ranges
.rend(); ++ack_iter
) {
2030 // Calculate the delta to the last number in the range.
2031 QuicPacketSequenceNumber missing_delta
=
2032 last_sequence_written
- (ack_iter
->first
+ ack_iter
->second
);
2033 if (!AppendPacketSequenceNumber(missing_sequence_number_length
,
2034 missing_delta
, writer
)) {
2037 if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER
,
2038 ack_iter
->second
, writer
)) {
2041 // Subtract 1 so a missing_delta of 0 means an adjacent range.
2042 last_sequence_written
= ack_iter
->first
- 1;
2043 ++num_ranges_written
;
2045 DCHECK_EQ(num_missing_ranges
, num_ranges_written
);
2047 // Append revived packets.
2048 // If not all the revived packets fit, only mention the ones that do.
2049 uint8 num_revived_packets
=
2050 static_cast<uint8
>(min(frame
.revived_packets
.size(), kMaxRevivedPackets
));
2051 num_revived_packets
= static_cast<uint8
>(min(
2052 static_cast<size_t>(num_revived_packets
),
2053 (writer
->capacity() - writer
->length()) / largest_observed_length
));
2054 if (!writer
->WriteBytes(&num_revived_packets
, 1)) {
2058 SequenceNumberSet::const_iterator iter
= frame
.revived_packets
.begin();
2059 for (int i
= 0; i
< num_revived_packets
; ++i
, ++iter
) {
2060 LOG_IF(DFATAL
, !ContainsKey(frame
.missing_packets
, *iter
));
2061 if (!AppendPacketSequenceNumber(largest_observed_length
,
2070 bool QuicFramer::AppendTimestampToAckFrame(const QuicAckFrame
& frame
,
2071 QuicDataWriter
* writer
) {
2072 DCHECK_GE(numeric_limits
<uint8
>::max(), frame
.received_packet_times
.size());
2073 // num_received_packets is only 1 byte.
2074 if (frame
.received_packet_times
.size() > numeric_limits
<uint8
>::max()) {
2078 uint8 num_received_packets
= frame
.received_packet_times
.size();
2080 if (!writer
->WriteBytes(&num_received_packets
, 1)) {
2083 if (num_received_packets
== 0) {
2087 PacketTimeList::const_iterator it
= frame
.received_packet_times
.begin();
2088 QuicPacketSequenceNumber sequence_number
= it
->first
;
2089 QuicPacketSequenceNumber delta_from_largest_observed
=
2090 frame
.largest_observed
- sequence_number
;
2092 DCHECK_GE(numeric_limits
<uint8
>::max(), delta_from_largest_observed
);
2093 if (delta_from_largest_observed
> numeric_limits
<uint8
>::max()) {
2097 if (!writer
->WriteUInt8(
2098 delta_from_largest_observed
& k1ByteSequenceNumberMask
)) {
2102 // Use the lowest 4 bytes of the time delta from the creation_time_.
2103 const uint64 time_epoch_delta_us
= GG_UINT64_C(1) << 32;
2104 uint32 time_delta_us
=
2105 static_cast<uint32
>(it
->second
.Subtract(creation_time_
).ToMicroseconds()
2106 & (time_epoch_delta_us
- 1));
2107 if (!writer
->WriteBytes(&time_delta_us
, sizeof(time_delta_us
))) {
2111 QuicTime prev_time
= it
->second
;
2113 for (++it
; it
!= frame
.received_packet_times
.end(); ++it
) {
2114 sequence_number
= it
->first
;
2115 delta_from_largest_observed
= frame
.largest_observed
- sequence_number
;
2117 if (delta_from_largest_observed
> numeric_limits
<uint8
>::max()) {
2121 if (!writer
->WriteUInt8(
2122 delta_from_largest_observed
& k1ByteSequenceNumberMask
)) {
2126 uint64 frame_time_delta_us
=
2127 it
->second
.Subtract(prev_time
).ToMicroseconds();
2128 prev_time
= it
->second
;
2129 if (!writer
->WriteUFloat16(frame_time_delta_us
)) {
2136 bool QuicFramer::AppendStopWaitingFrame(
2137 const QuicPacketHeader
& header
,
2138 const QuicStopWaitingFrame
& frame
,
2139 QuicDataWriter
* writer
) {
2140 DCHECK_GE(header
.packet_sequence_number
, frame
.least_unacked
);
2141 const QuicPacketSequenceNumber least_unacked_delta
=
2142 header
.packet_sequence_number
- frame
.least_unacked
;
2143 const QuicPacketSequenceNumber length_shift
=
2144 header
.public_header
.sequence_number_length
* 8;
2145 if (!writer
->WriteUInt8(frame
.entropy_hash
)) {
2146 LOG(DFATAL
) << " hash failed";
2150 if (least_unacked_delta
>> length_shift
> 0) {
2151 LOG(DFATAL
) << "sequence_number_length "
2152 << header
.public_header
.sequence_number_length
2153 << " is too small for least_unacked_delta: "
2154 << least_unacked_delta
;
2157 if (!AppendPacketSequenceNumber(header
.public_header
.sequence_number_length
,
2158 least_unacked_delta
, writer
)) {
2159 LOG(DFATAL
) << " seq failed: "
2160 << header
.public_header
.sequence_number_length
;
2167 bool QuicFramer::AppendRstStreamFrame(const QuicRstStreamFrame
& frame
,
2168 QuicDataWriter
* writer
) {
2169 if (!writer
->WriteUInt32(frame
.stream_id
)) {
2173 if (!writer
->WriteUInt64(frame
.byte_offset
)) {
2177 uint32 error_code
= static_cast<uint32
>(frame
.error_code
);
2178 if (!writer
->WriteUInt32(error_code
)) {
2182 if (quic_version_
<= QUIC_VERSION_24
) {
2183 if (!writer
->WriteStringPiece16(frame
.error_details
)) {
2190 bool QuicFramer::AppendConnectionCloseFrame(
2191 const QuicConnectionCloseFrame
& frame
,
2192 QuicDataWriter
* writer
) {
2193 uint32 error_code
= static_cast<uint32
>(frame
.error_code
);
2194 if (!writer
->WriteUInt32(error_code
)) {
2197 if (!writer
->WriteStringPiece16(frame
.error_details
)) {
2203 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame
& frame
,
2204 QuicDataWriter
* writer
) {
2205 uint32 error_code
= static_cast<uint32
>(frame
.error_code
);
2206 if (!writer
->WriteUInt32(error_code
)) {
2209 uint32 stream_id
= static_cast<uint32
>(frame
.last_good_stream_id
);
2210 if (!writer
->WriteUInt32(stream_id
)) {
2213 if (!writer
->WriteStringPiece16(frame
.reason_phrase
)) {
2219 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame
& frame
,
2220 QuicDataWriter
* writer
) {
2221 uint32 stream_id
= static_cast<uint32
>(frame
.stream_id
);
2222 if (!writer
->WriteUInt32(stream_id
)) {
2225 if (!writer
->WriteUInt64(frame
.byte_offset
)) {
2231 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame
& frame
,
2232 QuicDataWriter
* writer
) {
2233 uint32 stream_id
= static_cast<uint32
>(frame
.stream_id
);
2234 if (!writer
->WriteUInt32(stream_id
)) {
2240 bool QuicFramer::RaiseError(QuicErrorCode error
) {
2241 DVLOG(1) << "Error: " << QuicUtils::ErrorToString(error
)
2242 << " detail: " << detailed_error_
;
2244 visitor_
->OnError(this);
2245 reader_
.reset(nullptr);