1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "sandbox/linux/seccomp-bpf/syscall.h"
7 #include <asm/unistd.h>
11 #include "base/logging.h"
12 #include "sandbox/linux/bpf_dsl/seccomp_macros.h"
18 #if defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY) || \
19 defined(ARCH_CPU_MIPS_FAMILY)
20 // Number that's not currently used by any Linux kernel ABIs.
21 const int kInvalidSyscallNumber
= 0x351d3;
23 #error Unrecognized architecture
26 asm(// We need to be able to tell the kernel exactly where we made a
27 // system call. The C++ compiler likes to sometimes clone or
28 // inline code, which would inadvertently end up duplicating
30 // "gcc" can suppress code duplication with suitable function
31 // attributes, but "clang" doesn't have this ability.
32 // The "clang" developer mailing list suggested that the correct
33 // and portable solution is a file-scope assembly block.
34 // N.B. We do mark our code as a proper function so that backtraces
35 // work correctly. But we make absolutely no attempt to use the
36 // ABI's calling conventions for passing arguments. We will only
37 // ever be called from assembly code and thus can pick more
38 // suitable calling conventions.
42 ".type SyscallAsm, @function\n"
43 "SyscallAsm:.cfi_startproc\n"
44 // Check if "%eax" is negative. If so, do not attempt to make a
45 // system call. Instead, compute the return address that is visible
46 // to the kernel after we execute "int $0x80". This address can be
47 // used as a marker that BPF code inspects.
50 // Always, make sure that our code is position-independent, or
51 // address space randomization might not work on i386. This means,
52 // we can't use "lea", but instead have to rely on "call/pop".
53 "call 0f; .cfi_adjust_cfa_offset 4\n"
54 "0:pop %eax; .cfi_adjust_cfa_offset -4\n"
57 // Save register that we don't want to clobber. On i386, we need to
58 // save relatively aggressively, as there are a couple or registers
59 // that are used internally (e.g. %ebx for position-independent
60 // code, and %ebp for the frame pointer), and as we need to keep at
61 // least a few registers available for the register allocator.
62 "1:push %esi; .cfi_adjust_cfa_offset 4; .cfi_rel_offset esi, 0\n"
63 "push %edi; .cfi_adjust_cfa_offset 4; .cfi_rel_offset edi, 0\n"
64 "push %ebx; .cfi_adjust_cfa_offset 4; .cfi_rel_offset ebx, 0\n"
65 "push %ebp; .cfi_adjust_cfa_offset 4; .cfi_rel_offset ebp, 0\n"
66 // Copy entries from the array holding the arguments into the
67 // correct CPU registers.
68 "movl 0(%edi), %ebx\n"
69 "movl 4(%edi), %ecx\n"
70 "movl 8(%edi), %edx\n"
71 "movl 12(%edi), %esi\n"
72 "movl 20(%edi), %ebp\n"
73 "movl 16(%edi), %edi\n"
76 // This is our "magic" return address that the BPF filter sees.
78 // Restore any clobbered registers that we didn't declare to the
80 "pop %ebp; .cfi_restore ebp; .cfi_adjust_cfa_offset -4\n"
81 "pop %ebx; .cfi_restore ebx; .cfi_adjust_cfa_offset -4\n"
82 "pop %edi; .cfi_restore edi; .cfi_adjust_cfa_offset -4\n"
83 "pop %esi; .cfi_restore esi; .cfi_adjust_cfa_offset -4\n"
86 "9:.size SyscallAsm, 9b-SyscallAsm\n"
87 #elif defined(__x86_64__)
90 ".type SyscallAsm, @function\n"
91 "SyscallAsm:.cfi_startproc\n"
92 // Check if "%rdi" is negative. If so, do not attempt to make a
93 // system call. Instead, compute the return address that is visible
94 // to the kernel after we execute "syscall". This address can be
95 // used as a marker that BPF code inspects.
98 // Always make sure that our code is position-independent, or the
99 // linker will throw a hissy fit on x86-64.
100 "lea 2f(%rip), %rax\n"
102 // Now we load the registers used to pass arguments to the system
103 // call: system call number in %rax, and arguments in %rdi, %rsi,
104 // %rdx, %r10, %r8, %r9. Note: These are all caller-save registers
105 // (only %rbx, %rbp, %rsp, and %r12-%r15 are callee-save), so no
106 // need to worry here about spilling registers or CFI directives.
107 "1:movq %rdi, %rax\n"
108 "movq 0(%rsi), %rdi\n"
109 "movq 16(%rsi), %rdx\n"
110 "movq 24(%rsi), %r10\n"
111 "movq 32(%rsi), %r8\n"
112 "movq 40(%rsi), %r9\n"
113 "movq 8(%rsi), %rsi\n"
116 // This is our "magic" return address that the BPF filter sees.
119 "9:.size SyscallAsm, 9b-SyscallAsm\n"
120 #elif defined(__arm__)
121 // Throughout this file, we use the same mode (ARM vs. thumb)
122 // that the C++ compiler uses. This means, when transfering control
123 // from C++ to assembly code, we do not need to switch modes (e.g.
124 // by using the "bx" instruction). It also means that our assembly
125 // code should not be invoked directly from code that lives in
126 // other compilation units, as we don't bother implementing thumb
127 // interworking. That's OK, as we don't make any of the assembly
128 // symbols public. They are all local to this file.
131 ".type SyscallAsm, %function\n"
132 #if defined(__thumb__)
137 "SyscallAsm:.fnstart\n"
138 "@ args = 0, pretend = 0, frame = 8\n"
139 "@ frame_needed = 1, uses_anonymous_args = 0\n"
140 #if defined(__thumb__)
143 ".cfi_offset 14, -4\n"
144 ".cfi_offset 7, -8\n"
146 ".cfi_def_cfa_register 7\n"
147 ".cfi_def_cfa_offset 8\n"
149 "stmfd sp!, {fp, lr}\n"
152 // Check if "r0" is negative. If so, do not attempt to make a
153 // system call. Instead, compute the return address that is visible
154 // to the kernel after we execute "swi 0". This address can be
155 // used as a marker that BPF code inspects.
160 // We declared (almost) all clobbered registers to the compiler. On
161 // ARM there is no particular register pressure. So, we can go
162 // ahead and directly copy the entries from the arguments array
163 // into the appropriate CPU registers.
164 "1:ldr r5, [r6, #20]\n"
165 "ldr r4, [r6, #16]\n"
166 "ldr r3, [r6, #12]\n"
173 // Restore the frame pointer. Also restore the program counter from
174 // the link register; this makes us return to the caller.
175 #if defined(__thumb__)
179 "2:ldmfd sp!, {fp, pc}\n"
182 "9:.size SyscallAsm, 9b-SyscallAsm\n"
183 #elif defined(__mips__)
186 ".type SyscallAsm, @function\n"
187 "SyscallAsm:.ent SyscallAsm\n"
188 ".frame $sp, 40, $ra\n"
191 "addiu $sp, $sp, -40\n"
193 // Check if "v0" is negative. If so, do not attempt to make a
194 // system call. Instead, compute the return address that is visible
195 // to the kernel after we execute "syscall". This address can be
196 // used as a marker that BPF code inspects.
202 // On MIPS first four arguments go to registers a0 - a3 and any
203 // argument after that goes to stack. We can go ahead and directly
204 // copy the entries from the arguments array into the appropriate
205 // CPU registers and on the stack.
206 "1:lw $a3, 28($a0)\n"
220 // This is our "magic" return address that the BPF filter sees.
221 // Restore the return address from the stack.
222 "2:lw $ra, 36($sp)\n"
224 " addiu $sp, $sp, 40\n"
227 ".size SyscallAsm,.-SyscallAsm\n"
228 #elif defined(__aarch64__)
231 ".type SyscallAsm, %function\n"
238 "1:ldr x5, [x6, #40]\n"
239 "ldr x4, [x6, #32]\n"
240 "ldr x3, [x6, #24]\n"
241 "ldr x2, [x6, #16]\n"
249 ".size SyscallAsm, .-SyscallAsm\n"
253 #if defined(__x86_64__)
255 intptr_t SyscallAsm(intptr_t nr
, const intptr_t args
[6]);
261 intptr_t Syscall::InvalidCall() {
262 // Explicitly pass eight zero arguments just in case.
263 return Call(kInvalidSyscallNumber
, 0, 0, 0, 0, 0, 0, 0, 0);
266 intptr_t Syscall::Call(int nr
,
275 // We rely on "intptr_t" to be the exact size as a "void *". This is
276 // typically true, but just in case, we add a check. The language
277 // specification allows platforms some leeway in cases, where
278 // "sizeof(void *)" is not the same as "sizeof(void (*)())". We expect
279 // that this would only be an issue for IA64, which we are currently not
280 // planning on supporting. And it is even possible that this would work
281 // on IA64, but for lack of actual hardware, I cannot test.
282 static_assert(sizeof(void*) == sizeof(intptr_t),
283 "pointer types and intptr_t must be exactly the same size");
285 // TODO(nedeljko): Enable use of more than six parameters on architectures
286 // where that makes sense.
287 #if defined(__mips__)
288 const intptr_t args
[8] = {p0
, p1
, p2
, p3
, p4
, p5
, p6
, p7
};
290 DCHECK_EQ(p6
, 0) << " Support for syscalls with more than six arguments not "
291 "added for this architecture";
292 DCHECK_EQ(p7
, 0) << " Support for syscalls with more than six arguments not "
293 "added for this architecture";
294 const intptr_t args
[6] = {p0
, p1
, p2
, p3
, p4
, p5
};
295 #endif // defined(__mips__)
297 // Invoke our file-scope assembly code. The constraints have been picked
298 // carefully to match what the rest of the assembly code expects in input,
299 // output, and clobbered registers.
300 #if defined(__i386__)
304 // N.B. These are not the calling conventions normally used by the ABI.
306 : "0"(ret
), "D"(args
)
307 : "cc", "esp", "memory", "ecx", "edx");
308 #elif defined(__x86_64__)
309 intptr_t ret
= SyscallAsm(nr
, args
);
310 #elif defined(__arm__)
313 register intptr_t inout
__asm__("r0") = nr
;
314 register const intptr_t* data
__asm__("r6") = args
;
317 // N.B. These are not the calling conventions normally used by the ABI.
319 : "0"(inout
), "r"(data
)
328 #if !defined(__thumb__)
329 // In thumb mode, we cannot use "r7" as a general purpose register, as
330 // it is our frame pointer. We have to manually manage and preserve
332 // In ARM mode, we have a dedicated frame pointer register and "r7" is
333 // thus available as a general purpose register. We don't preserve it,
334 // but instead mark it as clobbered.
337 #endif // !defined(__thumb__)
341 #elif defined(__mips__)
343 intptr_t ret
= Syscall::SandboxSyscallRaw(nr
, args
, &err_status
);
346 // On error, MIPS returns errno from syscall instead of -errno.
347 // The purpose of this negation is for SandboxSyscall() to behave
348 // more like it would on other architectures.
351 #elif defined(__aarch64__)
354 register intptr_t inout
__asm__("x0") = nr
;
355 register const intptr_t* data
__asm__("x6") = args
;
356 asm volatile("bl SyscallAsm\n"
358 : "0"(inout
), "r"(data
)
359 : "memory", "x1", "x2", "x3", "x4", "x5", "x8", "x30");
364 #error "Unimplemented architecture"
369 void Syscall::PutValueInUcontext(intptr_t ret_val
, ucontext_t
* ctx
) {
370 #if defined(__mips__)
371 // Mips ABI states that on error a3 CPU register has non zero value and if
372 // there is no error, it should be zero.
373 if (ret_val
<= -1 && ret_val
>= -4095) {
374 // |ret_val| followes the Syscall::Call() convention of being -errno on
375 // errors. In order to write correct value to return register this sign
376 // needs to be changed back.
378 SECCOMP_PARM4(ctx
) = 1;
380 SECCOMP_PARM4(ctx
) = 0;
382 SECCOMP_RESULT(ctx
) = static_cast<greg_t
>(ret_val
);
385 #if defined(__mips__)
386 intptr_t Syscall::SandboxSyscallRaw(int nr
,
387 const intptr_t* args
,
389 register intptr_t ret
__asm__("v0") = nr
;
390 // a3 register becomes non zero on error.
391 register intptr_t err_stat
__asm__("a3") = 0;
393 register const intptr_t* data
__asm__("a0") = args
;
395 "la $t9, SyscallAsm\n"
398 : "=r"(ret
), "=r"(err_stat
)
401 // a2 is in the clober list so inline assembly can not change its
403 : "memory", "ra", "t9", "a2");
406 // Set an error status so it can be used outside of this function
411 #endif // defined(__mips__)
413 } // namespace sandbox