1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/json/json_writer.h"
6 #include "base/memory/scoped_ptr.h"
7 #include "base/strings/stringprintf.h"
8 #include "base/trace_event/trace_event.h"
9 #include "ui/events/latency_info.h"
15 const size_t kMaxLatencyInfoNumber
= 100;
17 const char* GetComponentName(ui::LatencyComponentType type
) {
18 #define CASE_TYPE(t) case ui::t: return #t
20 CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT
);
21 CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_PLUGIN_COMPONENT
);
22 CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_SCROLL_UPDATE_MAIN_COMPONENT
);
23 CASE_TYPE(INPUT_EVENT_LATENCY_SCROLL_UPDATE_ORIGINAL_COMPONENT
);
24 CASE_TYPE(INPUT_EVENT_LATENCY_FIRST_SCROLL_UPDATE_ORIGINAL_COMPONENT
);
25 CASE_TYPE(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT
);
26 CASE_TYPE(INPUT_EVENT_LATENCY_UI_COMPONENT
);
27 CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_MAIN_COMPONENT
);
28 CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_IMPL_COMPONENT
);
29 CASE_TYPE(INPUT_EVENT_LATENCY_FORWARD_SCROLL_UPDATE_TO_MAIN_COMPONENT
);
30 CASE_TYPE(INPUT_EVENT_LATENCY_ACK_RWH_COMPONENT
);
31 CASE_TYPE(WINDOW_SNAPSHOT_FRAME_NUMBER_COMPONENT
);
32 CASE_TYPE(TAB_SHOW_COMPONENT
);
33 CASE_TYPE(INPUT_EVENT_LATENCY_RENDERER_SWAP_COMPONENT
);
34 CASE_TYPE(INPUT_EVENT_BROWSER_RECEIVED_RENDERER_SWAP_COMPONENT
);
35 CASE_TYPE(INPUT_EVENT_GPU_SWAP_BUFFER_COMPONENT
);
36 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT
);
37 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT
);
38 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT
);
39 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT
);
40 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT
);
41 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT
);
42 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT
);
43 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_PLUGIN_COMPONENT
);
45 DLOG(WARNING
) << "Unhandled LatencyComponentType.\n";
52 bool IsTerminalComponent(ui::LatencyComponentType type
) {
54 case ui::INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT
:
55 case ui::INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT
:
56 case ui::INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT
:
57 case ui::INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT
:
58 case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT
:
59 case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT
:
60 case ui::INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT
:
61 case ui::INPUT_EVENT_LATENCY_TERMINATED_PLUGIN_COMPONENT
:
68 bool IsBeginComponent(ui::LatencyComponentType type
) {
69 return (type
== ui::INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT
||
70 type
== ui::INPUT_EVENT_LATENCY_BEGIN_PLUGIN_COMPONENT
||
71 type
== ui::INPUT_EVENT_LATENCY_BEGIN_SCROLL_UPDATE_MAIN_COMPONENT
);
74 // This class is for converting latency info to trace buffer friendly format.
75 class LatencyInfoTracedValue
76 : public base::trace_event::ConvertableToTraceFormat
{
78 static scoped_refptr
<ConvertableToTraceFormat
> FromValue(
79 scoped_ptr
<base::Value
> value
);
81 void AppendAsTraceFormat(std::string
* out
) const override
;
84 explicit LatencyInfoTracedValue(base::Value
* value
);
85 ~LatencyInfoTracedValue() override
;
87 scoped_ptr
<base::Value
> value_
;
89 DISALLOW_COPY_AND_ASSIGN(LatencyInfoTracedValue
);
92 scoped_refptr
<base::trace_event::ConvertableToTraceFormat
>
93 LatencyInfoTracedValue::FromValue(scoped_ptr
<base::Value
> value
) {
94 return scoped_refptr
<base::trace_event::ConvertableToTraceFormat
>(
95 new LatencyInfoTracedValue(value
.release()));
98 LatencyInfoTracedValue::~LatencyInfoTracedValue() {
101 void LatencyInfoTracedValue::AppendAsTraceFormat(std::string
* out
) const {
103 base::JSONWriter::Write(value_
.get(), &tmp
);
107 LatencyInfoTracedValue::LatencyInfoTracedValue(base::Value
* value
)
111 // Converts latencyinfo into format that can be dumped into trace buffer.
112 scoped_refptr
<base::trace_event::ConvertableToTraceFormat
> AsTraceableData(
113 const ui::LatencyInfo
& latency
) {
114 scoped_ptr
<base::DictionaryValue
> record_data(new base::DictionaryValue());
115 for (ui::LatencyInfo::LatencyMap::const_iterator it
=
116 latency
.latency_components
.begin();
117 it
!= latency
.latency_components
.end(); ++it
) {
118 base::DictionaryValue
* component_info
= new base::DictionaryValue();
119 component_info
->SetDouble("comp_id", static_cast<double>(it
->first
.second
));
120 component_info
->SetDouble(
121 "time", static_cast<double>(it
->second
.event_time
.ToInternalValue()));
122 component_info
->SetDouble("count", it
->second
.event_count
);
123 record_data
->Set(GetComponentName(it
->first
.first
), component_info
);
125 record_data
->SetDouble("trace_id", static_cast<double>(latency
.trace_id
));
127 scoped_ptr
<base::ListValue
> coordinates(new base::ListValue());
128 for (size_t i
= 0; i
< latency
.input_coordinates_size
; i
++) {
129 scoped_ptr
<base::DictionaryValue
> coordinate_pair(
130 new base::DictionaryValue());
131 coordinate_pair
->SetDouble("x", latency
.input_coordinates
[i
].x
);
132 coordinate_pair
->SetDouble("y", latency
.input_coordinates
[i
].y
);
133 coordinates
->Append(coordinate_pair
.release());
135 record_data
->Set("coordinates", coordinates
.release());
136 return LatencyInfoTracedValue::FromValue(record_data
.Pass());
143 LatencyInfo::InputCoordinate::InputCoordinate() : x(0), y(0) {
146 LatencyInfo::InputCoordinate::InputCoordinate(float x
, float y
) : x(x
), y(y
) {
149 LatencyInfo::LatencyInfo()
150 : input_coordinates_size(0), trace_id(-1), terminated(false) {
153 LatencyInfo::~LatencyInfo() {
156 bool LatencyInfo::Verify(const std::vector
<LatencyInfo
>& latency_info
,
157 const char* referring_msg
) {
158 if (latency_info
.size() > kMaxLatencyInfoNumber
) {
159 LOG(ERROR
) << referring_msg
<< ", LatencyInfo vector size "
160 << latency_info
.size() << " is too big.";
163 for (size_t i
= 0; i
< latency_info
.size(); i
++) {
164 if (latency_info
[i
].input_coordinates_size
> kMaxInputCoordinates
) {
165 LOG(ERROR
) << referring_msg
<< ", coordinate vector size "
166 << latency_info
[i
].input_coordinates_size
<< " is too big.";
174 void LatencyInfo::CopyLatencyFrom(const LatencyInfo
& other
,
175 LatencyComponentType type
) {
176 for (LatencyMap::const_iterator it
= other
.latency_components
.begin();
177 it
!= other
.latency_components
.end();
179 if (it
->first
.first
== type
) {
180 AddLatencyNumberWithTimestamp(it
->first
.first
,
182 it
->second
.sequence_number
,
183 it
->second
.event_time
,
184 it
->second
.event_count
);
189 void LatencyInfo::AddNewLatencyFrom(const LatencyInfo
& other
) {
190 for (LatencyMap::const_iterator it
= other
.latency_components
.begin();
191 it
!= other
.latency_components
.end();
193 if (!FindLatency(it
->first
.first
, it
->first
.second
, NULL
)) {
194 AddLatencyNumberWithTimestamp(it
->first
.first
,
196 it
->second
.sequence_number
,
197 it
->second
.event_time
,
198 it
->second
.event_count
);
203 void LatencyInfo::AddLatencyNumber(LatencyComponentType component
,
205 int64 component_sequence_number
) {
206 AddLatencyNumberWithTimestamp(component
, id
, component_sequence_number
,
207 base::TimeTicks::Now(), 1);
210 void LatencyInfo::AddLatencyNumberWithTimestamp(LatencyComponentType component
,
212 int64 component_sequence_number
,
213 base::TimeTicks time
,
214 uint32 event_count
) {
216 static const unsigned char* benchmark_enabled
=
217 TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED("benchmark");
219 if (IsBeginComponent(component
)) {
220 // Should only ever add begin component once.
221 CHECK_EQ(-1, trace_id
);
222 trace_id
= component_sequence_number
;
224 if (*benchmark_enabled
) {
225 // The timestamp for ASYNC_BEGIN trace event is used for drawing the
226 // beginning of the trace event in trace viewer. For better visualization,
227 // for an input event, we want to draw the beginning as when the event is
228 // originally created, e.g. the timestamp of its ORIGINAL/UI_COMPONENT,
229 // not when we actually issue the ASYNC_BEGIN trace event.
230 LatencyComponent component
;
232 if (FindLatency(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT
,
235 FindLatency(INPUT_EVENT_LATENCY_UI_COMPONENT
,
238 // The timestamp stored in ORIGINAL/UI_COMPONENT is using clock
239 // CLOCK_MONOTONIC while TRACE_EVENT_ASYNC_BEGIN_WITH_TIMESTAMP0
240 // expects timestamp using CLOCK_MONOTONIC or CLOCK_SYSTEM_TRACE (on
241 // CrOS). So we need to adjust the diff between in CLOCK_MONOTONIC and
242 // CLOCK_SYSTEM_TRACE. Note that the diff is drifting overtime so we
243 // can't use a static value.
244 int64 diff
= base::TimeTicks::Now().ToInternalValue() -
245 base::TimeTicks::NowFromSystemTraceTime().ToInternalValue();
246 ts
= component
.event_time
.ToInternalValue() - diff
;
248 ts
= base::TimeTicks::NowFromSystemTraceTime().ToInternalValue();
250 TRACE_EVENT_ASYNC_BEGIN_WITH_TIMESTAMP0(
253 TRACE_ID_DONT_MANGLE(trace_id
),
257 TRACE_EVENT_FLOW_BEGIN0(
258 "input,benchmark", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(trace_id
));
261 LatencyMap::key_type key
= std::make_pair(component
, id
);
262 LatencyMap::iterator it
= latency_components
.find(key
);
263 if (it
== latency_components
.end()) {
264 LatencyComponent info
= {component_sequence_number
, time
, event_count
};
265 latency_components
[key
] = info
;
267 it
->second
.sequence_number
= std::max(component_sequence_number
,
268 it
->second
.sequence_number
);
269 uint32 new_count
= event_count
+ it
->second
.event_count
;
270 if (event_count
> 0 && new_count
!= 0) {
271 // Do a weighted average, so that the new event_time is the average of
272 // the times of events currently in this structure with the time passed
274 it
->second
.event_time
+= (time
- it
->second
.event_time
) * event_count
/
276 it
->second
.event_count
= new_count
;
280 if (IsTerminalComponent(component
) && trace_id
!= -1) {
281 // Should only ever add terminal component once.
285 if (*benchmark_enabled
) {
286 TRACE_EVENT_ASYNC_END1("benchmark",
288 TRACE_ID_DONT_MANGLE(trace_id
),
289 "data", AsTraceableData(*this));
292 TRACE_EVENT_FLOW_END0(
293 "input,benchmark", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(trace_id
));
297 bool LatencyInfo::FindLatency(LatencyComponentType type
,
299 LatencyComponent
* output
) const {
300 LatencyMap::const_iterator it
= latency_components
.find(
301 std::make_pair(type
, id
));
302 if (it
== latency_components
.end())
305 *output
= it
->second
;
309 void LatencyInfo::RemoveLatency(LatencyComponentType type
) {
310 LatencyMap::iterator it
= latency_components
.begin();
311 while (it
!= latency_components
.end()) {
312 if (it
->first
.first
== type
) {
313 LatencyMap::iterator tmp
= it
;
315 latency_components
.erase(tmp
);
322 void LatencyInfo::Clear() {
323 latency_components
.clear();
326 void LatencyInfo::TraceEventType(const char* event_type
) {
327 TRACE_EVENT_ASYNC_STEP_INTO0("benchmark",
329 TRACE_ID_DONT_MANGLE(trace_id
),