1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/tracked_objects.h"
10 #include "base/atomicops.h"
11 #include "base/base_switches.h"
12 #include "base/command_line.h"
13 #include "base/compiler_specific.h"
14 #include "base/debug/leak_annotations.h"
15 #include "base/logging.h"
16 #include "base/process/process_handle.h"
17 #include "base/profiler/alternate_timer.h"
18 #include "base/strings/stringprintf.h"
19 #include "base/third_party/valgrind/memcheck.h"
20 #include "base/tracking_info.h"
22 using base::TimeDelta
;
28 namespace tracked_objects
{
31 // Flag to compile out almost all of the task tracking code.
32 const bool kTrackAllTaskObjects
= true;
34 // TODO(jar): Evaluate the perf impact of enabling this. If the perf impact is
35 // negligible, enable by default.
36 // Flag to compile out parent-child link recording.
37 const bool kTrackParentChildLinks
= false;
39 // When ThreadData is first initialized, should we start in an ACTIVE state to
40 // record all of the startup-time tasks, or should we start up DEACTIVATED, so
41 // that we only record after parsing the command line flag --enable-tracking.
42 // Note that the flag may force either state, so this really controls only the
43 // period of time up until that flag is parsed. If there is no flag seen, then
44 // this state may prevail for much or all of the process lifetime.
45 const ThreadData::Status kInitialStartupState
=
46 ThreadData::PROFILING_CHILDREN_ACTIVE
;
48 // Control whether an alternate time source (Now() function) is supported by
49 // the ThreadData class. This compile time flag should be set to true if we
50 // want other modules (such as a memory allocator, or a thread-specific CPU time
51 // clock) to be able to provide a thread-specific Now() function. Without this
52 // compile-time flag, the code will only support the wall-clock time. This flag
53 // can be flipped to efficiently disable this path (if there is a performance
54 // problem with its presence).
55 static const bool kAllowAlternateTimeSourceHandling
= true;
57 // Possible states of the profiler timing enabledness.
64 // State of the profiler timing enabledness.
65 base::subtle::Atomic32 g_profiler_timing_enabled
= UNDEFINED_TIMING
;
67 // Returns whether profiler timing is enabled. The default is true, but this may
68 // be overridden by a command-line flag. Some platforms may programmatically set
69 // this command-line flag to the "off" value if it's not specified.
70 // This in turn can be overridden by explicitly calling
71 // ThreadData::EnableProfilerTiming, say, based on a field trial.
72 inline bool IsProfilerTimingEnabled() {
73 // Reading |g_profiler_timing_enabled| is done without barrier because
74 // multiple initialization is not an issue while the barrier can be relatively
75 // costly given that this method is sometimes called in a tight loop.
76 base::subtle::Atomic32 current_timing_enabled
=
77 base::subtle::NoBarrier_Load(&g_profiler_timing_enabled
);
78 if (current_timing_enabled
== UNDEFINED_TIMING
) {
79 if (!CommandLine::InitializedForCurrentProcess())
81 current_timing_enabled
=
82 (CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
83 switches::kProfilerTiming
) ==
84 switches::kProfilerTimingDisabledValue
)
87 base::subtle::NoBarrier_Store(&g_profiler_timing_enabled
,
88 current_timing_enabled
);
90 return current_timing_enabled
== ENABLED_TIMING
;
95 //------------------------------------------------------------------------------
96 // DeathData tallies durations when a death takes place.
98 DeathData::DeathData() {
102 DeathData::DeathData(int count
) {
107 // TODO(jar): I need to see if this macro to optimize branching is worth using.
109 // This macro has no branching, so it is surely fast, and is equivalent to:
112 // We use a macro rather than a template to force this to inline.
113 // Related code for calculating max is discussed on the web.
114 #define CONDITIONAL_ASSIGN(assign_it, target, source) \
115 ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it))
117 void DeathData::RecordDeath(const int32 queue_duration
,
118 const int32 run_duration
,
119 const uint32 random_number
) {
120 // We'll just clamp at INT_MAX, but we should note this in the UI as such.
121 if (count_
< INT_MAX
)
123 queue_duration_sum_
+= queue_duration
;
124 run_duration_sum_
+= run_duration
;
126 if (queue_duration_max_
< queue_duration
)
127 queue_duration_max_
= queue_duration
;
128 if (run_duration_max_
< run_duration
)
129 run_duration_max_
= run_duration
;
131 // Take a uniformly distributed sample over all durations ever supplied.
132 // The probability that we (instead) use this new sample is 1/count_. This
133 // results in a completely uniform selection of the sample (at least when we
134 // don't clamp count_... but that should be inconsequentially likely).
135 // We ignore the fact that we correlated our selection of a sample to the run
136 // and queue times (i.e., we used them to generate random_number).
138 if (0 == (random_number
% count_
)) {
139 queue_duration_sample_
= queue_duration
;
140 run_duration_sample_
= run_duration
;
144 int DeathData::count() const { return count_
; }
146 int32
DeathData::run_duration_sum() const { return run_duration_sum_
; }
148 int32
DeathData::run_duration_max() const { return run_duration_max_
; }
150 int32
DeathData::run_duration_sample() const {
151 return run_duration_sample_
;
154 int32
DeathData::queue_duration_sum() const {
155 return queue_duration_sum_
;
158 int32
DeathData::queue_duration_max() const {
159 return queue_duration_max_
;
162 int32
DeathData::queue_duration_sample() const {
163 return queue_duration_sample_
;
166 void DeathData::ResetMax() {
167 run_duration_max_
= 0;
168 queue_duration_max_
= 0;
171 void DeathData::Clear() {
173 run_duration_sum_
= 0;
174 run_duration_max_
= 0;
175 run_duration_sample_
= 0;
176 queue_duration_sum_
= 0;
177 queue_duration_max_
= 0;
178 queue_duration_sample_
= 0;
181 //------------------------------------------------------------------------------
182 DeathDataSnapshot::DeathDataSnapshot()
184 run_duration_sum(-1),
185 run_duration_max(-1),
186 run_duration_sample(-1),
187 queue_duration_sum(-1),
188 queue_duration_max(-1),
189 queue_duration_sample(-1) {
192 DeathDataSnapshot::DeathDataSnapshot(
193 const tracked_objects::DeathData
& death_data
)
194 : count(death_data
.count()),
195 run_duration_sum(death_data
.run_duration_sum()),
196 run_duration_max(death_data
.run_duration_max()),
197 run_duration_sample(death_data
.run_duration_sample()),
198 queue_duration_sum(death_data
.queue_duration_sum()),
199 queue_duration_max(death_data
.queue_duration_max()),
200 queue_duration_sample(death_data
.queue_duration_sample()) {
203 DeathDataSnapshot::~DeathDataSnapshot() {
206 //------------------------------------------------------------------------------
207 BirthOnThread::BirthOnThread(const Location
& location
,
208 const ThreadData
& current
)
209 : location_(location
),
210 birth_thread_(¤t
) {
213 //------------------------------------------------------------------------------
214 BirthOnThreadSnapshot::BirthOnThreadSnapshot() {
217 BirthOnThreadSnapshot::BirthOnThreadSnapshot(
218 const tracked_objects::BirthOnThread
& birth
)
219 : location(birth
.location()),
220 thread_name(birth
.birth_thread()->thread_name()) {
223 BirthOnThreadSnapshot::~BirthOnThreadSnapshot() {
226 //------------------------------------------------------------------------------
227 Births::Births(const Location
& location
, const ThreadData
& current
)
228 : BirthOnThread(location
, current
),
231 int Births::birth_count() const { return birth_count_
; }
233 void Births::RecordBirth() { ++birth_count_
; }
235 void Births::ForgetBirth() { --birth_count_
; }
237 void Births::Clear() { birth_count_
= 0; }
239 //------------------------------------------------------------------------------
240 // ThreadData maintains the central data for all births and deaths on a single
243 // TODO(jar): We should pull all these static vars together, into a struct, and
244 // optimize layout so that we benefit from locality of reference during accesses
248 NowFunction
* ThreadData::now_function_
= NULL
;
251 bool ThreadData::now_function_is_time_
= false;
253 // A TLS slot which points to the ThreadData instance for the current thread. We
254 // do a fake initialization here (zeroing out data), and then the real in-place
255 // construction happens when we call tls_index_.Initialize().
257 base::ThreadLocalStorage::StaticSlot
ThreadData::tls_index_
= TLS_INITIALIZER
;
260 int ThreadData::worker_thread_data_creation_count_
= 0;
263 int ThreadData::cleanup_count_
= 0;
266 int ThreadData::incarnation_counter_
= 0;
269 ThreadData
* ThreadData::all_thread_data_list_head_
= NULL
;
272 ThreadData
* ThreadData::first_retired_worker_
= NULL
;
275 base::LazyInstance
<base::Lock
>::Leaky
276 ThreadData::list_lock_
= LAZY_INSTANCE_INITIALIZER
;
279 ThreadData::Status
ThreadData::status_
= ThreadData::UNINITIALIZED
;
281 ThreadData::ThreadData(const std::string
& suggested_name
)
283 next_retired_worker_(NULL
),
284 worker_thread_number_(0),
285 incarnation_count_for_pool_(-1),
286 current_stopwatch_(NULL
) {
287 DCHECK_GE(suggested_name
.size(), 0u);
288 thread_name_
= suggested_name
;
289 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
292 ThreadData::ThreadData(int thread_number
)
294 next_retired_worker_(NULL
),
295 worker_thread_number_(thread_number
),
296 incarnation_count_for_pool_(-1),
297 current_stopwatch_(NULL
) {
298 CHECK_GT(thread_number
, 0);
299 base::StringAppendF(&thread_name_
, "WorkerThread-%d", thread_number
);
300 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
303 ThreadData::~ThreadData() {}
305 void ThreadData::PushToHeadOfList() {
306 // Toss in a hint of randomness (atop the uniniitalized value).
307 (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_
,
308 sizeof(random_number_
));
309 MSAN_UNPOISON(&random_number_
, sizeof(random_number_
));
310 random_number_
+= static_cast<uint32
>(this - static_cast<ThreadData
*>(0));
311 random_number_
^= (Now() - TrackedTime()).InMilliseconds();
314 base::AutoLock
lock(*list_lock_
.Pointer());
315 incarnation_count_for_pool_
= incarnation_counter_
;
316 next_
= all_thread_data_list_head_
;
317 all_thread_data_list_head_
= this;
321 ThreadData
* ThreadData::first() {
322 base::AutoLock
lock(*list_lock_
.Pointer());
323 return all_thread_data_list_head_
;
326 ThreadData
* ThreadData::next() const { return next_
; }
329 void ThreadData::InitializeThreadContext(const std::string
& suggested_name
) {
330 if (!Initialize()) // Always initialize if needed.
332 ThreadData
* current_thread_data
=
333 reinterpret_cast<ThreadData
*>(tls_index_
.Get());
334 if (current_thread_data
)
335 return; // Browser tests instigate this.
336 current_thread_data
= new ThreadData(suggested_name
);
337 tls_index_
.Set(current_thread_data
);
341 ThreadData
* ThreadData::Get() {
342 if (!tls_index_
.initialized())
343 return NULL
; // For unittests only.
344 ThreadData
* registered
= reinterpret_cast<ThreadData
*>(tls_index_
.Get());
348 // We must be a worker thread, since we didn't pre-register.
349 ThreadData
* worker_thread_data
= NULL
;
350 int worker_thread_number
= 0;
352 base::AutoLock
lock(*list_lock_
.Pointer());
353 if (first_retired_worker_
) {
354 worker_thread_data
= first_retired_worker_
;
355 first_retired_worker_
= first_retired_worker_
->next_retired_worker_
;
356 worker_thread_data
->next_retired_worker_
= NULL
;
358 worker_thread_number
= ++worker_thread_data_creation_count_
;
362 // If we can't find a previously used instance, then we have to create one.
363 if (!worker_thread_data
) {
364 DCHECK_GT(worker_thread_number
, 0);
365 worker_thread_data
= new ThreadData(worker_thread_number
);
367 DCHECK_GT(worker_thread_data
->worker_thread_number_
, 0);
369 tls_index_
.Set(worker_thread_data
);
370 return worker_thread_data
;
374 void ThreadData::OnThreadTermination(void* thread_data
) {
375 DCHECK(thread_data
); // TLS should *never* call us with a NULL.
376 // We must NOT do any allocations during this callback. There is a chance
377 // that the allocator is no longer active on this thread.
378 if (!kTrackAllTaskObjects
)
379 return; // Not compiled in.
380 reinterpret_cast<ThreadData
*>(thread_data
)->OnThreadTerminationCleanup();
383 void ThreadData::OnThreadTerminationCleanup() {
384 // The list_lock_ was created when we registered the callback, so it won't be
385 // allocated here despite the lazy reference.
386 base::AutoLock
lock(*list_lock_
.Pointer());
387 if (incarnation_counter_
!= incarnation_count_for_pool_
)
388 return; // ThreadData was constructed in an earlier unit test.
390 // Only worker threads need to be retired and reused.
391 if (!worker_thread_number_
) {
394 // We must NOT do any allocations during this callback.
395 // Using the simple linked lists avoids all allocations.
396 DCHECK_EQ(this->next_retired_worker_
, reinterpret_cast<ThreadData
*>(NULL
));
397 this->next_retired_worker_
= first_retired_worker_
;
398 first_retired_worker_
= this;
402 void ThreadData::Snapshot(bool reset_max
, ProcessDataSnapshot
* process_data
) {
403 // Add births that have run to completion to |collected_data|.
404 // |birth_counts| tracks the total number of births recorded at each location
405 // for which we have not seen a death count.
406 BirthCountMap birth_counts
;
407 ThreadData::SnapshotAllExecutedTasks(reset_max
, process_data
, &birth_counts
);
409 // Add births that are still active -- i.e. objects that have tallied a birth,
410 // but have not yet tallied a matching death, and hence must be either
411 // running, queued up, or being held in limbo for future posting.
412 for (BirthCountMap::const_iterator it
= birth_counts
.begin();
413 it
!= birth_counts
.end(); ++it
) {
414 if (it
->second
> 0) {
415 process_data
->tasks
.push_back(
416 TaskSnapshot(*it
->first
, DeathData(it
->second
), "Still_Alive"));
421 Births
* ThreadData::TallyABirth(const Location
& location
) {
422 BirthMap::iterator it
= birth_map_
.find(location
);
424 if (it
!= birth_map_
.end()) {
426 child
->RecordBirth();
428 child
= new Births(location
, *this); // Leak this.
429 // Lock since the map may get relocated now, and other threads sometimes
430 // snapshot it (but they lock before copying it).
431 base::AutoLock
lock(map_lock_
);
432 birth_map_
[location
] = child
;
435 if (kTrackParentChildLinks
&& status_
> PROFILING_ACTIVE
&&
436 !parent_stack_
.empty()) {
437 const Births
* parent
= parent_stack_
.top();
438 ParentChildPair
pair(parent
, child
);
439 if (parent_child_set_
.find(pair
) == parent_child_set_
.end()) {
440 // Lock since the map may get relocated now, and other threads sometimes
441 // snapshot it (but they lock before copying it).
442 base::AutoLock
lock(map_lock_
);
443 parent_child_set_
.insert(pair
);
450 void ThreadData::TallyADeath(const Births
& birth
,
451 int32 queue_duration
,
452 const TaskStopwatch
& stopwatch
) {
453 int32 run_duration
= stopwatch
.RunDurationMs();
455 // Stir in some randomness, plus add constant in case durations are zero.
456 const uint32 kSomePrimeNumber
= 2147483647;
457 random_number_
+= queue_duration
+ run_duration
+ kSomePrimeNumber
;
458 // An address is going to have some randomness to it as well ;-).
459 random_number_
^= static_cast<uint32
>(&birth
- reinterpret_cast<Births
*>(0));
461 // We don't have queue durations without OS timer. OS timer is automatically
462 // used for task-post-timing, so the use of an alternate timer implies all
463 // queue times are invalid, unless it was explicitly said that we can trust
464 // the alternate timer.
465 if (kAllowAlternateTimeSourceHandling
&&
467 !now_function_is_time_
) {
471 DeathMap::iterator it
= death_map_
.find(&birth
);
472 DeathData
* death_data
;
473 if (it
!= death_map_
.end()) {
474 death_data
= &it
->second
;
476 base::AutoLock
lock(map_lock_
); // Lock as the map may get relocated now.
477 death_data
= &death_map_
[&birth
];
478 } // Release lock ASAP.
479 death_data
->RecordDeath(queue_duration
, run_duration
, random_number_
);
481 if (!kTrackParentChildLinks
)
483 if (!parent_stack_
.empty()) { // We might get turned off.
484 DCHECK_EQ(parent_stack_
.top(), &birth
);
490 Births
* ThreadData::TallyABirthIfActive(const Location
& location
) {
491 if (!kTrackAllTaskObjects
)
492 return NULL
; // Not compiled in.
494 if (!TrackingStatus())
496 ThreadData
* current_thread_data
= Get();
497 if (!current_thread_data
)
499 return current_thread_data
->TallyABirth(location
);
503 void ThreadData::TallyRunOnNamedThreadIfTracking(
504 const base::TrackingInfo
& completed_task
,
505 const TaskStopwatch
& stopwatch
) {
506 if (!kTrackAllTaskObjects
)
507 return; // Not compiled in.
509 // Even if we have been DEACTIVATED, we will process any pending births so
510 // that our data structures (which counted the outstanding births) remain
512 const Births
* birth
= completed_task
.birth_tally
;
515 ThreadData
* current_thread_data
= stopwatch
.GetThreadData();
516 if (!current_thread_data
)
519 // Watch out for a race where status_ is changing, and hence one or both
520 // of start_of_run or end_of_run is zero. In that case, we didn't bother to
521 // get a time value since we "weren't tracking" and we were trying to be
522 // efficient by not calling for a genuine time value. For simplicity, we'll
523 // use a default zero duration when we can't calculate a true value.
524 TrackedTime start_of_run
= stopwatch
.StartTime();
525 int32 queue_duration
= 0;
526 if (!start_of_run
.is_null()) {
527 queue_duration
= (start_of_run
- completed_task
.EffectiveTimePosted())
530 current_thread_data
->TallyADeath(*birth
, queue_duration
, stopwatch
);
534 void ThreadData::TallyRunOnWorkerThreadIfTracking(
536 const TrackedTime
& time_posted
,
537 const TaskStopwatch
& stopwatch
) {
538 if (!kTrackAllTaskObjects
)
539 return; // Not compiled in.
541 // Even if we have been DEACTIVATED, we will process any pending births so
542 // that our data structures (which counted the outstanding births) remain
547 // TODO(jar): Support the option to coalesce all worker-thread activity under
548 // one ThreadData instance that uses locks to protect *all* access. This will
549 // reduce memory (making it provably bounded), but run incrementally slower
550 // (since we'll use locks on TallyABirth and TallyADeath). The good news is
551 // that the locks on TallyADeath will be *after* the worker thread has run,
552 // and hence nothing will be waiting for the completion (... besides some
553 // other thread that might like to run). Also, the worker threads tasks are
554 // generally longer, and hence the cost of the lock may perchance be amortized
555 // over the long task's lifetime.
556 ThreadData
* current_thread_data
= stopwatch
.GetThreadData();
557 if (!current_thread_data
)
560 TrackedTime start_of_run
= stopwatch
.StartTime();
561 int32 queue_duration
= 0;
562 if (!start_of_run
.is_null()) {
563 queue_duration
= (start_of_run
- time_posted
).InMilliseconds();
565 current_thread_data
->TallyADeath(*birth
, queue_duration
, stopwatch
);
569 void ThreadData::TallyRunInAScopedRegionIfTracking(
571 const TaskStopwatch
& stopwatch
) {
572 if (!kTrackAllTaskObjects
)
573 return; // Not compiled in.
575 // Even if we have been DEACTIVATED, we will process any pending births so
576 // that our data structures (which counted the outstanding births) remain
581 ThreadData
* current_thread_data
= stopwatch
.GetThreadData();
582 if (!current_thread_data
)
585 int32 queue_duration
= 0;
586 current_thread_data
->TallyADeath(*birth
, queue_duration
, stopwatch
);
590 void ThreadData::SnapshotAllExecutedTasks(bool reset_max
,
591 ProcessDataSnapshot
* process_data
,
592 BirthCountMap
* birth_counts
) {
593 if (!kTrackAllTaskObjects
)
594 return; // Not compiled in.
596 // Get an unchanging copy of a ThreadData list.
597 ThreadData
* my_list
= ThreadData::first();
599 // Gather data serially.
600 // This hackish approach *can* get some slighly corrupt tallies, as we are
601 // grabbing values without the protection of a lock, but it has the advantage
602 // of working even with threads that don't have message loops. If a user
603 // sees any strangeness, they can always just run their stats gathering a
605 for (ThreadData
* thread_data
= my_list
;
607 thread_data
= thread_data
->next()) {
608 thread_data
->SnapshotExecutedTasks(reset_max
, process_data
, birth_counts
);
612 void ThreadData::SnapshotExecutedTasks(bool reset_max
,
613 ProcessDataSnapshot
* process_data
,
614 BirthCountMap
* birth_counts
) {
615 // Get copy of data, so that the data will not change during the iterations
617 ThreadData::BirthMap birth_map
;
618 ThreadData::DeathMap death_map
;
619 ThreadData::ParentChildSet parent_child_set
;
620 SnapshotMaps(reset_max
, &birth_map
, &death_map
, &parent_child_set
);
622 for (ThreadData::DeathMap::const_iterator it
= death_map
.begin();
623 it
!= death_map
.end(); ++it
) {
624 process_data
->tasks
.push_back(
625 TaskSnapshot(*it
->first
, it
->second
, thread_name()));
626 (*birth_counts
)[it
->first
] -= it
->first
->birth_count();
629 for (ThreadData::BirthMap::const_iterator it
= birth_map
.begin();
630 it
!= birth_map
.end(); ++it
) {
631 (*birth_counts
)[it
->second
] += it
->second
->birth_count();
634 if (!kTrackParentChildLinks
)
637 for (ThreadData::ParentChildSet::const_iterator it
= parent_child_set
.begin();
638 it
!= parent_child_set
.end(); ++it
) {
639 process_data
->descendants
.push_back(ParentChildPairSnapshot(*it
));
643 // This may be called from another thread.
644 void ThreadData::SnapshotMaps(bool reset_max
,
647 ParentChildSet
* parent_child_set
) {
648 base::AutoLock
lock(map_lock_
);
649 for (BirthMap::const_iterator it
= birth_map_
.begin();
650 it
!= birth_map_
.end(); ++it
)
651 (*birth_map
)[it
->first
] = it
->second
;
652 for (DeathMap::iterator it
= death_map_
.begin();
653 it
!= death_map_
.end(); ++it
) {
654 (*death_map
)[it
->first
] = it
->second
;
656 it
->second
.ResetMax();
659 if (!kTrackParentChildLinks
)
662 for (ParentChildSet::iterator it
= parent_child_set_
.begin();
663 it
!= parent_child_set_
.end(); ++it
)
664 parent_child_set
->insert(*it
);
668 void ThreadData::ResetAllThreadData() {
669 ThreadData
* my_list
= first();
671 for (ThreadData
* thread_data
= my_list
;
673 thread_data
= thread_data
->next())
674 thread_data
->Reset();
677 void ThreadData::Reset() {
678 base::AutoLock
lock(map_lock_
);
679 for (DeathMap::iterator it
= death_map_
.begin();
680 it
!= death_map_
.end(); ++it
)
682 for (BirthMap::iterator it
= birth_map_
.begin();
683 it
!= birth_map_
.end(); ++it
)
687 static void OptionallyInitializeAlternateTimer() {
688 NowFunction
* alternate_time_source
= GetAlternateTimeSource();
689 if (alternate_time_source
)
690 ThreadData::SetAlternateTimeSource(alternate_time_source
);
693 bool ThreadData::Initialize() {
694 if (!kTrackAllTaskObjects
)
695 return false; // Not compiled in.
696 if (status_
>= DEACTIVATED
)
697 return true; // Someone else did the initialization.
698 // Due to racy lazy initialization in tests, we'll need to recheck status_
699 // after we acquire the lock.
701 // Ensure that we don't double initialize tls. We are called when single
702 // threaded in the product, but some tests may be racy and lazy about our
704 base::AutoLock
lock(*list_lock_
.Pointer());
705 if (status_
>= DEACTIVATED
)
706 return true; // Someone raced in here and beat us.
708 // Put an alternate timer in place if the environment calls for it, such as
709 // for tracking TCMalloc allocations. This insertion is idempotent, so we
710 // don't mind if there is a race, and we'd prefer not to be in a lock while
712 if (kAllowAlternateTimeSourceHandling
)
713 OptionallyInitializeAlternateTimer();
715 // Perform the "real" TLS initialization now, and leave it intact through
716 // process termination.
717 if (!tls_index_
.initialized()) { // Testing may have initialized this.
718 DCHECK_EQ(status_
, UNINITIALIZED
);
719 tls_index_
.Initialize(&ThreadData::OnThreadTermination
);
720 if (!tls_index_
.initialized())
723 // TLS was initialzed for us earlier.
724 DCHECK_EQ(status_
, DORMANT_DURING_TESTS
);
727 // Incarnation counter is only significant to testing, as it otherwise will
728 // never again change in this process.
729 ++incarnation_counter_
;
731 // The lock is not critical for setting status_, but it doesn't hurt. It also
732 // ensures that if we have a racy initialization, that we'll bail as soon as
733 // we get the lock earlier in this method.
734 status_
= kInitialStartupState
;
735 if (!kTrackParentChildLinks
&&
736 kInitialStartupState
== PROFILING_CHILDREN_ACTIVE
)
737 status_
= PROFILING_ACTIVE
;
738 DCHECK(status_
!= UNINITIALIZED
);
743 bool ThreadData::InitializeAndSetTrackingStatus(Status status
) {
744 DCHECK_GE(status
, DEACTIVATED
);
745 DCHECK_LE(status
, PROFILING_CHILDREN_ACTIVE
);
747 if (!Initialize()) // No-op if already initialized.
748 return false; // Not compiled in.
750 if (!kTrackParentChildLinks
&& status
> DEACTIVATED
)
751 status
= PROFILING_ACTIVE
;
757 ThreadData::Status
ThreadData::status() {
762 bool ThreadData::TrackingStatus() {
763 return status_
> DEACTIVATED
;
767 bool ThreadData::TrackingParentChildStatus() {
768 return status_
>= PROFILING_CHILDREN_ACTIVE
;
772 void ThreadData::PrepareForStartOfRun(const Births
* parent
) {
773 if (kTrackParentChildLinks
&& parent
&& status_
> PROFILING_ACTIVE
) {
774 ThreadData
* current_thread_data
= Get();
775 if (current_thread_data
)
776 current_thread_data
->parent_stack_
.push(parent
);
781 void ThreadData::SetAlternateTimeSource(NowFunction
* now_function
) {
782 DCHECK(now_function
);
783 if (kAllowAlternateTimeSourceHandling
)
784 now_function_
= now_function
;
788 void ThreadData::EnableProfilerTiming() {
789 base::subtle::NoBarrier_Store(&g_profiler_timing_enabled
, ENABLED_TIMING
);
793 TrackedTime
ThreadData::Now() {
794 if (kAllowAlternateTimeSourceHandling
&& now_function_
)
795 return TrackedTime::FromMilliseconds((*now_function_
)());
796 if (kTrackAllTaskObjects
&& IsProfilerTimingEnabled() && TrackingStatus())
797 return TrackedTime::Now();
798 return TrackedTime(); // Super fast when disabled, or not compiled.
802 void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count
) {
803 base::AutoLock
lock(*list_lock_
.Pointer());
804 if (worker_thread_data_creation_count_
== 0)
805 return; // We haven't really run much, and couldn't have leaked.
807 // TODO(jar): until this is working on XP, don't run the real test.
809 // Verify that we've at least shutdown/cleanup the major namesd threads. The
810 // caller should tell us how many thread shutdowns should have taken place by
812 CHECK_GT(cleanup_count_
, major_threads_shutdown_count
);
817 void ThreadData::ShutdownSingleThreadedCleanup(bool leak
) {
818 // This is only called from test code, where we need to cleanup so that
819 // additional tests can be run.
820 // We must be single threaded... but be careful anyway.
821 if (!InitializeAndSetTrackingStatus(DEACTIVATED
))
823 ThreadData
* thread_data_list
;
825 base::AutoLock
lock(*list_lock_
.Pointer());
826 thread_data_list
= all_thread_data_list_head_
;
827 all_thread_data_list_head_
= NULL
;
828 ++incarnation_counter_
;
829 // To be clean, break apart the retired worker list (though we leak them).
830 while (first_retired_worker_
) {
831 ThreadData
* worker
= first_retired_worker_
;
832 CHECK_GT(worker
->worker_thread_number_
, 0);
833 first_retired_worker_
= worker
->next_retired_worker_
;
834 worker
->next_retired_worker_
= NULL
;
838 // Put most global static back in pristine shape.
839 worker_thread_data_creation_count_
= 0;
841 tls_index_
.Set(NULL
);
842 status_
= DORMANT_DURING_TESTS
; // Almost UNINITIALIZED.
844 // To avoid any chance of racing in unit tests, which is the only place we
845 // call this function, we may sometimes leak all the data structures we
846 // recovered, as they may still be in use on threads from prior tests!
848 ThreadData
* thread_data
= thread_data_list
;
849 while (thread_data
) {
850 ANNOTATE_LEAKING_OBJECT_PTR(thread_data
);
851 thread_data
= thread_data
->next();
856 // When we want to cleanup (on a single thread), here is what we do.
858 // Do actual recursive delete in all ThreadData instances.
859 while (thread_data_list
) {
860 ThreadData
* next_thread_data
= thread_data_list
;
861 thread_data_list
= thread_data_list
->next();
863 for (BirthMap::iterator it
= next_thread_data
->birth_map_
.begin();
864 next_thread_data
->birth_map_
.end() != it
; ++it
)
865 delete it
->second
; // Delete the Birth Records.
866 delete next_thread_data
; // Includes all Death Records.
870 //------------------------------------------------------------------------------
871 TaskStopwatch::TaskStopwatch()
872 : wallclock_duration_ms_(0),
873 current_thread_data_(NULL
),
874 excluded_duration_ms_(0),
882 TaskStopwatch::~TaskStopwatch() {
884 DCHECK(state_
!= RUNNING
);
885 DCHECK(child_
== NULL
);
889 void TaskStopwatch::Start() {
891 DCHECK(state_
== CREATED
);
895 start_time_
= ThreadData::Now();
897 current_thread_data_
= ThreadData::Get();
898 if (!current_thread_data_
)
901 parent_
= current_thread_data_
->current_stopwatch_
;
904 DCHECK(parent_
->state_
== RUNNING
);
905 DCHECK(parent_
->child_
== NULL
);
906 parent_
->child_
= this;
909 current_thread_data_
->current_stopwatch_
= this;
912 void TaskStopwatch::Stop() {
913 const TrackedTime end_time
= ThreadData::Now();
915 DCHECK(state_
== RUNNING
);
917 DCHECK(child_
== NULL
);
920 if (!start_time_
.is_null() && !end_time
.is_null()) {
921 wallclock_duration_ms_
= (end_time
- start_time_
).InMilliseconds();
924 if (!current_thread_data_
)
927 DCHECK(current_thread_data_
->current_stopwatch_
== this);
928 current_thread_data_
->current_stopwatch_
= parent_
;
933 DCHECK(parent_
->state_
== RUNNING
);
934 DCHECK(parent_
->child_
== this);
935 parent_
->child_
= NULL
;
937 parent_
->excluded_duration_ms_
+= wallclock_duration_ms_
;
941 TrackedTime
TaskStopwatch::StartTime() const {
943 DCHECK(state_
!= CREATED
);
949 int32
TaskStopwatch::RunDurationMs() const {
951 DCHECK(state_
== STOPPED
);
954 return wallclock_duration_ms_
- excluded_duration_ms_
;
957 ThreadData
* TaskStopwatch::GetThreadData() const {
959 DCHECK(state_
!= CREATED
);
962 return current_thread_data_
;
965 //------------------------------------------------------------------------------
966 TaskSnapshot::TaskSnapshot() {
969 TaskSnapshot::TaskSnapshot(const BirthOnThread
& birth
,
970 const DeathData
& death_data
,
971 const std::string
& death_thread_name
)
973 death_data(death_data
),
974 death_thread_name(death_thread_name
) {
977 TaskSnapshot::~TaskSnapshot() {
980 //------------------------------------------------------------------------------
981 // ParentChildPairSnapshot
983 ParentChildPairSnapshot::ParentChildPairSnapshot() {
986 ParentChildPairSnapshot::ParentChildPairSnapshot(
987 const ThreadData::ParentChildPair
& parent_child
)
988 : parent(*parent_child
.first
),
989 child(*parent_child
.second
) {
992 ParentChildPairSnapshot::~ParentChildPairSnapshot() {
995 //------------------------------------------------------------------------------
996 // ProcessDataSnapshot
998 ProcessDataSnapshot::ProcessDataSnapshot()
999 #if !defined(OS_NACL)
1000 : process_id(base::GetCurrentProcId()) {
1006 ProcessDataSnapshot::~ProcessDataSnapshot() {
1009 } // namespace tracked_objects