1 // Copyright 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/resources/picture_pile.h"
11 #include "cc/base/region.h"
12 #include "cc/resources/picture_pile_impl.h"
13 #include "cc/resources/raster_worker_pool.h"
14 #include "skia/ext/analysis_canvas.h"
17 // Layout pixel buffer around the visible layer rect to record. Any base
18 // picture that intersects the visible layer rect expanded by this distance
20 const int kPixelDistanceToRecord
= 8000;
21 // We don't perform solid color analysis on images that have more than 10 skia
23 const int kOpCountThatIsOkToAnalyze
= 10;
25 // Dimensions of the tiles in this picture pile as well as the dimensions of
26 // the base picture in each tile.
27 const int kBasePictureSize
= 512;
28 const int kTileGridBorderPixels
= 1;
30 // Invalidation frequency settings. kInvalidationFrequencyThreshold is a value
31 // between 0 and 1 meaning invalidation frequency between 0% and 100% that
32 // indicates when to stop invalidating offscreen regions.
33 // kFrequentInvalidationDistanceThreshold defines what it means to be
34 // "offscreen" in terms of distance to visible in css pixels.
35 const float kInvalidationFrequencyThreshold
= 0.75f
;
36 const int kFrequentInvalidationDistanceThreshold
= 512;
38 // TODO(humper): The density threshold here is somewhat arbitrary; need a
39 // way to set // this from the command line so we can write a benchmark
40 // script and find a sweet spot.
41 const float kDensityThreshold
= 0.5f
;
43 bool rect_sort_y(const gfx::Rect
& r1
, const gfx::Rect
& r2
) {
44 return r1
.y() < r2
.y() || (r1
.y() == r2
.y() && r1
.x() < r2
.x());
47 bool rect_sort_x(const gfx::Rect
& r1
, const gfx::Rect
& r2
) {
48 return r1
.x() < r2
.x() || (r1
.x() == r2
.x() && r1
.y() < r2
.y());
51 float PerformClustering(const std::vector
<gfx::Rect
>& tiles
,
52 std::vector
<gfx::Rect
>* clustered_rects
) {
53 // These variables track the record area and invalid area
54 // for the entire clustering
55 int total_record_area
= 0;
56 int total_invalid_area
= 0;
58 // These variables track the record area and invalid area
59 // for the current cluster being constructed.
60 gfx::Rect cur_record_rect
;
61 int cluster_record_area
= 0, cluster_invalid_area
= 0;
63 for (std::vector
<gfx::Rect
>::const_iterator it
= tiles
.begin();
66 gfx::Rect invalid_tile
= *it
;
68 // For each tile, we consider adding the invalid tile to the
69 // current record rectangle. Only add it if the amount of empty
70 // space created is below a density threshold.
71 int tile_area
= invalid_tile
.width() * invalid_tile
.height();
73 gfx::Rect proposed_union
= cur_record_rect
;
74 proposed_union
.Union(invalid_tile
);
75 int proposed_area
= proposed_union
.width() * proposed_union
.height();
76 float proposed_density
=
77 static_cast<float>(cluster_invalid_area
+ tile_area
) /
78 static_cast<float>(proposed_area
);
80 if (proposed_density
>= kDensityThreshold
) {
81 // It's okay to add this invalid tile to the
82 // current recording rectangle.
83 cur_record_rect
= proposed_union
;
84 cluster_record_area
= proposed_area
;
85 cluster_invalid_area
+= tile_area
;
86 total_invalid_area
+= tile_area
;
88 // Adding this invalid tile to the current recording rectangle
89 // would exceed our badness threshold, so put the current rectangle
90 // in the list of recording rects, and start a new one.
91 clustered_rects
->push_back(cur_record_rect
);
92 total_record_area
+= cluster_record_area
;
93 cur_record_rect
= invalid_tile
;
94 cluster_invalid_area
= tile_area
;
95 cluster_record_area
= tile_area
;
99 DCHECK(!cur_record_rect
.IsEmpty());
100 clustered_rects
->push_back(cur_record_rect
);
101 total_record_area
+= cluster_record_area
;;
103 DCHECK_NE(total_record_area
, 0);
105 return static_cast<float>(total_invalid_area
) /
106 static_cast<float>(total_record_area
);
109 void ClusterTiles(const std::vector
<gfx::Rect
>& invalid_tiles
,
110 std::vector
<gfx::Rect
>* record_rects
) {
111 TRACE_EVENT1("cc", "ClusterTiles",
113 invalid_tiles
.size());
114 if (invalid_tiles
.size() <= 1) {
115 // Quickly handle the special case for common
116 // single-invalidation update, and also the less common
117 // case of no tiles passed in.
118 *record_rects
= invalid_tiles
;
122 // Sort the invalid tiles by y coordinate.
123 std::vector
<gfx::Rect
> invalid_tiles_vertical
= invalid_tiles
;
124 std::sort(invalid_tiles_vertical
.begin(),
125 invalid_tiles_vertical
.end(),
128 std::vector
<gfx::Rect
> vertical_clustering
;
129 float vertical_density
=
130 PerformClustering(invalid_tiles_vertical
, &vertical_clustering
);
132 // If vertical density is optimal, then we can return early.
133 if (vertical_density
== 1.f
) {
134 *record_rects
= vertical_clustering
;
138 // Now try again with a horizontal sort, see which one is best
139 std::vector
<gfx::Rect
> invalid_tiles_horizontal
= invalid_tiles
;
140 std::sort(invalid_tiles_horizontal
.begin(),
141 invalid_tiles_horizontal
.end(),
144 std::vector
<gfx::Rect
> horizontal_clustering
;
145 float horizontal_density
=
146 PerformClustering(invalid_tiles_horizontal
, &horizontal_clustering
);
148 if (vertical_density
< horizontal_density
) {
149 *record_rects
= horizontal_clustering
;
153 *record_rects
= vertical_clustering
;
160 PicturePile::PicturePile()
161 : min_contents_scale_(0),
162 slow_down_raster_scale_factor_for_debug_(0),
163 can_use_lcd_text_(true),
164 has_any_recordings_(false),
165 is_solid_color_(false),
166 solid_color_(SK_ColorTRANSPARENT
),
167 pixel_record_distance_(kPixelDistanceToRecord
),
168 is_suitable_for_gpu_rasterization_(true) {
169 tiling_
.SetMaxTextureSize(gfx::Size(kBasePictureSize
, kBasePictureSize
));
170 tile_grid_info_
.fTileInterval
.setEmpty();
171 tile_grid_info_
.fMargin
.setEmpty();
172 tile_grid_info_
.fOffset
.setZero();
175 PicturePile::~PicturePile() {
178 bool PicturePile::UpdateAndExpandInvalidation(
179 ContentLayerClient
* painter
,
180 Region
* invalidation
,
181 bool can_use_lcd_text
,
182 const gfx::Size
& layer_size
,
183 const gfx::Rect
& visible_layer_rect
,
185 Picture::RecordingMode recording_mode
) {
186 bool can_use_lcd_text_changed
= can_use_lcd_text_
!= can_use_lcd_text
;
187 can_use_lcd_text_
= can_use_lcd_text
;
189 gfx::Rect interest_rect
= visible_layer_rect
;
190 interest_rect
.Inset(-pixel_record_distance_
, -pixel_record_distance_
);
191 recorded_viewport_
= interest_rect
;
192 recorded_viewport_
.Intersect(gfx::Rect(layer_size
));
195 ApplyInvalidationAndResize(interest_rect
, invalidation
, layer_size
,
196 frame_number
, can_use_lcd_text_changed
);
197 std::vector
<gfx::Rect
> invalid_tiles
;
198 GetInvalidTileRects(interest_rect
, invalidation
, visible_layer_rect
,
199 frame_number
, &invalid_tiles
);
200 std::vector
<gfx::Rect
> record_rects
;
201 ClusterTiles(invalid_tiles
, &record_rects
);
203 if (record_rects
.empty())
206 CreatePictures(painter
, recording_mode
, record_rects
);
208 DetermineIfSolidColor();
210 has_any_recordings_
= true;
211 DCHECK(CanRasterSlowTileCheck(recorded_viewport_
));
215 bool PicturePile::ApplyInvalidationAndResize(const gfx::Rect
& interest_rect
,
216 Region
* invalidation
,
217 const gfx::Size
& layer_size
,
219 bool can_use_lcd_text_changed
) {
220 bool updated
= false;
222 Region synthetic_invalidation
;
223 gfx::Size old_tiling_size
= GetSize();
224 if (old_tiling_size
!= layer_size
) {
225 tiling_
.SetTilingSize(layer_size
);
228 if (can_use_lcd_text_changed
) {
229 // When LCD text is enabled/disabled, we must drop any raster tiles for
230 // the pile, so they can be recreated in a manner consistent with the new
231 // setting. We do this with |synthetic_invalidation| since we don't need to
232 // do a new recording, just invalidate rastered content.
233 synthetic_invalidation
.Union(gfx::Rect(GetSize()));
237 gfx::Rect interest_rect_over_tiles
=
238 tiling_
.ExpandRectToTileBounds(interest_rect
);
240 if (old_tiling_size
!= layer_size
) {
241 gfx::Size
min_tiling_size(
242 std::min(GetSize().width(), old_tiling_size
.width()),
243 std::min(GetSize().height(), old_tiling_size
.height()));
244 gfx::Size
max_tiling_size(
245 std::max(GetSize().width(), old_tiling_size
.width()),
246 std::max(GetSize().height(), old_tiling_size
.height()));
248 has_any_recordings_
= false;
250 // Drop recordings that are outside the new or old layer bounds or that
251 // changed size. Newly exposed areas are considered invalidated.
252 // Previously exposed areas that are now outside of bounds also need to
253 // be invalidated, as they may become part of raster when scale < 1.
254 std::vector
<PictureMapKey
> to_erase
;
255 int min_toss_x
= tiling_
.num_tiles_x();
256 if (max_tiling_size
.width() > min_tiling_size
.width()) {
258 tiling_
.FirstBorderTileXIndexFromSrcCoord(min_tiling_size
.width());
260 int min_toss_y
= tiling_
.num_tiles_y();
261 if (max_tiling_size
.height() > min_tiling_size
.height()) {
263 tiling_
.FirstBorderTileYIndexFromSrcCoord(min_tiling_size
.height());
265 for (const auto& key_picture_pair
: picture_map_
) {
266 const PictureMapKey
& key
= key_picture_pair
.first
;
267 if (key
.first
< min_toss_x
&& key
.second
< min_toss_y
) {
268 has_any_recordings_
|= !!key_picture_pair
.second
.GetPicture();
271 to_erase
.push_back(key
);
274 for (size_t i
= 0; i
< to_erase
.size(); ++i
)
275 picture_map_
.erase(to_erase
[i
]);
277 // If a recording is dropped and not re-recorded below, invalidate that
278 // full recording to cause any raster tiles that would use it to be
280 // If the recording will be replaced below, invalidate newly exposed
281 // areas and previously exposed areas to force raster tiles that include the
282 // old recording to know there is new recording to display.
283 gfx::Rect min_tiling_rect_over_tiles
=
284 tiling_
.ExpandRectToTileBounds(gfx::Rect(min_tiling_size
));
285 if (min_toss_x
< tiling_
.num_tiles_x()) {
286 // The bounds which we want to invalidate are the tiles along the old
287 // edge of the pile when expanding, or the new edge of the pile when
288 // shrinking. In either case, it's the difference of the two, so we'll
289 // call this bounding box the DELTA EDGE RECT.
291 // In the picture below, the delta edge rect would be the bounding box of
292 // tiles {h,i,j}. |min_toss_x| would be equal to the horizontal index of
295 // min pile edge-v max pile edge-v
296 // ---------------+ - - - - - - - -+
297 // mmppssvvyybbeeh|h .
298 // mmppssvvyybbeeh|h .
299 // nnqqttwwzzccffi|i .
300 // nnqqttwwzzccffi|i .
301 // oorruuxxaaddggj|j .
302 // oorruuxxaaddggj|j .
303 // ---------------+ - - - - - - - -+ <- min pile edge
305 // - - - - - - - - - - - - - - - -+ <- max pile edge
307 // If you were to slide a vertical beam from the left edge of the
308 // delta edge rect toward the right, it would either hit the right edge
309 // of the delta edge rect, or the interest rect (expanded to the bounds
310 // of the tiles it touches). The same is true for a beam parallel to
311 // any of the four edges, sliding across the delta edge rect. We use
312 // the union of these four rectangles generated by these beams to
313 // determine which part of the delta edge rect is outside of the expanded
316 // Case 1: Intersect rect is outside the delta edge rect. It can be
317 // either on the left or the right. The |left_rect| and |right_rect|,
318 // cover this case, one will be empty and one will cover the full
319 // delta edge rect. In the picture below, |left_rect| would cover the
320 // delta edge rect, and |right_rect| would be empty.
321 // +----------------------+ |^^^^^^^^^^^^^^^|
322 // |===> DELTA EDGE RECT | | |
323 // |===> | | INTEREST RECT |
326 // +----------------------+ |vvvvvvvvvvvvvvv|
328 // Case 2: Interest rect is inside the delta edge rect. It will always
329 // fill the entire delta edge rect horizontally since the old edge rect
330 // is a single tile wide, and the interest rect has been expanded to the
331 // bounds of the tiles it touches. In this case the |left_rect| and
332 // |right_rect| will be empty, but the case is handled by the |top_rect|
333 // and |bottom_rect|. In the picture below, neither the |top_rect| nor
334 // |bottom_rect| would empty, they would each cover the area of the old
335 // edge rect outside the expanded interest rect.
336 // +-----------------+
337 // |:::::::::::::::::|
338 // |:::::::::::::::::|
339 // |vvvvvvvvvvvvvvvvv|
341 // +-----------------+
344 // +-----------------+
346 // | DELTA EDGE RECT |
347 // +-----------------+
349 // Lastly, we need to consider tiles inside the expanded interest rect.
350 // For those tiles, we want to invalidate exactly the newly exposed
351 // pixels. In the picture below the tiles in the delta edge rect have
352 // been resized and the area covered by periods must be invalidated. The
353 // |exposed_rect| will cover exactly that area.
355 // +---------+-------+
358 // | DELTA EDGE.RECT.|
365 // +---------+-------+
367 int left
= tiling_
.TilePositionX(min_toss_x
);
368 int right
= left
+ tiling_
.TileSizeX(min_toss_x
);
369 int top
= min_tiling_rect_over_tiles
.y();
370 int bottom
= min_tiling_rect_over_tiles
.bottom();
372 int left_until
= std::min(interest_rect_over_tiles
.x(), right
);
373 int right_until
= std::max(interest_rect_over_tiles
.right(), left
);
374 int top_until
= std::min(interest_rect_over_tiles
.y(), bottom
);
375 int bottom_until
= std::max(interest_rect_over_tiles
.bottom(), top
);
377 int exposed_left
= min_tiling_size
.width();
378 int exposed_left_until
= max_tiling_size
.width();
379 int exposed_top
= top
;
380 int exposed_bottom
= max_tiling_size
.height();
381 DCHECK_GE(exposed_left
, left
);
383 gfx::Rect
left_rect(left
, top
, left_until
- left
, bottom
- top
);
384 gfx::Rect
right_rect(right_until
, top
, right
- right_until
, bottom
- top
);
385 gfx::Rect
top_rect(left
, top
, right
- left
, top_until
- top
);
386 gfx::Rect
bottom_rect(
387 left
, bottom_until
, right
- left
, bottom
- bottom_until
);
388 gfx::Rect
exposed_rect(exposed_left
,
390 exposed_left_until
- exposed_left
,
391 exposed_bottom
- exposed_top
);
392 synthetic_invalidation
.Union(left_rect
);
393 synthetic_invalidation
.Union(right_rect
);
394 synthetic_invalidation
.Union(top_rect
);
395 synthetic_invalidation
.Union(bottom_rect
);
396 synthetic_invalidation
.Union(exposed_rect
);
398 if (min_toss_y
< tiling_
.num_tiles_y()) {
399 // The same thing occurs here as in the case above, but the invalidation
400 // rect is the bounding box around the bottom row of tiles in the min
401 // pile. This would be tiles {o,r,u,x,a,d,g,j} in the above picture.
403 int top
= tiling_
.TilePositionY(min_toss_y
);
404 int bottom
= top
+ tiling_
.TileSizeY(min_toss_y
);
405 int left
= min_tiling_rect_over_tiles
.x();
406 int right
= min_tiling_rect_over_tiles
.right();
408 int top_until
= std::min(interest_rect_over_tiles
.y(), bottom
);
409 int bottom_until
= std::max(interest_rect_over_tiles
.bottom(), top
);
410 int left_until
= std::min(interest_rect_over_tiles
.x(), right
);
411 int right_until
= std::max(interest_rect_over_tiles
.right(), left
);
413 int exposed_top
= min_tiling_size
.height();
414 int exposed_top_until
= max_tiling_size
.height();
415 int exposed_left
= left
;
416 int exposed_right
= max_tiling_size
.width();
417 DCHECK_GE(exposed_top
, top
);
419 gfx::Rect
left_rect(left
, top
, left_until
- left
, bottom
- top
);
420 gfx::Rect
right_rect(right_until
, top
, right
- right_until
, bottom
- top
);
421 gfx::Rect
top_rect(left
, top
, right
- left
, top_until
- top
);
422 gfx::Rect
bottom_rect(
423 left
, bottom_until
, right
- left
, bottom
- bottom_until
);
424 gfx::Rect
exposed_rect(exposed_left
,
426 exposed_right
- exposed_left
,
427 exposed_top_until
- exposed_top
);
428 synthetic_invalidation
.Union(left_rect
);
429 synthetic_invalidation
.Union(right_rect
);
430 synthetic_invalidation
.Union(top_rect
);
431 synthetic_invalidation
.Union(bottom_rect
);
432 synthetic_invalidation
.Union(exposed_rect
);
436 // Detect cases where the full pile is invalidated, in this situation we
437 // can just drop/invalidate everything.
438 if (invalidation
->Contains(gfx::Rect(old_tiling_size
)) ||
439 invalidation
->Contains(gfx::Rect(GetSize()))) {
440 for (auto& it
: picture_map_
)
441 updated
= it
.second
.Invalidate(frame_number
) || updated
;
443 // Expand invalidation that is on tiles that aren't in the interest rect and
444 // will not be re-recorded below. These tiles are no longer valid and should
445 // be considerered fully invalid, so we can know to not keep around raster
446 // tiles that intersect with these recording tiles.
447 Region invalidation_expanded_to_full_tiles
;
449 for (Region::Iterator
i(*invalidation
); i
.has_rect(); i
.next()) {
450 gfx::Rect invalid_rect
= i
.rect();
452 // This rect covers the bounds (excluding borders) of all tiles whose
453 // bounds (including borders) touch the |interest_rect|. This matches
454 // the iteration of the |invalid_rect| below which includes borders when
455 // calling Invalidate() on pictures.
456 gfx::Rect invalid_rect_outside_interest_rect_tiles
=
457 tiling_
.ExpandRectToTileBounds(invalid_rect
);
458 // We subtract the |interest_rect_over_tiles| which represents the bounds
459 // of tiles that will be re-recorded below. This matches the iteration of
460 // |interest_rect| below which includes borders.
461 // TODO(danakj): We should have a Rect-subtract-Rect-to-2-rects operator
462 // instead of using Rect::Subtract which gives you the bounding box of the
464 invalid_rect_outside_interest_rect_tiles
.Subtract(
465 interest_rect_over_tiles
);
466 invalidation_expanded_to_full_tiles
.Union(
467 invalid_rect_outside_interest_rect_tiles
);
469 // Split this inflated invalidation across tile boundaries and apply it
470 // to all tiles that it touches.
471 bool include_borders
= true;
472 for (TilingData::Iterator
iter(&tiling_
, invalid_rect
, include_borders
);
475 const PictureMapKey
& key
= iter
.index();
477 PictureMap::iterator picture_it
= picture_map_
.find(key
);
478 if (picture_it
== picture_map_
.end())
481 // Inform the grid cell that it has been invalidated in this frame.
482 updated
= picture_it
->second
.Invalidate(frame_number
) || updated
;
483 // Invalidate drops the picture so the whole tile better be invalidated
484 // if it won't be re-recorded below.
485 DCHECK_IMPLIES(!tiling_
.TileBounds(key
.first
, key
.second
)
486 .Intersects(interest_rect_over_tiles
),
487 invalidation_expanded_to_full_tiles
.Contains(
488 tiling_
.TileBounds(key
.first
, key
.second
)));
491 invalidation
->Union(invalidation_expanded_to_full_tiles
);
494 invalidation
->Union(synthetic_invalidation
);
498 void PicturePile::GetInvalidTileRects(const gfx::Rect
& interest_rect
,
499 Region
* invalidation
,
500 const gfx::Rect
& visible_layer_rect
,
502 std::vector
<gfx::Rect
>* invalid_tiles
) {
503 // Make a list of all invalid tiles; we will attempt to
504 // cluster these into multiple invalidation regions.
505 bool include_borders
= true;
506 for (TilingData::Iterator
it(&tiling_
, interest_rect
, include_borders
); it
;
508 const PictureMapKey
& key
= it
.index();
509 PictureInfo
& info
= picture_map_
[key
];
511 gfx::Rect rect
= PaddedRect(key
);
512 int distance_to_visible
=
513 rect
.ManhattanInternalDistance(visible_layer_rect
);
515 if (info
.NeedsRecording(frame_number
, distance_to_visible
)) {
516 gfx::Rect tile
= tiling_
.TileBounds(key
.first
, key
.second
);
517 invalid_tiles
->push_back(tile
);
518 } else if (!info
.GetPicture()) {
519 if (recorded_viewport_
.Intersects(rect
)) {
520 // Recorded viewport is just an optimization for a fully recorded
521 // interest rect. In this case, a tile in that rect has declined
522 // to be recorded (probably due to frequent invalidations).
523 // TODO(enne): Shrink the recorded_viewport_ rather than clearing.
524 recorded_viewport_
= gfx::Rect();
527 // If a tile in the interest rect is not recorded, the entire tile needs
528 // to be considered invalid, so that we know not to keep around raster
529 // tiles that intersect this recording tile.
530 invalidation
->Union(tiling_
.TileBounds(it
.index_x(), it
.index_y()));
535 void PicturePile::CreatePictures(ContentLayerClient
* painter
,
536 Picture::RecordingMode recording_mode
,
537 const std::vector
<gfx::Rect
>& record_rects
) {
538 for (const auto& record_rect
: record_rects
) {
539 gfx::Rect padded_record_rect
= PadRect(record_rect
);
541 int repeat_count
= std::max(1, slow_down_raster_scale_factor_for_debug_
);
542 scoped_refptr
<Picture
> picture
;
544 // Note: Currently, gathering of pixel refs when using a single
545 // raster thread doesn't provide any benefit. This might change
546 // in the future but we avoid it for now to reduce the cost of
548 bool gather_pixel_refs
= RasterWorkerPool::GetNumRasterThreads() > 1;
550 for (int i
= 0; i
< repeat_count
; i
++) {
551 picture
= Picture::Create(padded_record_rect
, painter
, tile_grid_info_
,
552 gather_pixel_refs
, recording_mode
);
553 // Note the '&&' with previous is-suitable state.
554 // This means that once a picture-pile becomes unsuitable for gpu
555 // rasterization due to some content, it will continue to be unsuitable
556 // even if that content is replaced by gpu-friendly content.
557 // This is an optimization to avoid iterating though all pictures in
558 // the pile after each invalidation.
559 is_suitable_for_gpu_rasterization_
&=
560 picture
->IsSuitableForGpuRasterization();
563 bool found_tile_for_recorded_picture
= false;
565 bool include_borders
= true;
566 for (TilingData::Iterator
it(&tiling_
, padded_record_rect
, include_borders
);
568 const PictureMapKey
& key
= it
.index();
569 gfx::Rect tile
= PaddedRect(key
);
570 if (padded_record_rect
.Contains(tile
)) {
571 PictureInfo
& info
= picture_map_
[key
];
572 info
.SetPicture(picture
);
573 found_tile_for_recorded_picture
= true;
576 DCHECK(found_tile_for_recorded_picture
);
580 scoped_refptr
<RasterSource
> PicturePile::CreateRasterSource() const {
581 return scoped_refptr
<RasterSource
>(
582 PicturePileImpl::CreateFromPicturePile(this));
585 gfx::Size
PicturePile::GetSize() const {
586 return tiling_
.tiling_size();
589 void PicturePile::SetEmptyBounds() {
590 tiling_
.SetTilingSize(gfx::Size());
594 void PicturePile::SetMinContentsScale(float min_contents_scale
) {
595 DCHECK(min_contents_scale
);
596 if (min_contents_scale_
== min_contents_scale
)
599 // Picture contents are played back scaled. When the final contents scale is
600 // less than 1 (i.e. low res), then multiple recorded pixels will be used
601 // to raster one final pixel. To avoid splitting a final pixel across
602 // pictures (which would result in incorrect rasterization due to blending), a
603 // buffer margin is added so that any picture can be snapped to integral
606 // For example, if a 1/4 contents scale is used, then that would be 3 buffer
607 // pixels, since that's the minimum number of pixels to add so that resulting
608 // content can be snapped to a four pixel aligned grid.
609 int buffer_pixels
= static_cast<int>(ceil(1 / min_contents_scale
) - 1);
610 buffer_pixels
= std::max(0, buffer_pixels
);
611 SetBufferPixels(buffer_pixels
);
612 min_contents_scale_
= min_contents_scale
;
615 void PicturePile::SetSlowdownRasterScaleFactor(int factor
) {
616 slow_down_raster_scale_factor_for_debug_
= factor
;
619 bool PicturePile::IsSuitableForGpuRasterization() const {
620 return is_suitable_for_gpu_rasterization_
;
624 void PicturePile::ComputeTileGridInfo(const gfx::Size
& tile_grid_size
,
625 SkTileGridFactory::TileGridInfo
* info
) {
627 info
->fTileInterval
.set(tile_grid_size
.width() - 2 * kTileGridBorderPixels
,
628 tile_grid_size
.height() - 2 * kTileGridBorderPixels
);
629 DCHECK_GT(info
->fTileInterval
.width(), 0);
630 DCHECK_GT(info
->fTileInterval
.height(), 0);
631 info
->fMargin
.set(kTileGridBorderPixels
, kTileGridBorderPixels
);
632 // Offset the tile grid coordinate space to take into account the fact
633 // that the top-most and left-most tiles do not have top and left borders
635 info
->fOffset
.set(-kTileGridBorderPixels
, -kTileGridBorderPixels
);
638 void PicturePile::SetTileGridSize(const gfx::Size
& tile_grid_size
) {
639 ComputeTileGridInfo(tile_grid_size
, &tile_grid_info_
);
642 void PicturePile::SetUnsuitableForGpuRasterizationForTesting() {
643 is_suitable_for_gpu_rasterization_
= false;
646 SkTileGridFactory::TileGridInfo
PicturePile::GetTileGridInfoForTesting() const {
647 return tile_grid_info_
;
650 bool PicturePile::CanRasterSlowTileCheck(const gfx::Rect
& layer_rect
) const {
651 bool include_borders
= false;
652 for (TilingData::Iterator
tile_iter(&tiling_
, layer_rect
, include_borders
);
653 tile_iter
; ++tile_iter
) {
654 PictureMap::const_iterator map_iter
= picture_map_
.find(tile_iter
.index());
655 if (map_iter
== picture_map_
.end())
657 if (!map_iter
->second
.GetPicture())
663 void PicturePile::DetermineIfSolidColor() {
664 is_solid_color_
= false;
665 solid_color_
= SK_ColorTRANSPARENT
;
667 if (picture_map_
.empty()) {
671 PictureMap::const_iterator it
= picture_map_
.begin();
672 const Picture
* picture
= it
->second
.GetPicture();
674 // Missing recordings due to frequent invalidations or being too far away
675 // from the interest rect will cause the a null picture to exist.
679 // Don't bother doing more work if the first image is too complicated.
680 if (picture
->ApproximateOpCount() > kOpCountThatIsOkToAnalyze
)
683 // Make sure all of the mapped images point to the same picture.
684 for (++it
; it
!= picture_map_
.end(); ++it
) {
685 if (it
->second
.GetPicture() != picture
)
688 skia::AnalysisCanvas
canvas(recorded_viewport_
.width(),
689 recorded_viewport_
.height());
690 canvas
.translate(-recorded_viewport_
.x(), -recorded_viewport_
.y());
691 picture
->Raster(&canvas
, nullptr, Region(), 1.0f
);
692 is_solid_color_
= canvas
.GetColorIfSolid(&solid_color_
);
695 gfx::Rect
PicturePile::PaddedRect(const PictureMapKey
& key
) const {
696 gfx::Rect tile
= tiling_
.TileBounds(key
.first
, key
.second
);
697 return PadRect(tile
);
700 gfx::Rect
PicturePile::PadRect(const gfx::Rect
& rect
) const {
701 gfx::Rect padded_rect
= rect
;
702 padded_rect
.Inset(-buffer_pixels(), -buffer_pixels(), -buffer_pixels(),
707 void PicturePile::Clear() {
708 picture_map_
.clear();
709 recorded_viewport_
= gfx::Rect();
710 has_any_recordings_
= false;
711 is_solid_color_
= false;
714 PicturePile::PictureInfo::PictureInfo() : last_frame_number_(0) {
717 PicturePile::PictureInfo::~PictureInfo() {
720 void PicturePile::PictureInfo::AdvanceInvalidationHistory(int frame_number
) {
721 DCHECK_GE(frame_number
, last_frame_number_
);
722 if (frame_number
== last_frame_number_
)
725 invalidation_history_
<<= (frame_number
- last_frame_number_
);
726 last_frame_number_
= frame_number
;
729 bool PicturePile::PictureInfo::Invalidate(int frame_number
) {
730 AdvanceInvalidationHistory(frame_number
);
731 invalidation_history_
.set(0);
733 bool did_invalidate
= !!picture_
.get();
735 return did_invalidate
;
738 bool PicturePile::PictureInfo::NeedsRecording(int frame_number
,
739 int distance_to_visible
) {
740 AdvanceInvalidationHistory(frame_number
);
742 // We only need recording if we don't have a picture. Furthermore, we only
743 // need a recording if we're within frequent invalidation distance threshold
744 // or the invalidation is not frequent enough (below invalidation frequency
746 return !picture_
.get() &&
747 ((distance_to_visible
<= kFrequentInvalidationDistanceThreshold
) ||
748 (GetInvalidationFrequency() < kInvalidationFrequencyThreshold
));
751 void PicturePile::SetBufferPixels(int new_buffer_pixels
) {
752 if (new_buffer_pixels
== buffer_pixels())
756 tiling_
.SetBorderTexels(new_buffer_pixels
);
759 void PicturePile::PictureInfo::SetPicture(scoped_refptr
<Picture
> picture
) {
763 const Picture
* PicturePile::PictureInfo::GetPicture() const {
764 return picture_
.get();
767 float PicturePile::PictureInfo::GetInvalidationFrequency() const {
768 return invalidation_history_
.count() /
769 static_cast<float>(INVALIDATION_FRAMES_TRACKED
);