Explicitly add python-numpy dependency to install-build-deps.
[chromium-blink-merge.git] / cc / scheduler / delay_based_time_source.cc
blobcd214fd98d7c5a34bc62227af900efef04b26f82
1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/scheduler/delay_based_time_source.h"
7 #include <algorithm>
8 #include <cmath>
9 #include <string>
11 #include "base/bind.h"
12 #include "base/debug/trace_event.h"
13 #include "base/debug/trace_event_argument.h"
14 #include "base/location.h"
15 #include "base/logging.h"
16 #include "base/single_thread_task_runner.h"
18 namespace cc {
20 namespace {
22 // kDoubleTickDivisor prevents ticks from running within the specified
23 // fraction of an interval. This helps account for jitter in the timebase as
24 // well as quick timer reactivation.
25 static const int kDoubleTickDivisor = 2;
27 // kIntervalChangeThreshold is the fraction of the interval that will trigger an
28 // immediate interval change. kPhaseChangeThreshold is the fraction of the
29 // interval that will trigger an immediate phase change. If the changes are
30 // within the thresholds, the change will take place on the next tick. If
31 // either change is outside the thresholds, the next tick will be canceled and
32 // reissued immediately.
33 static const double kIntervalChangeThreshold = 0.25;
34 static const double kPhaseChangeThreshold = 0.25;
36 } // namespace
38 // The following methods correspond to the DelayBasedTimeSource that uses
39 // the base::TimeTicks::HighResNow as the timebase.
40 scoped_refptr<DelayBasedTimeSourceHighRes> DelayBasedTimeSourceHighRes::Create(
41 base::TimeDelta interval,
42 base::SingleThreadTaskRunner* task_runner) {
43 return make_scoped_refptr(
44 new DelayBasedTimeSourceHighRes(interval, task_runner));
47 DelayBasedTimeSourceHighRes::DelayBasedTimeSourceHighRes(
48 base::TimeDelta interval,
49 base::SingleThreadTaskRunner* task_runner)
50 : DelayBasedTimeSource(interval, task_runner) {
53 DelayBasedTimeSourceHighRes::~DelayBasedTimeSourceHighRes() {}
55 base::TimeTicks DelayBasedTimeSourceHighRes::Now() const {
56 return base::TimeTicks::HighResNow();
59 // The following methods correspond to the DelayBasedTimeSource that uses
60 // the base::TimeTicks::Now as the timebase.
61 scoped_refptr<DelayBasedTimeSource> DelayBasedTimeSource::Create(
62 base::TimeDelta interval,
63 base::SingleThreadTaskRunner* task_runner) {
64 return make_scoped_refptr(new DelayBasedTimeSource(interval, task_runner));
67 DelayBasedTimeSource::DelayBasedTimeSource(
68 base::TimeDelta interval,
69 base::SingleThreadTaskRunner* task_runner)
70 : client_(NULL),
71 last_tick_time_(base::TimeTicks() - interval),
72 current_parameters_(interval, base::TimeTicks()),
73 next_parameters_(interval, base::TimeTicks()),
74 active_(false),
75 task_runner_(task_runner),
76 weak_factory_(this) {
77 DCHECK_GT(interval.ToInternalValue(), 0);
80 DelayBasedTimeSource::~DelayBasedTimeSource() {}
82 base::TimeTicks DelayBasedTimeSource::SetActive(bool active) {
83 TRACE_EVENT1("cc", "DelayBasedTimeSource::SetActive", "active", active);
84 if (active == active_)
85 return base::TimeTicks();
86 active_ = active;
88 if (!active_) {
89 weak_factory_.InvalidateWeakPtrs();
90 return base::TimeTicks();
93 PostNextTickTask(Now());
95 // Determine if there was a tick that was missed while not active.
96 base::TimeTicks last_tick_time_if_always_active =
97 current_parameters_.tick_target - current_parameters_.interval;
98 base::TimeTicks new_tick_time_threshold =
99 last_tick_time_ + current_parameters_.interval / kDoubleTickDivisor;
100 if (last_tick_time_if_always_active > new_tick_time_threshold) {
101 last_tick_time_ = last_tick_time_if_always_active;
102 return last_tick_time_;
105 return base::TimeTicks();
108 bool DelayBasedTimeSource::Active() const { return active_; }
110 base::TimeTicks DelayBasedTimeSource::LastTickTime() const {
111 return last_tick_time_;
114 base::TimeTicks DelayBasedTimeSource::NextTickTime() const {
115 return Active() ? current_parameters_.tick_target : base::TimeTicks();
118 void DelayBasedTimeSource::OnTimerFired() {
119 DCHECK(active_);
121 last_tick_time_ = current_parameters_.tick_target;
123 PostNextTickTask(Now());
125 // Fire the tick.
126 if (client_)
127 client_->OnTimerTick();
130 void DelayBasedTimeSource::SetClient(TimeSourceClient* client) {
131 client_ = client;
134 void DelayBasedTimeSource::SetTimebaseAndInterval(base::TimeTicks timebase,
135 base::TimeDelta interval) {
136 DCHECK_GT(interval.ToInternalValue(), 0);
137 next_parameters_.interval = interval;
138 next_parameters_.tick_target = timebase;
140 if (!active_) {
141 // If we aren't active, there's no need to reset the timer.
142 return;
145 // If the change in interval is larger than the change threshold,
146 // request an immediate reset.
147 double interval_delta =
148 std::abs((interval - current_parameters_.interval).InSecondsF());
149 double interval_change = interval_delta / interval.InSecondsF();
150 if (interval_change > kIntervalChangeThreshold) {
151 TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::IntervalChanged",
152 TRACE_EVENT_SCOPE_THREAD);
153 SetActive(false);
154 SetActive(true);
155 return;
158 // If the change in phase is greater than the change threshold in either
159 // direction, request an immediate reset. This logic might result in a false
160 // negative if there is a simultaneous small change in the interval and the
161 // fmod just happens to return something near zero. Assuming the timebase
162 // is very recent though, which it should be, we'll still be ok because the
163 // old clock and new clock just happen to line up.
164 double target_delta =
165 std::abs((timebase - current_parameters_.tick_target).InSecondsF());
166 double phase_change =
167 fmod(target_delta, interval.InSecondsF()) / interval.InSecondsF();
168 if (phase_change > kPhaseChangeThreshold &&
169 phase_change < (1.0 - kPhaseChangeThreshold)) {
170 TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::PhaseChanged",
171 TRACE_EVENT_SCOPE_THREAD);
172 SetActive(false);
173 SetActive(true);
174 return;
178 base::TimeTicks DelayBasedTimeSource::Now() const {
179 return base::TimeTicks::Now();
182 // This code tries to achieve an average tick rate as close to interval_ as
183 // possible. To do this, it has to deal with a few basic issues:
184 // 1. PostDelayedTask can delay only at a millisecond granularity. So, 16.666
185 // has to posted as 16 or 17.
186 // 2. A delayed task may come back a bit late (a few ms), or really late
187 // (frames later)
189 // The basic idea with this scheduler here is to keep track of where we *want*
190 // to run in tick_target_. We update this with the exact interval.
192 // Then, when we post our task, we take the floor of (tick_target_ and Now()).
193 // If we started at now=0, and 60FPs (all times in milliseconds):
194 // now=0 target=16.667 PostDelayedTask(16)
196 // When our callback runs, we figure out how far off we were from that goal.
197 // Because of the flooring operation, and assuming our timer runs exactly when
198 // it should, this yields:
199 // now=16 target=16.667
201 // Since we can't post a 0.667 ms task to get to now=16, we just treat this as a
202 // tick. Then, we update target to be 33.333. We now post another task based on
203 // the difference between our target and now:
204 // now=16 tick_target=16.667 new_target=33.333 -->
205 // PostDelayedTask(floor(33.333 - 16)) --> PostDelayedTask(17)
207 // Over time, with no late tasks, this leads to us posting tasks like this:
208 // now=0 tick_target=0 new_target=16.667 -->
209 // tick(), PostDelayedTask(16)
210 // now=16 tick_target=16.667 new_target=33.333 -->
211 // tick(), PostDelayedTask(17)
212 // now=33 tick_target=33.333 new_target=50.000 -->
213 // tick(), PostDelayedTask(17)
214 // now=50 tick_target=50.000 new_target=66.667 -->
215 // tick(), PostDelayedTask(16)
217 // We treat delays in tasks differently depending on the amount of delay we
218 // encounter. Suppose we posted a task with a target=16.667:
219 // Case 1: late but not unrecoverably-so
220 // now=18 tick_target=16.667
222 // Case 2: so late we obviously missed the tick
223 // now=25.0 tick_target=16.667
225 // We treat the first case as a tick anyway, and assume the delay was unusual.
226 // Thus, we compute the new_target based on the old timebase:
227 // now=18 tick_target=16.667 new_target=33.333 -->
228 // tick(), PostDelayedTask(floor(33.333-18)) --> PostDelayedTask(15)
229 // This brings us back to 18+15 = 33, which was where we would have been if the
230 // task hadn't been late.
232 // For the really late delay, we we move to the next logical tick. The timebase
233 // is not reset.
234 // now=37 tick_target=16.667 new_target=50.000 -->
235 // tick(), PostDelayedTask(floor(50.000-37)) --> PostDelayedTask(13)
236 base::TimeTicks DelayBasedTimeSource::NextTickTarget(base::TimeTicks now) {
237 base::TimeDelta new_interval = next_parameters_.interval;
239 // |interval_offset| is the offset from |now| to the next multiple of
240 // |interval| after |tick_target|, possibly negative if in the past.
241 base::TimeDelta interval_offset = base::TimeDelta::FromInternalValue(
242 (next_parameters_.tick_target - now).ToInternalValue() %
243 new_interval.ToInternalValue());
244 // If |now| is exactly on the interval (i.e. offset==0), don't adjust.
245 // Otherwise, if |tick_target| was in the past, adjust forward to the next
246 // tick after |now|.
247 if (interval_offset.ToInternalValue() != 0 &&
248 next_parameters_.tick_target < now) {
249 interval_offset += new_interval;
252 base::TimeTicks new_tick_target = now + interval_offset;
253 DCHECK(now <= new_tick_target)
254 << "now = " << now.ToInternalValue()
255 << "; new_tick_target = " << new_tick_target.ToInternalValue()
256 << "; new_interval = " << new_interval.InMicroseconds()
257 << "; tick_target = " << next_parameters_.tick_target.ToInternalValue()
258 << "; interval_offset = " << interval_offset.ToInternalValue();
260 // Avoid double ticks when:
261 // 1) Turning off the timer and turning it right back on.
262 // 2) Jittery data is passed to SetTimebaseAndInterval().
263 if (new_tick_target - last_tick_time_ <= new_interval / kDoubleTickDivisor)
264 new_tick_target += new_interval;
266 return new_tick_target;
269 void DelayBasedTimeSource::PostNextTickTask(base::TimeTicks now) {
270 base::TimeTicks new_tick_target = NextTickTarget(now);
272 // Post another task *before* the tick and update state
273 base::TimeDelta delay;
274 if (now <= new_tick_target)
275 delay = new_tick_target - now;
276 task_runner_->PostDelayedTask(FROM_HERE,
277 base::Bind(&DelayBasedTimeSource::OnTimerFired,
278 weak_factory_.GetWeakPtr()),
279 delay);
281 next_parameters_.tick_target = new_tick_target;
282 current_parameters_ = next_parameters_;
285 std::string DelayBasedTimeSource::TypeString() const {
286 return "DelayBasedTimeSource";
289 std::string DelayBasedTimeSourceHighRes::TypeString() const {
290 return "DelayBasedTimeSourceHighRes";
293 void DelayBasedTimeSource::AsValueInto(base::debug::TracedValue* state) const {
294 state->SetString("type", TypeString());
295 state->SetDouble("last_tick_time_us", LastTickTime().ToInternalValue());
296 state->SetDouble("next_tick_time_us", NextTickTime().ToInternalValue());
298 state->BeginDictionary("current_parameters");
299 state->SetDouble("interval_us",
300 current_parameters_.interval.InMicroseconds());
301 state->SetDouble("tick_target_us",
302 current_parameters_.tick_target.ToInternalValue());
303 state->EndDictionary();
305 state->BeginDictionary("next_parameters");
306 state->SetDouble("interval_us", next_parameters_.interval.InMicroseconds());
307 state->SetDouble("tick_target_us",
308 next_parameters_.tick_target.ToInternalValue());
309 state->EndDictionary();
311 state->SetBoolean("active", active_);
314 } // namespace cc