Explicitly add python-numpy dependency to install-build-deps.
[chromium-blink-merge.git] / net / quic / quic_framer.cc
blobd2a7694631df431fb0f2e68d4169d0e2c85026c4
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include "base/containers/hash_tables.h"
8 #include "base/stl_util.h"
9 #include "net/quic/crypto/crypto_framer.h"
10 #include "net/quic/crypto/crypto_handshake_message.h"
11 #include "net/quic/crypto/crypto_protocol.h"
12 #include "net/quic/crypto/quic_decrypter.h"
13 #include "net/quic/crypto/quic_encrypter.h"
14 #include "net/quic/quic_data_reader.h"
15 #include "net/quic/quic_data_writer.h"
16 #include "net/quic/quic_flags.h"
17 #include "net/quic/quic_socket_address_coder.h"
19 using base::StringPiece;
20 using std::make_pair;
21 using std::map;
22 using std::max;
23 using std::min;
24 using std::numeric_limits;
25 using std::string;
27 namespace net {
29 namespace {
31 // Mask to select the lowest 48 bits of a sequence number.
32 const QuicPacketSequenceNumber k6ByteSequenceNumberMask =
33 GG_UINT64_C(0x0000FFFFFFFFFFFF);
34 const QuicPacketSequenceNumber k4ByteSequenceNumberMask =
35 GG_UINT64_C(0x00000000FFFFFFFF);
36 const QuicPacketSequenceNumber k2ByteSequenceNumberMask =
37 GG_UINT64_C(0x000000000000FFFF);
38 const QuicPacketSequenceNumber k1ByteSequenceNumberMask =
39 GG_UINT64_C(0x00000000000000FF);
41 const QuicConnectionId k1ByteConnectionIdMask = GG_UINT64_C(0x00000000000000FF);
42 const QuicConnectionId k4ByteConnectionIdMask = GG_UINT64_C(0x00000000FFFFFFFF);
44 // Number of bits the sequence number length bits are shifted from the right
45 // edge of the public header.
46 const uint8 kPublicHeaderSequenceNumberShift = 4;
48 // New Frame Types, QUIC v. >= 10:
49 // There are two interpretations for the Frame Type byte in the QUIC protocol,
50 // resulting in two Frame Types: Special Frame Types and Regular Frame Types.
52 // Regular Frame Types use the Frame Type byte simply. Currently defined
53 // Regular Frame Types are:
54 // Padding : 0b 00000000 (0x00)
55 // ResetStream : 0b 00000001 (0x01)
56 // ConnectionClose : 0b 00000010 (0x02)
57 // GoAway : 0b 00000011 (0x03)
58 // WindowUpdate : 0b 00000100 (0x04)
59 // Blocked : 0b 00000101 (0x05)
61 // Special Frame Types encode both a Frame Type and corresponding flags
62 // all in the Frame Type byte. Currently defined Special Frame Types are:
63 // Stream : 0b 1xxxxxxx
64 // Ack : 0b 01xxxxxx
65 // CongestionFeedback : 0b 001xxxxx
67 // Semantics of the flag bits above (the x bits) depends on the frame type.
69 // Masks to determine if the frame type is a special use
70 // and for specific special frame types.
71 const uint8 kQuicFrameTypeSpecialMask = 0xE0; // 0b 11100000
72 const uint8 kQuicFrameTypeStreamMask = 0x80;
73 const uint8 kQuicFrameTypeAckMask = 0x40;
74 const uint8 kQuicFrameTypeCongestionFeedbackMask = 0x20;
76 // Stream frame relative shifts and masks for interpreting the stream flags.
77 // StreamID may be 1, 2, 3, or 4 bytes.
78 const uint8 kQuicStreamIdShift = 2;
79 const uint8 kQuicStreamIDLengthMask = 0x03;
81 // Offset may be 0, 2, 3, 4, 5, 6, 7, 8 bytes.
82 const uint8 kQuicStreamOffsetShift = 3;
83 const uint8 kQuicStreamOffsetMask = 0x07;
85 // Data length may be 0 or 2 bytes.
86 const uint8 kQuicStreamDataLengthShift = 1;
87 const uint8 kQuicStreamDataLengthMask = 0x01;
89 // Fin bit may be set or not.
90 const uint8 kQuicStreamFinShift = 1;
91 const uint8 kQuicStreamFinMask = 0x01;
93 // Sequence number size shift used in AckFrames.
94 const uint8 kQuicSequenceNumberLengthShift = 2;
96 // Acks may be truncated.
97 const uint8 kQuicAckTruncatedShift = 1;
98 const uint8 kQuicAckTruncatedMask = 0x01;
100 // Acks may not have any nacks.
101 const uint8 kQuicHasNacksMask = 0x01;
103 // Returns the absolute value of the difference between |a| and |b|.
104 QuicPacketSequenceNumber Delta(QuicPacketSequenceNumber a,
105 QuicPacketSequenceNumber b) {
106 // Since these are unsigned numbers, we can't just return abs(a - b)
107 if (a < b) {
108 return b - a;
110 return a - b;
113 QuicPacketSequenceNumber ClosestTo(QuicPacketSequenceNumber target,
114 QuicPacketSequenceNumber a,
115 QuicPacketSequenceNumber b) {
116 return (Delta(target, a) < Delta(target, b)) ? a : b;
119 QuicSequenceNumberLength ReadSequenceNumberLength(uint8 flags) {
120 switch (flags & PACKET_FLAGS_6BYTE_SEQUENCE) {
121 case PACKET_FLAGS_6BYTE_SEQUENCE:
122 return PACKET_6BYTE_SEQUENCE_NUMBER;
123 case PACKET_FLAGS_4BYTE_SEQUENCE:
124 return PACKET_4BYTE_SEQUENCE_NUMBER;
125 case PACKET_FLAGS_2BYTE_SEQUENCE:
126 return PACKET_2BYTE_SEQUENCE_NUMBER;
127 case PACKET_FLAGS_1BYTE_SEQUENCE:
128 return PACKET_1BYTE_SEQUENCE_NUMBER;
129 default:
130 LOG(DFATAL) << "Unreachable case statement.";
131 return PACKET_6BYTE_SEQUENCE_NUMBER;
135 } // namespace
137 bool QuicFramerVisitorInterface::OnWindowUpdateFrame(
138 const QuicWindowUpdateFrame& frame) {
139 return true;
142 bool QuicFramerVisitorInterface::OnBlockedFrame(const QuicBlockedFrame& frame) {
143 return true;
146 QuicFramer::QuicFramer(const QuicVersionVector& supported_versions,
147 QuicTime creation_time,
148 bool is_server)
149 : visitor_(nullptr),
150 fec_builder_(nullptr),
151 entropy_calculator_(nullptr),
152 error_(QUIC_NO_ERROR),
153 last_sequence_number_(0),
154 last_serialized_connection_id_(0),
155 supported_versions_(supported_versions),
156 decrypter_level_(ENCRYPTION_NONE),
157 alternative_decrypter_level_(ENCRYPTION_NONE),
158 alternative_decrypter_latch_(false),
159 is_server_(is_server),
160 validate_flags_(true),
161 creation_time_(creation_time),
162 last_timestamp_(QuicTime::Delta::Zero()) {
163 DCHECK(!supported_versions.empty());
164 quic_version_ = supported_versions_[0];
165 decrypter_.reset(QuicDecrypter::Create(kNULL));
166 encrypter_[ENCRYPTION_NONE].reset(QuicEncrypter::Create(kNULL));
169 QuicFramer::~QuicFramer() {}
171 // static
172 size_t QuicFramer::GetMinStreamFrameSize(QuicStreamId stream_id,
173 QuicStreamOffset offset,
174 bool last_frame_in_packet,
175 InFecGroup is_in_fec_group) {
176 bool no_stream_frame_length = last_frame_in_packet &&
177 is_in_fec_group == NOT_IN_FEC_GROUP;
178 return kQuicFrameTypeSize + GetStreamIdSize(stream_id) +
179 GetStreamOffsetSize(offset) +
180 (no_stream_frame_length ? 0 : kQuicStreamPayloadLengthSize);
183 // static
184 size_t QuicFramer::GetMinAckFrameSize(
185 QuicSequenceNumberLength sequence_number_length,
186 QuicSequenceNumberLength largest_observed_length) {
187 return kQuicFrameTypeSize + kQuicEntropyHashSize +
188 largest_observed_length + kQuicDeltaTimeLargestObservedSize;
191 // static
192 size_t QuicFramer::GetStopWaitingFrameSize(
193 QuicSequenceNumberLength sequence_number_length) {
194 return kQuicFrameTypeSize + kQuicEntropyHashSize +
195 sequence_number_length;
198 // static
199 size_t QuicFramer::GetMinRstStreamFrameSize() {
200 return kQuicFrameTypeSize + kQuicMaxStreamIdSize +
201 kQuicMaxStreamOffsetSize + kQuicErrorCodeSize +
202 kQuicErrorDetailsLengthSize;
205 // static
206 size_t QuicFramer::GetMinConnectionCloseFrameSize() {
207 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize;
210 // static
211 size_t QuicFramer::GetMinGoAwayFrameSize() {
212 return kQuicFrameTypeSize + kQuicErrorCodeSize + kQuicErrorDetailsLengthSize +
213 kQuicMaxStreamIdSize;
216 // static
217 size_t QuicFramer::GetWindowUpdateFrameSize() {
218 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
221 // static
222 size_t QuicFramer::GetBlockedFrameSize() {
223 return kQuicFrameTypeSize + kQuicMaxStreamIdSize;
226 // static
227 size_t QuicFramer::GetStreamIdSize(QuicStreamId stream_id) {
228 // Sizes are 1 through 4 bytes.
229 for (int i = 1; i <= 4; ++i) {
230 stream_id >>= 8;
231 if (stream_id == 0) {
232 return i;
235 LOG(DFATAL) << "Failed to determine StreamIDSize.";
236 return 4;
239 // static
240 size_t QuicFramer::GetStreamOffsetSize(QuicStreamOffset offset) {
241 // 0 is a special case.
242 if (offset == 0) {
243 return 0;
245 // 2 through 8 are the remaining sizes.
246 offset >>= 8;
247 for (int i = 2; i <= 8; ++i) {
248 offset >>= 8;
249 if (offset == 0) {
250 return i;
253 LOG(DFATAL) << "Failed to determine StreamOffsetSize.";
254 return 8;
257 // static
258 size_t QuicFramer::GetVersionNegotiationPacketSize(size_t number_versions) {
259 return kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID +
260 number_versions * kQuicVersionSize;
263 bool QuicFramer::IsSupportedVersion(const QuicVersion version) const {
264 for (size_t i = 0; i < supported_versions_.size(); ++i) {
265 if (version == supported_versions_[i]) {
266 return true;
269 return false;
272 size_t QuicFramer::GetSerializedFrameLength(
273 const QuicFrame& frame,
274 size_t free_bytes,
275 bool first_frame,
276 bool last_frame,
277 InFecGroup is_in_fec_group,
278 QuicSequenceNumberLength sequence_number_length) {
279 if (frame.type == PADDING_FRAME) {
280 // PADDING implies end of packet.
281 return free_bytes;
283 size_t frame_len =
284 ComputeFrameLength(frame, last_frame, is_in_fec_group,
285 sequence_number_length);
286 if (frame_len <= free_bytes) {
287 // Frame fits within packet. Note that acks may be truncated.
288 return frame_len;
290 // Only truncate the first frame in a packet, so if subsequent ones go
291 // over, stop including more frames.
292 if (!first_frame) {
293 return 0;
295 bool can_truncate = frame.type == ACK_FRAME &&
296 free_bytes >= GetMinAckFrameSize(PACKET_6BYTE_SEQUENCE_NUMBER,
297 PACKET_6BYTE_SEQUENCE_NUMBER);
298 if (can_truncate) {
299 // Truncate the frame so the packet will not exceed kMaxPacketSize.
300 // Note that we may not use every byte of the writer in this case.
301 DVLOG(1) << "Truncating large frame, free bytes: " << free_bytes;
302 return free_bytes;
304 if (!FLAGS_quic_allow_oversized_packets_for_test) {
305 return 0;
307 LOG(DFATAL) << "Packet size too small to fit frame.";
308 return frame_len;
311 QuicFramer::AckFrameInfo::AckFrameInfo() : max_delta(0) {}
313 QuicFramer::AckFrameInfo::~AckFrameInfo() {}
315 QuicPacketEntropyHash QuicFramer::GetPacketEntropyHash(
316 const QuicPacketHeader& header) const {
317 return header.entropy_flag << (header.packet_sequence_number % 8);
320 SerializedPacket QuicFramer::BuildDataPacket(
321 const QuicPacketHeader& header,
322 const QuicFrames& frames,
323 size_t packet_size) {
324 QuicDataWriter writer(packet_size);
325 const SerializedPacket kNoPacket(0, PACKET_1BYTE_SEQUENCE_NUMBER, nullptr, 0,
326 nullptr);
327 if (!AppendPacketHeader(header, &writer)) {
328 LOG(DFATAL) << "AppendPacketHeader failed";
329 return kNoPacket;
332 for (size_t i = 0; i < frames.size(); ++i) {
333 const QuicFrame& frame = frames[i];
335 // Determine if we should write stream frame length in header.
336 const bool no_stream_frame_length =
337 (header.is_in_fec_group == NOT_IN_FEC_GROUP) &&
338 (i == frames.size() - 1);
339 if (!AppendTypeByte(frame, no_stream_frame_length, &writer)) {
340 LOG(DFATAL) << "AppendTypeByte failed";
341 return kNoPacket;
344 switch (frame.type) {
345 case PADDING_FRAME:
346 writer.WritePadding();
347 break;
348 case STREAM_FRAME:
349 if (!AppendStreamFrame(
350 *frame.stream_frame, no_stream_frame_length, &writer)) {
351 LOG(DFATAL) << "AppendStreamFrame failed";
352 return kNoPacket;
354 break;
355 case ACK_FRAME:
356 if (!AppendAckFrameAndTypeByte(
357 header, *frame.ack_frame, &writer)) {
358 LOG(DFATAL) << "AppendAckFrameAndTypeByte failed";
359 return kNoPacket;
361 break;
362 case CONGESTION_FEEDBACK_FRAME:
363 if (!AppendCongestionFeedbackFrame(
364 *frame.congestion_feedback_frame, &writer)) {
365 LOG(DFATAL) << "AppendCongestionFeedbackFrame failed";
366 return kNoPacket;
368 break;
369 case STOP_WAITING_FRAME:
370 if (!AppendStopWaitingFrame(
371 header, *frame.stop_waiting_frame, &writer)) {
372 LOG(DFATAL) << "AppendStopWaitingFrame failed";
373 return kNoPacket;
375 break;
376 case PING_FRAME:
377 // Ping has no payload.
378 break;
379 case RST_STREAM_FRAME:
380 if (!AppendRstStreamFrame(*frame.rst_stream_frame, &writer)) {
381 LOG(DFATAL) << "AppendRstStreamFrame failed";
382 return kNoPacket;
384 break;
385 case CONNECTION_CLOSE_FRAME:
386 if (!AppendConnectionCloseFrame(
387 *frame.connection_close_frame, &writer)) {
388 LOG(DFATAL) << "AppendConnectionCloseFrame failed";
389 return kNoPacket;
391 break;
392 case GOAWAY_FRAME:
393 if (!AppendGoAwayFrame(*frame.goaway_frame, &writer)) {
394 LOG(DFATAL) << "AppendGoAwayFrame failed";
395 return kNoPacket;
397 break;
398 case WINDOW_UPDATE_FRAME:
399 if (!AppendWindowUpdateFrame(*frame.window_update_frame, &writer)) {
400 LOG(DFATAL) << "AppendWindowUpdateFrame failed";
401 return kNoPacket;
403 break;
404 case BLOCKED_FRAME:
405 if (!AppendBlockedFrame(*frame.blocked_frame, &writer)) {
406 LOG(DFATAL) << "AppendBlockedFrame failed";
407 return kNoPacket;
409 break;
410 default:
411 RaiseError(QUIC_INVALID_FRAME_DATA);
412 LOG(DFATAL) << "QUIC_INVALID_FRAME_DATA";
413 return kNoPacket;
417 // Save the length before writing, because take clears it.
418 const size_t len = writer.length();
419 // Less than or equal because truncated acks end up with max_plaintex_size
420 // length, even though they're typically slightly shorter.
421 DCHECK_LE(len, packet_size);
422 QuicPacket* packet = QuicPacket::NewDataPacket(
423 writer.take(), len, true, header.public_header.connection_id_length,
424 header.public_header.version_flag,
425 header.public_header.sequence_number_length);
427 if (fec_builder_) {
428 fec_builder_->OnBuiltFecProtectedPayload(header,
429 packet->FecProtectedData());
432 return SerializedPacket(header.packet_sequence_number,
433 header.public_header.sequence_number_length, packet,
434 GetPacketEntropyHash(header), nullptr);
437 SerializedPacket QuicFramer::BuildFecPacket(const QuicPacketHeader& header,
438 const QuicFecData& fec) {
439 DCHECK_EQ(IN_FEC_GROUP, header.is_in_fec_group);
440 DCHECK_NE(0u, header.fec_group);
441 size_t len = GetPacketHeaderSize(header);
442 len += fec.redundancy.length();
444 QuicDataWriter writer(len);
445 const SerializedPacket kNoPacket(0, PACKET_1BYTE_SEQUENCE_NUMBER, nullptr, 0,
446 nullptr);
447 if (!AppendPacketHeader(header, &writer)) {
448 LOG(DFATAL) << "AppendPacketHeader failed";
449 return kNoPacket;
452 if (!writer.WriteBytes(fec.redundancy.data(), fec.redundancy.length())) {
453 LOG(DFATAL) << "Failed to add FEC";
454 return kNoPacket;
457 return SerializedPacket(
458 header.packet_sequence_number,
459 header.public_header.sequence_number_length,
460 QuicPacket::NewFecPacket(writer.take(), len, true,
461 header.public_header.connection_id_length,
462 header.public_header.version_flag,
463 header.public_header.sequence_number_length),
464 GetPacketEntropyHash(header), nullptr);
467 // static
468 QuicEncryptedPacket* QuicFramer::BuildPublicResetPacket(
469 const QuicPublicResetPacket& packet) {
470 DCHECK(packet.public_header.reset_flag);
472 CryptoHandshakeMessage reset;
473 reset.set_tag(kPRST);
474 reset.SetValue(kRNON, packet.nonce_proof);
475 reset.SetValue(kRSEQ, packet.rejected_sequence_number);
476 if (!packet.client_address.address().empty()) {
477 // packet.client_address is non-empty.
478 QuicSocketAddressCoder address_coder(packet.client_address);
479 string serialized_address = address_coder.Encode();
480 if (serialized_address.empty()) {
481 return nullptr;
483 reset.SetStringPiece(kCADR, serialized_address);
485 const QuicData& reset_serialized = reset.GetSerialized();
487 size_t len =
488 kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID + reset_serialized.length();
489 QuicDataWriter writer(len);
491 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_RST |
492 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
493 if (!writer.WriteUInt8(flags)) {
494 return nullptr;
497 if (!writer.WriteUInt64(packet.public_header.connection_id)) {
498 return nullptr;
501 if (!writer.WriteBytes(reset_serialized.data(), reset_serialized.length())) {
502 return nullptr;
505 return new QuicEncryptedPacket(writer.take(), len, true);
508 QuicEncryptedPacket* QuicFramer::BuildVersionNegotiationPacket(
509 const QuicPacketPublicHeader& header,
510 const QuicVersionVector& supported_versions) {
511 DCHECK(header.version_flag);
512 size_t len = GetVersionNegotiationPacketSize(supported_versions.size());
513 QuicDataWriter writer(len);
515 uint8 flags = static_cast<uint8>(PACKET_PUBLIC_FLAGS_VERSION |
516 PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID);
517 if (!writer.WriteUInt8(flags)) {
518 return nullptr;
521 if (!writer.WriteUInt64(header.connection_id)) {
522 return nullptr;
525 for (size_t i = 0; i < supported_versions.size(); ++i) {
526 if (!writer.WriteUInt32(QuicVersionToQuicTag(supported_versions[i]))) {
527 return nullptr;
531 return new QuicEncryptedPacket(writer.take(), len, true);
534 bool QuicFramer::ProcessPacket(const QuicEncryptedPacket& packet) {
535 DCHECK(!reader_.get());
536 reader_.reset(new QuicDataReader(packet.data(), packet.length()));
538 visitor_->OnPacket();
540 // First parse the public header.
541 QuicPacketPublicHeader public_header;
542 if (!ProcessPublicHeader(&public_header)) {
543 DLOG(WARNING) << "Unable to process public header.";
544 DCHECK_NE("", detailed_error_);
545 return RaiseError(QUIC_INVALID_PACKET_HEADER);
548 if (!visitor_->OnUnauthenticatedPublicHeader(public_header)) {
549 // The visitor suppresses further processing of the packet.
550 reader_.reset(nullptr);
551 return true;
554 if (is_server_ && public_header.version_flag &&
555 public_header.versions[0] != quic_version_) {
556 if (!visitor_->OnProtocolVersionMismatch(public_header.versions[0])) {
557 reader_.reset(nullptr);
558 return true;
562 bool rv;
563 if (!is_server_ && public_header.version_flag) {
564 rv = ProcessVersionNegotiationPacket(&public_header);
565 } else if (public_header.reset_flag) {
566 rv = ProcessPublicResetPacket(public_header);
567 } else {
568 rv = ProcessDataPacket(public_header, packet);
571 reader_.reset(nullptr);
572 return rv;
575 bool QuicFramer::ProcessVersionNegotiationPacket(
576 QuicPacketPublicHeader* public_header) {
577 DCHECK(!is_server_);
578 // Try reading at least once to raise error if the packet is invalid.
579 do {
580 QuicTag version;
581 if (!reader_->ReadBytes(&version, kQuicVersionSize)) {
582 set_detailed_error("Unable to read supported version in negotiation.");
583 return RaiseError(QUIC_INVALID_VERSION_NEGOTIATION_PACKET);
585 public_header->versions.push_back(QuicTagToQuicVersion(version));
586 } while (!reader_->IsDoneReading());
588 visitor_->OnVersionNegotiationPacket(*public_header);
589 return true;
592 bool QuicFramer::ProcessDataPacket(
593 const QuicPacketPublicHeader& public_header,
594 const QuicEncryptedPacket& packet) {
595 QuicPacketHeader header(public_header);
596 if (!ProcessPacketHeader(&header, packet)) {
597 DLOG(WARNING) << "Unable to process data packet header.";
598 return false;
601 if (!visitor_->OnPacketHeader(header)) {
602 // The visitor suppresses further processing of the packet.
603 return true;
606 if (packet.length() > kMaxPacketSize) {
607 DLOG(WARNING) << "Packet too large: " << packet.length();
608 return RaiseError(QUIC_PACKET_TOO_LARGE);
611 // Handle the payload.
612 if (!header.fec_flag) {
613 if (header.is_in_fec_group == IN_FEC_GROUP) {
614 StringPiece payload = reader_->PeekRemainingPayload();
615 visitor_->OnFecProtectedPayload(payload);
617 if (!ProcessFrameData(header)) {
618 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
619 DLOG(WARNING) << "Unable to process frame data.";
620 return false;
622 } else {
623 QuicFecData fec_data;
624 fec_data.fec_group = header.fec_group;
625 fec_data.redundancy = reader_->ReadRemainingPayload();
626 visitor_->OnFecData(fec_data);
629 visitor_->OnPacketComplete();
630 return true;
633 bool QuicFramer::ProcessPublicResetPacket(
634 const QuicPacketPublicHeader& public_header) {
635 QuicPublicResetPacket packet(public_header);
637 scoped_ptr<CryptoHandshakeMessage> reset(
638 CryptoFramer::ParseMessage(reader_->ReadRemainingPayload()));
639 if (!reset.get()) {
640 set_detailed_error("Unable to read reset message.");
641 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
643 if (reset->tag() != kPRST) {
644 set_detailed_error("Incorrect message tag.");
645 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
648 if (reset->GetUint64(kRNON, &packet.nonce_proof) != QUIC_NO_ERROR) {
649 set_detailed_error("Unable to read nonce proof.");
650 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
652 // TODO(satyamshekhar): validate nonce to protect against DoS.
654 if (reset->GetUint64(kRSEQ, &packet.rejected_sequence_number) !=
655 QUIC_NO_ERROR) {
656 set_detailed_error("Unable to read rejected sequence number.");
657 return RaiseError(QUIC_INVALID_PUBLIC_RST_PACKET);
660 StringPiece address;
661 if (reset->GetStringPiece(kCADR, &address)) {
662 QuicSocketAddressCoder address_coder;
663 if (address_coder.Decode(address.data(), address.length())) {
664 packet.client_address = IPEndPoint(address_coder.ip(),
665 address_coder.port());
669 visitor_->OnPublicResetPacket(packet);
670 return true;
673 bool QuicFramer::ProcessRevivedPacket(QuicPacketHeader* header,
674 StringPiece payload) {
675 DCHECK(!reader_.get());
677 visitor_->OnRevivedPacket();
679 header->entropy_hash = GetPacketEntropyHash(*header);
681 if (!visitor_->OnPacketHeader(*header)) {
682 return true;
685 if (payload.length() > kMaxPacketSize) {
686 set_detailed_error("Revived packet too large.");
687 return RaiseError(QUIC_PACKET_TOO_LARGE);
690 reader_.reset(new QuicDataReader(payload.data(), payload.length()));
691 if (!ProcessFrameData(*header)) {
692 DCHECK_NE(QUIC_NO_ERROR, error_); // ProcessFrameData sets the error.
693 DLOG(WARNING) << "Unable to process frame data.";
694 return false;
697 visitor_->OnPacketComplete();
698 reader_.reset(nullptr);
699 return true;
702 bool QuicFramer::AppendPacketHeader(const QuicPacketHeader& header,
703 QuicDataWriter* writer) {
704 DVLOG(1) << "Appending header: " << header;
705 DCHECK(header.fec_group > 0 || header.is_in_fec_group == NOT_IN_FEC_GROUP);
706 uint8 public_flags = 0;
707 if (header.public_header.reset_flag) {
708 public_flags |= PACKET_PUBLIC_FLAGS_RST;
710 if (header.public_header.version_flag) {
711 public_flags |= PACKET_PUBLIC_FLAGS_VERSION;
714 public_flags |=
715 GetSequenceNumberFlags(header.public_header.sequence_number_length)
716 << kPublicHeaderSequenceNumberShift;
718 switch (header.public_header.connection_id_length) {
719 case PACKET_0BYTE_CONNECTION_ID:
720 if (!writer->WriteUInt8(
721 public_flags | PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID)) {
722 return false;
724 break;
725 case PACKET_1BYTE_CONNECTION_ID:
726 if (!writer->WriteUInt8(
727 public_flags | PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID)) {
728 return false;
730 if (!writer->WriteUInt8(
731 header.public_header.connection_id & k1ByteConnectionIdMask)) {
732 return false;
734 break;
735 case PACKET_4BYTE_CONNECTION_ID:
736 if (!writer->WriteUInt8(
737 public_flags | PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID)) {
738 return false;
740 if (!writer->WriteUInt32(
741 header.public_header.connection_id & k4ByteConnectionIdMask)) {
742 return false;
744 break;
745 case PACKET_8BYTE_CONNECTION_ID:
746 if (!writer->WriteUInt8(
747 public_flags | PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID)) {
748 return false;
750 if (!writer->WriteUInt64(header.public_header.connection_id)) {
751 return false;
753 break;
755 last_serialized_connection_id_ = header.public_header.connection_id;
757 if (header.public_header.version_flag) {
758 DCHECK(!is_server_);
759 writer->WriteUInt32(QuicVersionToQuicTag(quic_version_));
762 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
763 header.packet_sequence_number, writer)) {
764 return false;
767 uint8 private_flags = 0;
768 if (header.entropy_flag) {
769 private_flags |= PACKET_PRIVATE_FLAGS_ENTROPY;
771 if (header.is_in_fec_group == IN_FEC_GROUP) {
772 private_flags |= PACKET_PRIVATE_FLAGS_FEC_GROUP;
774 if (header.fec_flag) {
775 private_flags |= PACKET_PRIVATE_FLAGS_FEC;
777 if (!writer->WriteUInt8(private_flags)) {
778 return false;
781 // The FEC group number is the sequence number of the first fec
782 // protected packet, or 0 if this packet is not protected.
783 if (header.is_in_fec_group == IN_FEC_GROUP) {
784 DCHECK_GE(header.packet_sequence_number, header.fec_group);
785 DCHECK_GT(255u, header.packet_sequence_number - header.fec_group);
786 // Offset from the current packet sequence number to the first fec
787 // protected packet.
788 uint8 first_fec_protected_packet_offset =
789 header.packet_sequence_number - header.fec_group;
790 if (!writer->WriteBytes(&first_fec_protected_packet_offset, 1)) {
791 return false;
795 return true;
798 const QuicTime::Delta QuicFramer::CalculateTimestampFromWire(
799 uint32 time_delta_us) {
800 // The new time_delta might have wrapped to the next epoch, or it
801 // might have reverse wrapped to the previous epoch, or it might
802 // remain in the same epoch. Select the time closest to the previous
803 // time.
805 // epoch_delta is the delta between epochs. A delta is 4 bytes of
806 // microseconds.
807 const uint64 epoch_delta = GG_UINT64_C(1) << 32;
808 uint64 epoch = last_timestamp_.ToMicroseconds() & ~(epoch_delta - 1);
809 // Wrapping is safe here because a wrapped value will not be ClosestTo below.
810 uint64 prev_epoch = epoch - epoch_delta;
811 uint64 next_epoch = epoch + epoch_delta;
813 uint64 time = ClosestTo(last_timestamp_.ToMicroseconds(),
814 epoch + time_delta_us,
815 ClosestTo(last_timestamp_.ToMicroseconds(),
816 prev_epoch + time_delta_us,
817 next_epoch + time_delta_us));
819 return QuicTime::Delta::FromMicroseconds(time);
822 QuicPacketSequenceNumber QuicFramer::CalculatePacketSequenceNumberFromWire(
823 QuicSequenceNumberLength sequence_number_length,
824 QuicPacketSequenceNumber packet_sequence_number) const {
825 // The new sequence number might have wrapped to the next epoch, or
826 // it might have reverse wrapped to the previous epoch, or it might
827 // remain in the same epoch. Select the sequence number closest to the
828 // next expected sequence number, the previous sequence number plus 1.
830 // epoch_delta is the delta between epochs the sequence number was serialized
831 // with, so the correct value is likely the same epoch as the last sequence
832 // number or an adjacent epoch.
833 const QuicPacketSequenceNumber epoch_delta =
834 GG_UINT64_C(1) << (8 * sequence_number_length);
835 QuicPacketSequenceNumber next_sequence_number = last_sequence_number_ + 1;
836 QuicPacketSequenceNumber epoch = last_sequence_number_ & ~(epoch_delta - 1);
837 QuicPacketSequenceNumber prev_epoch = epoch - epoch_delta;
838 QuicPacketSequenceNumber next_epoch = epoch + epoch_delta;
840 return ClosestTo(next_sequence_number,
841 epoch + packet_sequence_number,
842 ClosestTo(next_sequence_number,
843 prev_epoch + packet_sequence_number,
844 next_epoch + packet_sequence_number));
847 bool QuicFramer::ProcessPublicHeader(
848 QuicPacketPublicHeader* public_header) {
849 uint8 public_flags;
850 if (!reader_->ReadBytes(&public_flags, 1)) {
851 set_detailed_error("Unable to read public flags.");
852 return false;
855 public_header->reset_flag = (public_flags & PACKET_PUBLIC_FLAGS_RST) != 0;
856 public_header->version_flag =
857 (public_flags & PACKET_PUBLIC_FLAGS_VERSION) != 0;
859 if (validate_flags_ &&
860 !public_header->version_flag && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
861 set_detailed_error("Illegal public flags value.");
862 return false;
865 if (public_header->reset_flag && public_header->version_flag) {
866 set_detailed_error("Got version flag in reset packet");
867 return false;
870 switch (public_flags & PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID) {
871 case PACKET_PUBLIC_FLAGS_8BYTE_CONNECTION_ID:
872 if (!reader_->ReadUInt64(&public_header->connection_id)) {
873 set_detailed_error("Unable to read ConnectionId.");
874 return false;
876 public_header->connection_id_length = PACKET_8BYTE_CONNECTION_ID;
877 break;
878 case PACKET_PUBLIC_FLAGS_4BYTE_CONNECTION_ID:
879 // If the connection_id is truncated, expect to read the last serialized
880 // connection_id.
881 if (!reader_->ReadBytes(&public_header->connection_id,
882 PACKET_4BYTE_CONNECTION_ID)) {
883 set_detailed_error("Unable to read ConnectionId.");
884 return false;
886 if (last_serialized_connection_id_ &&
887 (public_header->connection_id & k4ByteConnectionIdMask) !=
888 (last_serialized_connection_id_ & k4ByteConnectionIdMask)) {
889 set_detailed_error("Truncated 4 byte ConnectionId does not match "
890 "previous connection_id.");
891 return false;
893 public_header->connection_id_length = PACKET_4BYTE_CONNECTION_ID;
894 public_header->connection_id = last_serialized_connection_id_;
895 break;
896 case PACKET_PUBLIC_FLAGS_1BYTE_CONNECTION_ID:
897 if (!reader_->ReadBytes(&public_header->connection_id,
898 PACKET_1BYTE_CONNECTION_ID)) {
899 set_detailed_error("Unable to read ConnectionId.");
900 return false;
902 if (last_serialized_connection_id_ &&
903 (public_header->connection_id & k1ByteConnectionIdMask) !=
904 (last_serialized_connection_id_ & k1ByteConnectionIdMask)) {
905 set_detailed_error("Truncated 1 byte ConnectionId does not match "
906 "previous connection_id.");
907 return false;
909 public_header->connection_id_length = PACKET_1BYTE_CONNECTION_ID;
910 public_header->connection_id = last_serialized_connection_id_;
911 break;
912 case PACKET_PUBLIC_FLAGS_0BYTE_CONNECTION_ID:
913 public_header->connection_id_length = PACKET_0BYTE_CONNECTION_ID;
914 public_header->connection_id = last_serialized_connection_id_;
915 break;
918 public_header->sequence_number_length =
919 ReadSequenceNumberLength(
920 public_flags >> kPublicHeaderSequenceNumberShift);
922 // Read the version only if the packet is from the client.
923 // version flag from the server means version negotiation packet.
924 if (public_header->version_flag && is_server_) {
925 QuicTag version_tag;
926 if (!reader_->ReadUInt32(&version_tag)) {
927 set_detailed_error("Unable to read protocol version.");
928 return false;
931 // If the version from the new packet is the same as the version of this
932 // framer, then the public flags should be set to something we understand.
933 // If not, this raises an error.
934 QuicVersion version = QuicTagToQuicVersion(version_tag);
935 if (version == quic_version_ && public_flags > PACKET_PUBLIC_FLAGS_MAX) {
936 set_detailed_error("Illegal public flags value.");
937 return false;
939 public_header->versions.push_back(version);
941 return true;
944 // static
945 QuicSequenceNumberLength QuicFramer::GetMinSequenceNumberLength(
946 QuicPacketSequenceNumber sequence_number) {
947 if (sequence_number < 1 << (PACKET_1BYTE_SEQUENCE_NUMBER * 8)) {
948 return PACKET_1BYTE_SEQUENCE_NUMBER;
949 } else if (sequence_number < 1 << (PACKET_2BYTE_SEQUENCE_NUMBER * 8)) {
950 return PACKET_2BYTE_SEQUENCE_NUMBER;
951 } else if (sequence_number <
952 GG_UINT64_C(1) << (PACKET_4BYTE_SEQUENCE_NUMBER * 8)) {
953 return PACKET_4BYTE_SEQUENCE_NUMBER;
954 } else {
955 return PACKET_6BYTE_SEQUENCE_NUMBER;
959 // static
960 uint8 QuicFramer::GetSequenceNumberFlags(
961 QuicSequenceNumberLength sequence_number_length) {
962 switch (sequence_number_length) {
963 case PACKET_1BYTE_SEQUENCE_NUMBER:
964 return PACKET_FLAGS_1BYTE_SEQUENCE;
965 case PACKET_2BYTE_SEQUENCE_NUMBER:
966 return PACKET_FLAGS_2BYTE_SEQUENCE;
967 case PACKET_4BYTE_SEQUENCE_NUMBER:
968 return PACKET_FLAGS_4BYTE_SEQUENCE;
969 case PACKET_6BYTE_SEQUENCE_NUMBER:
970 return PACKET_FLAGS_6BYTE_SEQUENCE;
971 default:
972 LOG(DFATAL) << "Unreachable case statement.";
973 return PACKET_FLAGS_6BYTE_SEQUENCE;
977 // static
978 QuicFramer::AckFrameInfo QuicFramer::GetAckFrameInfo(
979 const QuicAckFrame& frame) {
980 AckFrameInfo ack_info;
981 if (frame.missing_packets.empty()) {
982 return ack_info;
984 DCHECK_GE(frame.largest_observed, *frame.missing_packets.rbegin());
985 size_t cur_range_length = 0;
986 SequenceNumberSet::const_iterator iter = frame.missing_packets.begin();
987 QuicPacketSequenceNumber last_missing = *iter;
988 ++iter;
989 for (; iter != frame.missing_packets.end(); ++iter) {
990 if (cur_range_length != numeric_limits<uint8>::max() &&
991 *iter == (last_missing + 1)) {
992 ++cur_range_length;
993 } else {
994 ack_info.nack_ranges[last_missing - cur_range_length] = cur_range_length;
995 cur_range_length = 0;
997 ack_info.max_delta = max(ack_info.max_delta, *iter - last_missing);
998 last_missing = *iter;
1000 // Include the last nack range.
1001 ack_info.nack_ranges[last_missing - cur_range_length] = cur_range_length;
1002 // Include the range to the largest observed.
1003 ack_info.max_delta =
1004 max(ack_info.max_delta, frame.largest_observed - last_missing);
1005 return ack_info;
1008 bool QuicFramer::ProcessPacketHeader(
1009 QuicPacketHeader* header,
1010 const QuicEncryptedPacket& packet) {
1011 if (!ProcessPacketSequenceNumber(header->public_header.sequence_number_length,
1012 &header->packet_sequence_number)) {
1013 set_detailed_error("Unable to read sequence number.");
1014 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1017 if (header->packet_sequence_number == 0u) {
1018 set_detailed_error("Packet sequence numbers cannot be 0.");
1019 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1022 if (!visitor_->OnUnauthenticatedHeader(*header)) {
1023 return false;
1026 if (!DecryptPayload(*header, packet)) {
1027 set_detailed_error("Unable to decrypt payload.");
1028 return RaiseError(QUIC_DECRYPTION_FAILURE);
1031 uint8 private_flags;
1032 if (!reader_->ReadBytes(&private_flags, 1)) {
1033 set_detailed_error("Unable to read private flags.");
1034 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1037 if (private_flags > PACKET_PRIVATE_FLAGS_MAX) {
1038 set_detailed_error("Illegal private flags value.");
1039 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1042 header->entropy_flag = (private_flags & PACKET_PRIVATE_FLAGS_ENTROPY) != 0;
1043 header->fec_flag = (private_flags & PACKET_PRIVATE_FLAGS_FEC) != 0;
1045 if ((private_flags & PACKET_PRIVATE_FLAGS_FEC_GROUP) != 0) {
1046 header->is_in_fec_group = IN_FEC_GROUP;
1047 uint8 first_fec_protected_packet_offset;
1048 if (!reader_->ReadBytes(&first_fec_protected_packet_offset, 1)) {
1049 set_detailed_error("Unable to read first fec protected packet offset.");
1050 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1052 if (first_fec_protected_packet_offset >= header->packet_sequence_number) {
1053 set_detailed_error("First fec protected packet offset must be less "
1054 "than the sequence number.");
1055 return RaiseError(QUIC_INVALID_PACKET_HEADER);
1057 header->fec_group =
1058 header->packet_sequence_number - first_fec_protected_packet_offset;
1061 header->entropy_hash = GetPacketEntropyHash(*header);
1062 // Set the last sequence number after we have decrypted the packet
1063 // so we are confident is not attacker controlled.
1064 last_sequence_number_ = header->packet_sequence_number;
1065 return true;
1068 bool QuicFramer::ProcessPacketSequenceNumber(
1069 QuicSequenceNumberLength sequence_number_length,
1070 QuicPacketSequenceNumber* sequence_number) {
1071 QuicPacketSequenceNumber wire_sequence_number = 0u;
1072 if (!reader_->ReadBytes(&wire_sequence_number, sequence_number_length)) {
1073 return false;
1076 // TODO(ianswett): Explore the usefulness of trying multiple sequence numbers
1077 // in case the first guess is incorrect.
1078 *sequence_number =
1079 CalculatePacketSequenceNumberFromWire(sequence_number_length,
1080 wire_sequence_number);
1081 return true;
1084 bool QuicFramer::ProcessFrameData(const QuicPacketHeader& header) {
1085 if (reader_->IsDoneReading()) {
1086 set_detailed_error("Packet has no frames.");
1087 return RaiseError(QUIC_MISSING_PAYLOAD);
1089 while (!reader_->IsDoneReading()) {
1090 uint8 frame_type;
1091 if (!reader_->ReadBytes(&frame_type, 1)) {
1092 set_detailed_error("Unable to read frame type.");
1093 return RaiseError(QUIC_INVALID_FRAME_DATA);
1096 if (frame_type & kQuicFrameTypeSpecialMask) {
1097 // Stream Frame
1098 if (frame_type & kQuicFrameTypeStreamMask) {
1099 QuicStreamFrame frame;
1100 if (!ProcessStreamFrame(frame_type, &frame)) {
1101 return RaiseError(QUIC_INVALID_STREAM_DATA);
1103 if (!visitor_->OnStreamFrame(frame)) {
1104 DVLOG(1) << "Visitor asked to stop further processing.";
1105 // Returning true since there was no parsing error.
1106 return true;
1108 continue;
1111 // Ack Frame
1112 if (frame_type & kQuicFrameTypeAckMask) {
1113 QuicAckFrame frame;
1114 if (!ProcessAckFrame(frame_type, &frame)) {
1115 return RaiseError(QUIC_INVALID_ACK_DATA);
1117 if (!visitor_->OnAckFrame(frame)) {
1118 DVLOG(1) << "Visitor asked to stop further processing.";
1119 // Returning true since there was no parsing error.
1120 return true;
1122 continue;
1125 // Congestion Feedback Frame
1126 if (frame_type & kQuicFrameTypeCongestionFeedbackMask) {
1127 if (quic_version_ > QUIC_VERSION_22) {
1128 set_detailed_error("Congestion Feedback Frame has been deprecated.");
1129 DLOG(WARNING) << "Congestion Feedback Frame has been deprecated.";
1131 QuicCongestionFeedbackFrame frame;
1132 if (!ProcessCongestionFeedbackFrame(&frame)) {
1133 return RaiseError(QUIC_INVALID_CONGESTION_FEEDBACK_DATA);
1135 if (!visitor_->OnCongestionFeedbackFrame(frame)) {
1136 DVLOG(1) << "Visitor asked to stop further processing.";
1137 // Returning true since there was no parsing error.
1138 return true;
1140 continue;
1143 // This was a special frame type that did not match any
1144 // of the known ones. Error.
1145 set_detailed_error("Illegal frame type.");
1146 DLOG(WARNING) << "Illegal frame type: "
1147 << static_cast<int>(frame_type);
1148 return RaiseError(QUIC_INVALID_FRAME_DATA);
1151 switch (frame_type) {
1152 case PADDING_FRAME:
1153 // We're done with the packet.
1154 return true;
1156 case RST_STREAM_FRAME: {
1157 QuicRstStreamFrame frame;
1158 if (!ProcessRstStreamFrame(&frame)) {
1159 return RaiseError(QUIC_INVALID_RST_STREAM_DATA);
1161 if (!visitor_->OnRstStreamFrame(frame)) {
1162 DVLOG(1) << "Visitor asked to stop further processing.";
1163 // Returning true since there was no parsing error.
1164 return true;
1166 continue;
1169 case CONNECTION_CLOSE_FRAME: {
1170 QuicConnectionCloseFrame frame;
1171 if (!ProcessConnectionCloseFrame(&frame)) {
1172 return RaiseError(QUIC_INVALID_CONNECTION_CLOSE_DATA);
1175 if (!visitor_->OnConnectionCloseFrame(frame)) {
1176 DVLOG(1) << "Visitor asked to stop further processing.";
1177 // Returning true since there was no parsing error.
1178 return true;
1180 continue;
1183 case GOAWAY_FRAME: {
1184 QuicGoAwayFrame goaway_frame;
1185 if (!ProcessGoAwayFrame(&goaway_frame)) {
1186 return RaiseError(QUIC_INVALID_GOAWAY_DATA);
1188 if (!visitor_->OnGoAwayFrame(goaway_frame)) {
1189 DVLOG(1) << "Visitor asked to stop further processing.";
1190 // Returning true since there was no parsing error.
1191 return true;
1193 continue;
1196 case WINDOW_UPDATE_FRAME: {
1197 QuicWindowUpdateFrame window_update_frame;
1198 if (!ProcessWindowUpdateFrame(&window_update_frame)) {
1199 return RaiseError(QUIC_INVALID_WINDOW_UPDATE_DATA);
1201 if (!visitor_->OnWindowUpdateFrame(window_update_frame)) {
1202 DVLOG(1) << "Visitor asked to stop further processing.";
1203 // Returning true since there was no parsing error.
1204 return true;
1206 continue;
1209 case BLOCKED_FRAME: {
1210 QuicBlockedFrame blocked_frame;
1211 if (!ProcessBlockedFrame(&blocked_frame)) {
1212 return RaiseError(QUIC_INVALID_BLOCKED_DATA);
1214 if (!visitor_->OnBlockedFrame(blocked_frame)) {
1215 DVLOG(1) << "Visitor asked to stop further processing.";
1216 // Returning true since there was no parsing error.
1217 return true;
1219 continue;
1222 case STOP_WAITING_FRAME: {
1223 QuicStopWaitingFrame stop_waiting_frame;
1224 if (!ProcessStopWaitingFrame(header, &stop_waiting_frame)) {
1225 return RaiseError(QUIC_INVALID_STOP_WAITING_DATA);
1227 if (!visitor_->OnStopWaitingFrame(stop_waiting_frame)) {
1228 DVLOG(1) << "Visitor asked to stop further processing.";
1229 // Returning true since there was no parsing error.
1230 return true;
1232 continue;
1234 case PING_FRAME: {
1235 // Ping has no payload.
1236 QuicPingFrame ping_frame;
1237 if (!visitor_->OnPingFrame(ping_frame)) {
1238 DVLOG(1) << "Visitor asked to stop further processing.";
1239 // Returning true since there was no parsing error.
1240 return true;
1242 continue;
1245 default:
1246 set_detailed_error("Illegal frame type.");
1247 DLOG(WARNING) << "Illegal frame type: "
1248 << static_cast<int>(frame_type);
1249 return RaiseError(QUIC_INVALID_FRAME_DATA);
1253 return true;
1256 bool QuicFramer::ProcessStreamFrame(uint8 frame_type,
1257 QuicStreamFrame* frame) {
1258 uint8 stream_flags = frame_type;
1260 stream_flags &= ~kQuicFrameTypeStreamMask;
1262 // Read from right to left: StreamID, Offset, Data Length, Fin.
1263 const uint8 stream_id_length = (stream_flags & kQuicStreamIDLengthMask) + 1;
1264 stream_flags >>= kQuicStreamIdShift;
1266 uint8 offset_length = (stream_flags & kQuicStreamOffsetMask);
1267 // There is no encoding for 1 byte, only 0 and 2 through 8.
1268 if (offset_length > 0) {
1269 offset_length += 1;
1271 stream_flags >>= kQuicStreamOffsetShift;
1273 bool has_data_length =
1274 (stream_flags & kQuicStreamDataLengthMask) == kQuicStreamDataLengthMask;
1275 stream_flags >>= kQuicStreamDataLengthShift;
1277 frame->fin = (stream_flags & kQuicStreamFinMask) == kQuicStreamFinShift;
1279 frame->stream_id = 0;
1280 if (!reader_->ReadBytes(&frame->stream_id, stream_id_length)) {
1281 set_detailed_error("Unable to read stream_id.");
1282 return false;
1285 frame->offset = 0;
1286 if (!reader_->ReadBytes(&frame->offset, offset_length)) {
1287 set_detailed_error("Unable to read offset.");
1288 return false;
1291 StringPiece frame_data;
1292 if (has_data_length) {
1293 if (!reader_->ReadStringPiece16(&frame_data)) {
1294 set_detailed_error("Unable to read frame data.");
1295 return false;
1297 } else {
1298 if (!reader_->ReadStringPiece(&frame_data, reader_->BytesRemaining())) {
1299 set_detailed_error("Unable to read frame data.");
1300 return false;
1303 // Point frame to the right data.
1304 frame->data.Clear();
1305 if (!frame_data.empty()) {
1306 frame->data.Append(const_cast<char*>(frame_data.data()), frame_data.size());
1309 return true;
1312 bool QuicFramer::ProcessAckFrame(uint8 frame_type, QuicAckFrame* ack_frame) {
1313 // Determine the three lengths from the frame type: largest observed length,
1314 // missing sequence number length, and missing range length.
1315 const QuicSequenceNumberLength missing_sequence_number_length =
1316 ReadSequenceNumberLength(frame_type);
1317 frame_type >>= kQuicSequenceNumberLengthShift;
1318 const QuicSequenceNumberLength largest_observed_sequence_number_length =
1319 ReadSequenceNumberLength(frame_type);
1320 frame_type >>= kQuicSequenceNumberLengthShift;
1321 ack_frame->is_truncated = frame_type & kQuicAckTruncatedMask;
1322 frame_type >>= kQuicAckTruncatedShift;
1323 bool has_nacks = frame_type & kQuicHasNacksMask;
1325 if (!reader_->ReadBytes(&ack_frame->entropy_hash, 1)) {
1326 set_detailed_error("Unable to read entropy hash for received packets.");
1327 return false;
1330 if (!reader_->ReadBytes(&ack_frame->largest_observed,
1331 largest_observed_sequence_number_length)) {
1332 set_detailed_error("Unable to read largest observed.");
1333 return false;
1336 uint64 delta_time_largest_observed_us;
1337 if (!reader_->ReadUFloat16(&delta_time_largest_observed_us)) {
1338 set_detailed_error("Unable to read delta time largest observed.");
1339 return false;
1342 if (delta_time_largest_observed_us == kUFloat16MaxValue) {
1343 ack_frame->delta_time_largest_observed = QuicTime::Delta::Infinite();
1344 } else {
1345 ack_frame->delta_time_largest_observed =
1346 QuicTime::Delta::FromMicroseconds(delta_time_largest_observed_us);
1349 if (!ProcessTimestampsInAckFrame(ack_frame)) {
1350 return false;
1353 if (!has_nacks) {
1354 return true;
1357 uint8 num_missing_ranges;
1358 if (!reader_->ReadBytes(&num_missing_ranges, 1)) {
1359 set_detailed_error("Unable to read num missing packet ranges.");
1360 return false;
1363 QuicPacketSequenceNumber last_sequence_number = ack_frame->largest_observed;
1364 for (size_t i = 0; i < num_missing_ranges; ++i) {
1365 QuicPacketSequenceNumber missing_delta = 0;
1366 if (!reader_->ReadBytes(&missing_delta, missing_sequence_number_length)) {
1367 set_detailed_error("Unable to read missing sequence number delta.");
1368 return false;
1370 last_sequence_number -= missing_delta;
1371 QuicPacketSequenceNumber range_length = 0;
1372 if (!reader_->ReadBytes(&range_length, PACKET_1BYTE_SEQUENCE_NUMBER)) {
1373 set_detailed_error("Unable to read missing sequence number range.");
1374 return false;
1376 for (size_t i = 0; i <= range_length; ++i) {
1377 ack_frame->missing_packets.insert(last_sequence_number - i);
1379 // Subtract an extra 1 to ensure ranges are represented efficiently and
1380 // can't overlap by 1 sequence number. This allows a missing_delta of 0
1381 // to represent an adjacent nack range.
1382 last_sequence_number -= (range_length + 1);
1385 // Parse the revived packets list.
1386 uint8 num_revived_packets;
1387 if (!reader_->ReadBytes(&num_revived_packets, 1)) {
1388 set_detailed_error("Unable to read num revived packets.");
1389 return false;
1392 for (size_t i = 0; i < num_revived_packets; ++i) {
1393 QuicPacketSequenceNumber revived_packet = 0;
1394 if (!reader_->ReadBytes(&revived_packet,
1395 largest_observed_sequence_number_length)) {
1396 set_detailed_error("Unable to read revived packet.");
1397 return false;
1400 ack_frame->revived_packets.insert(revived_packet);
1403 return true;
1406 bool QuicFramer::ProcessTimestampsInAckFrame(QuicAckFrame* ack_frame) {
1407 if (version() > QUIC_VERSION_22 && !ack_frame->is_truncated) {
1408 uint8 num_received_packets;
1409 if (!reader_->ReadBytes(&num_received_packets, 1)) {
1410 set_detailed_error("Unable to read num received packets.");
1411 return false;
1414 if (num_received_packets > 0) {
1415 uint8 delta_from_largest_observed;
1416 if (!reader_->ReadBytes(&delta_from_largest_observed,
1417 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1418 set_detailed_error(
1419 "Unable to read sequence delta in received packets.");
1420 return false;
1422 QuicPacketSequenceNumber seq_num = ack_frame->largest_observed -
1423 delta_from_largest_observed;
1425 // Time delta from the framer creation.
1426 uint32 time_delta_us;
1427 if (!reader_->ReadBytes(&time_delta_us, sizeof(time_delta_us))) {
1428 set_detailed_error("Unable to read time delta in received packets.");
1429 return false;
1432 last_timestamp_ = CalculateTimestampFromWire(time_delta_us);
1434 ack_frame->received_packet_times.push_back(
1435 make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1437 for (uint8 i = 1; i < num_received_packets; ++i) {
1438 if (!reader_->ReadBytes(&delta_from_largest_observed,
1439 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1440 set_detailed_error(
1441 "Unable to read sequence delta in received packets.");
1442 return false;
1444 seq_num = ack_frame->largest_observed - delta_from_largest_observed;
1446 // Time delta from the previous timestamp.
1447 uint64 incremental_time_delta_us;
1448 if (!reader_->ReadUFloat16(&incremental_time_delta_us)) {
1449 set_detailed_error(
1450 "Unable to read incremental time delta in received packets.");
1451 return false;
1454 last_timestamp_ = last_timestamp_.Add(
1455 QuicTime::Delta::FromMicroseconds(incremental_time_delta_us));
1456 ack_frame->received_packet_times.push_back(
1457 make_pair(seq_num, creation_time_.Add(last_timestamp_)));
1461 return true;
1464 bool QuicFramer::ProcessStopWaitingFrame(const QuicPacketHeader& header,
1465 QuicStopWaitingFrame* stop_waiting) {
1466 if (!reader_->ReadBytes(&stop_waiting->entropy_hash, 1)) {
1467 set_detailed_error("Unable to read entropy hash for sent packets.");
1468 return false;
1471 QuicPacketSequenceNumber least_unacked_delta = 0;
1472 if (!reader_->ReadBytes(&least_unacked_delta,
1473 header.public_header.sequence_number_length)) {
1474 set_detailed_error("Unable to read least unacked delta.");
1475 return false;
1477 DCHECK_GE(header.packet_sequence_number, least_unacked_delta);
1478 stop_waiting->least_unacked =
1479 header.packet_sequence_number - least_unacked_delta;
1481 return true;
1484 bool QuicFramer::ProcessCongestionFeedbackFrame(
1485 QuicCongestionFeedbackFrame* frame) {
1486 uint8 feedback_type;
1487 if (!reader_->ReadBytes(&feedback_type, 1)) {
1488 set_detailed_error("Unable to read congestion feedback type.");
1489 return false;
1491 frame->type =
1492 static_cast<CongestionFeedbackType>(feedback_type);
1494 switch (frame->type) {
1495 case kTCP: {
1496 CongestionFeedbackMessageTCP* tcp = &frame->tcp;
1497 uint16 receive_window = 0;
1498 if (!reader_->ReadUInt16(&receive_window)) {
1499 set_detailed_error("Unable to read receive window.");
1500 return false;
1502 // Simple bit packing, don't send the 4 least significant bits.
1503 tcp->receive_window = static_cast<QuicByteCount>(receive_window) << 4;
1504 break;
1506 default:
1507 set_detailed_error("Illegal congestion feedback type.");
1508 DLOG(WARNING) << "Illegal congestion feedback type: "
1509 << frame->type;
1510 return RaiseError(QUIC_INVALID_FRAME_DATA);
1513 return true;
1516 bool QuicFramer::ProcessRstStreamFrame(QuicRstStreamFrame* frame) {
1517 if (!reader_->ReadUInt32(&frame->stream_id)) {
1518 set_detailed_error("Unable to read stream_id.");
1519 return false;
1522 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1523 set_detailed_error("Unable to read rst stream sent byte offset.");
1524 return false;
1527 uint32 error_code;
1528 if (!reader_->ReadUInt32(&error_code)) {
1529 set_detailed_error("Unable to read rst stream error code.");
1530 return false;
1533 if (error_code >= QUIC_STREAM_LAST_ERROR) {
1534 set_detailed_error("Invalid rst stream error code.");
1535 return false;
1538 frame->error_code = static_cast<QuicRstStreamErrorCode>(error_code);
1540 StringPiece error_details;
1541 if (!reader_->ReadStringPiece16(&error_details)) {
1542 set_detailed_error("Unable to read rst stream error details.");
1543 return false;
1545 frame->error_details = error_details.as_string();
1547 return true;
1550 bool QuicFramer::ProcessConnectionCloseFrame(QuicConnectionCloseFrame* frame) {
1551 uint32 error_code;
1552 if (!reader_->ReadUInt32(&error_code)) {
1553 set_detailed_error("Unable to read connection close error code.");
1554 return false;
1557 if (error_code >= QUIC_LAST_ERROR) {
1558 set_detailed_error("Invalid error code.");
1559 return false;
1562 frame->error_code = static_cast<QuicErrorCode>(error_code);
1564 StringPiece error_details;
1565 if (!reader_->ReadStringPiece16(&error_details)) {
1566 set_detailed_error("Unable to read connection close error details.");
1567 return false;
1569 frame->error_details = error_details.as_string();
1571 return true;
1574 bool QuicFramer::ProcessGoAwayFrame(QuicGoAwayFrame* frame) {
1575 uint32 error_code;
1576 if (!reader_->ReadUInt32(&error_code)) {
1577 set_detailed_error("Unable to read go away error code.");
1578 return false;
1580 frame->error_code = static_cast<QuicErrorCode>(error_code);
1582 if (error_code >= QUIC_LAST_ERROR) {
1583 set_detailed_error("Invalid error code.");
1584 return false;
1587 uint32 stream_id;
1588 if (!reader_->ReadUInt32(&stream_id)) {
1589 set_detailed_error("Unable to read last good stream id.");
1590 return false;
1592 frame->last_good_stream_id = static_cast<QuicStreamId>(stream_id);
1594 StringPiece reason_phrase;
1595 if (!reader_->ReadStringPiece16(&reason_phrase)) {
1596 set_detailed_error("Unable to read goaway reason.");
1597 return false;
1599 frame->reason_phrase = reason_phrase.as_string();
1601 return true;
1604 bool QuicFramer::ProcessWindowUpdateFrame(QuicWindowUpdateFrame* frame) {
1605 if (!reader_->ReadUInt32(&frame->stream_id)) {
1606 set_detailed_error("Unable to read stream_id.");
1607 return false;
1610 if (!reader_->ReadUInt64(&frame->byte_offset)) {
1611 set_detailed_error("Unable to read window byte_offset.");
1612 return false;
1615 return true;
1618 bool QuicFramer::ProcessBlockedFrame(QuicBlockedFrame* frame) {
1619 if (!reader_->ReadUInt32(&frame->stream_id)) {
1620 set_detailed_error("Unable to read stream_id.");
1621 return false;
1624 return true;
1627 // static
1628 StringPiece QuicFramer::GetAssociatedDataFromEncryptedPacket(
1629 const QuicEncryptedPacket& encrypted,
1630 QuicConnectionIdLength connection_id_length,
1631 bool includes_version,
1632 QuicSequenceNumberLength sequence_number_length) {
1633 return StringPiece(
1634 encrypted.data() + kStartOfHashData, GetStartOfEncryptedData(
1635 connection_id_length, includes_version, sequence_number_length)
1636 - kStartOfHashData);
1639 void QuicFramer::SetDecrypter(QuicDecrypter* decrypter,
1640 EncryptionLevel level) {
1641 DCHECK(alternative_decrypter_.get() == nullptr);
1642 DCHECK_GE(level, decrypter_level_);
1643 decrypter_.reset(decrypter);
1644 decrypter_level_ = level;
1647 void QuicFramer::SetAlternativeDecrypter(QuicDecrypter* decrypter,
1648 EncryptionLevel level,
1649 bool latch_once_used) {
1650 alternative_decrypter_.reset(decrypter);
1651 alternative_decrypter_level_ = level;
1652 alternative_decrypter_latch_ = latch_once_used;
1655 const QuicDecrypter* QuicFramer::decrypter() const {
1656 return decrypter_.get();
1659 const QuicDecrypter* QuicFramer::alternative_decrypter() const {
1660 return alternative_decrypter_.get();
1663 void QuicFramer::SetEncrypter(EncryptionLevel level,
1664 QuicEncrypter* encrypter) {
1665 DCHECK_GE(level, 0);
1666 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1667 encrypter_[level].reset(encrypter);
1670 const QuicEncrypter* QuicFramer::encrypter(EncryptionLevel level) const {
1671 DCHECK_GE(level, 0);
1672 DCHECK_LT(level, NUM_ENCRYPTION_LEVELS);
1673 DCHECK(encrypter_[level].get() != nullptr);
1674 return encrypter_[level].get();
1677 QuicEncryptedPacket* QuicFramer::EncryptPacket(
1678 EncryptionLevel level,
1679 QuicPacketSequenceNumber packet_sequence_number,
1680 const QuicPacket& packet) {
1681 DCHECK(encrypter_[level].get() != nullptr);
1683 scoped_ptr<QuicData> out(encrypter_[level]->EncryptPacket(
1684 packet_sequence_number, packet.AssociatedData(), packet.Plaintext()));
1685 if (out.get() == nullptr) {
1686 RaiseError(QUIC_ENCRYPTION_FAILURE);
1687 return nullptr;
1689 StringPiece header_data = packet.BeforePlaintext();
1690 size_t len = header_data.length() + out->length();
1691 char* buffer = new char[len];
1692 // TODO(rch): eliminate this buffer copy by passing in a buffer to Encrypt().
1693 memcpy(buffer, header_data.data(), header_data.length());
1694 memcpy(buffer + header_data.length(), out->data(), out->length());
1695 return new QuicEncryptedPacket(buffer, len, true);
1698 size_t QuicFramer::GetMaxPlaintextSize(size_t ciphertext_size) {
1699 // In order to keep the code simple, we don't have the current encryption
1700 // level to hand. Both the NullEncrypter and AES-GCM have a tag length of 12.
1701 size_t min_plaintext_size = ciphertext_size;
1703 for (int i = ENCRYPTION_NONE; i < NUM_ENCRYPTION_LEVELS; i++) {
1704 if (encrypter_[i].get() != nullptr) {
1705 size_t size = encrypter_[i]->GetMaxPlaintextSize(ciphertext_size);
1706 if (size < min_plaintext_size) {
1707 min_plaintext_size = size;
1712 return min_plaintext_size;
1715 bool QuicFramer::DecryptPayload(const QuicPacketHeader& header,
1716 const QuicEncryptedPacket& packet) {
1717 StringPiece encrypted;
1718 if (!reader_->ReadStringPiece(&encrypted, reader_->BytesRemaining())) {
1719 return false;
1721 DCHECK(decrypter_.get() != nullptr);
1722 decrypted_.reset(decrypter_->DecryptPacket(
1723 header.packet_sequence_number,
1724 GetAssociatedDataFromEncryptedPacket(
1725 packet,
1726 header.public_header.connection_id_length,
1727 header.public_header.version_flag,
1728 header.public_header.sequence_number_length),
1729 encrypted));
1730 if (decrypted_.get() != nullptr) {
1731 visitor_->OnDecryptedPacket(decrypter_level_);
1732 } else if (alternative_decrypter_.get() != nullptr) {
1733 decrypted_.reset(alternative_decrypter_->DecryptPacket(
1734 header.packet_sequence_number,
1735 GetAssociatedDataFromEncryptedPacket(
1736 packet,
1737 header.public_header.connection_id_length,
1738 header.public_header.version_flag,
1739 header.public_header.sequence_number_length),
1740 encrypted));
1741 if (decrypted_.get() != nullptr) {
1742 visitor_->OnDecryptedPacket(alternative_decrypter_level_);
1743 if (alternative_decrypter_latch_) {
1744 // Switch to the alternative decrypter and latch so that we cannot
1745 // switch back.
1746 decrypter_.reset(alternative_decrypter_.release());
1747 decrypter_level_ = alternative_decrypter_level_;
1748 alternative_decrypter_level_ = ENCRYPTION_NONE;
1749 } else {
1750 // Switch the alternative decrypter so that we use it first next time.
1751 decrypter_.swap(alternative_decrypter_);
1752 EncryptionLevel level = alternative_decrypter_level_;
1753 alternative_decrypter_level_ = decrypter_level_;
1754 decrypter_level_ = level;
1759 if (decrypted_.get() == nullptr) {
1760 DLOG(WARNING) << "DecryptPacket failed for sequence_number:"
1761 << header.packet_sequence_number;
1762 return false;
1765 reader_.reset(new QuicDataReader(decrypted_->data(), decrypted_->length()));
1766 return true;
1769 size_t QuicFramer::GetAckFrameSize(
1770 const QuicAckFrame& ack,
1771 QuicSequenceNumberLength sequence_number_length) {
1772 AckFrameInfo ack_info = GetAckFrameInfo(ack);
1773 QuicSequenceNumberLength largest_observed_length =
1774 GetMinSequenceNumberLength(ack.largest_observed);
1775 QuicSequenceNumberLength missing_sequence_number_length =
1776 GetMinSequenceNumberLength(ack_info.max_delta);
1778 size_t ack_size = GetMinAckFrameSize(sequence_number_length,
1779 largest_observed_length);
1780 if (!ack_info.nack_ranges.empty()) {
1781 ack_size += kNumberOfNackRangesSize + kNumberOfRevivedPacketsSize;
1782 ack_size += min(ack_info.nack_ranges.size(), kMaxNackRanges) *
1783 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1784 ack_size += min(ack.revived_packets.size(),
1785 kMaxRevivedPackets) * largest_observed_length;
1788 // In version 23, if the ack will be truncated due to too many nack ranges,
1789 // then do not include the number of timestamps (1 byte).
1790 if (version() > QUIC_VERSION_22 &&
1791 ack_info.nack_ranges.size() <= kMaxNackRanges) {
1792 // 1 byte for the number of timestamps.
1793 ack_size += 1;
1794 if (ack.received_packet_times.size() > 0) {
1795 // 1 byte for sequence number, 4 bytes for timestamp for the first
1796 // packet.
1797 ack_size += 5;
1799 // 1 byte for sequence number, 2 bytes for timestamp for the other
1800 // packets.
1801 ack_size += 3 * (ack.received_packet_times.size() - 1);
1805 return ack_size;
1808 size_t QuicFramer::ComputeFrameLength(
1809 const QuicFrame& frame,
1810 bool last_frame_in_packet,
1811 InFecGroup is_in_fec_group,
1812 QuicSequenceNumberLength sequence_number_length) {
1813 switch (frame.type) {
1814 case STREAM_FRAME:
1815 return GetMinStreamFrameSize(frame.stream_frame->stream_id,
1816 frame.stream_frame->offset,
1817 last_frame_in_packet,
1818 is_in_fec_group) +
1819 frame.stream_frame->data.TotalBufferSize();
1820 case ACK_FRAME: {
1821 return GetAckFrameSize(*frame.ack_frame, sequence_number_length);
1823 case CONGESTION_FEEDBACK_FRAME: {
1824 size_t len = kQuicFrameTypeSize;
1825 const QuicCongestionFeedbackFrame& congestion_feedback =
1826 *frame.congestion_feedback_frame;
1827 len += 1; // Congestion feedback type.
1829 switch (congestion_feedback.type) {
1830 case kTCP:
1831 len += 2; // Receive window.
1832 break;
1833 default:
1834 set_detailed_error("Illegal feedback type.");
1835 DVLOG(1) << "Illegal feedback type: " << congestion_feedback.type;
1836 break;
1838 return len;
1840 case STOP_WAITING_FRAME:
1841 return GetStopWaitingFrameSize(sequence_number_length);
1842 case PING_FRAME:
1843 // Ping has no payload.
1844 return kQuicFrameTypeSize;
1845 case RST_STREAM_FRAME:
1846 return GetMinRstStreamFrameSize() +
1847 frame.rst_stream_frame->error_details.size();
1848 case CONNECTION_CLOSE_FRAME:
1849 return GetMinConnectionCloseFrameSize() +
1850 frame.connection_close_frame->error_details.size();
1851 case GOAWAY_FRAME:
1852 return GetMinGoAwayFrameSize() + frame.goaway_frame->reason_phrase.size();
1853 case WINDOW_UPDATE_FRAME:
1854 return GetWindowUpdateFrameSize();
1855 case BLOCKED_FRAME:
1856 return GetBlockedFrameSize();
1857 case PADDING_FRAME:
1858 DCHECK(false);
1859 return 0;
1860 case NUM_FRAME_TYPES:
1861 DCHECK(false);
1862 return 0;
1865 // Not reachable, but some Chrome compilers can't figure that out. *sigh*
1866 DCHECK(false);
1867 return 0;
1870 bool QuicFramer::AppendTypeByte(const QuicFrame& frame,
1871 bool no_stream_frame_length,
1872 QuicDataWriter* writer) {
1873 uint8 type_byte = 0;
1874 switch (frame.type) {
1875 case STREAM_FRAME: {
1876 if (frame.stream_frame == nullptr) {
1877 LOG(DFATAL) << "Failed to append STREAM frame with no stream_frame.";
1879 // Fin bit.
1880 type_byte |= frame.stream_frame->fin ? kQuicStreamFinMask : 0;
1882 // Data Length bit.
1883 type_byte <<= kQuicStreamDataLengthShift;
1884 type_byte |= no_stream_frame_length ? 0: kQuicStreamDataLengthMask;
1886 // Offset 3 bits.
1887 type_byte <<= kQuicStreamOffsetShift;
1888 const size_t offset_len = GetStreamOffsetSize(frame.stream_frame->offset);
1889 if (offset_len > 0) {
1890 type_byte |= offset_len - 1;
1893 // stream id 2 bits.
1894 type_byte <<= kQuicStreamIdShift;
1895 type_byte |= GetStreamIdSize(frame.stream_frame->stream_id) - 1;
1896 type_byte |= kQuicFrameTypeStreamMask; // Set Stream Frame Type to 1.
1897 break;
1899 case ACK_FRAME:
1900 return true;
1901 case CONGESTION_FEEDBACK_FRAME: {
1902 // TODO(ianswett): Use extra 5 bits in the congestion feedback framing.
1903 type_byte = kQuicFrameTypeCongestionFeedbackMask;
1904 break;
1906 default:
1907 type_byte = frame.type;
1908 break;
1911 return writer->WriteUInt8(type_byte);
1914 // static
1915 bool QuicFramer::AppendPacketSequenceNumber(
1916 QuicSequenceNumberLength sequence_number_length,
1917 QuicPacketSequenceNumber packet_sequence_number,
1918 QuicDataWriter* writer) {
1919 // Ensure the entire sequence number can be written.
1920 if (writer->capacity() - writer->length() <
1921 static_cast<size_t>(sequence_number_length)) {
1922 return false;
1924 switch (sequence_number_length) {
1925 case PACKET_1BYTE_SEQUENCE_NUMBER:
1926 return writer->WriteUInt8(
1927 packet_sequence_number & k1ByteSequenceNumberMask);
1928 break;
1929 case PACKET_2BYTE_SEQUENCE_NUMBER:
1930 return writer->WriteUInt16(
1931 packet_sequence_number & k2ByteSequenceNumberMask);
1932 break;
1933 case PACKET_4BYTE_SEQUENCE_NUMBER:
1934 return writer->WriteUInt32(
1935 packet_sequence_number & k4ByteSequenceNumberMask);
1936 break;
1937 case PACKET_6BYTE_SEQUENCE_NUMBER:
1938 return writer->WriteUInt48(
1939 packet_sequence_number & k6ByteSequenceNumberMask);
1940 break;
1941 default:
1942 DCHECK(false) << "sequence_number_length: " << sequence_number_length;
1943 return false;
1947 bool QuicFramer::AppendStreamFrame(
1948 const QuicStreamFrame& frame,
1949 bool no_stream_frame_length,
1950 QuicDataWriter* writer) {
1951 if (!writer->WriteBytes(&frame.stream_id, GetStreamIdSize(frame.stream_id))) {
1952 LOG(DFATAL) << "Writing stream id size failed.";
1953 return false;
1955 if (!writer->WriteBytes(&frame.offset, GetStreamOffsetSize(frame.offset))) {
1956 LOG(DFATAL) << "Writing offset size failed.";
1957 return false;
1959 if (!no_stream_frame_length) {
1960 if (!writer->WriteUInt16(frame.data.TotalBufferSize())) {
1961 LOG(DFATAL) << "Writing stream frame length failed";
1962 return false;
1966 if (!writer->WriteIOVector(frame.data)) {
1967 LOG(DFATAL) << "Writing frame data failed.";
1968 return false;
1970 return true;
1973 // static
1974 void QuicFramer::set_version(const QuicVersion version) {
1975 DCHECK(IsSupportedVersion(version)) << QuicVersionToString(version);
1976 quic_version_ = version;
1979 bool QuicFramer::AppendAckFrameAndTypeByte(
1980 const QuicPacketHeader& header,
1981 const QuicAckFrame& frame,
1982 QuicDataWriter* writer) {
1983 AckFrameInfo ack_info = GetAckFrameInfo(frame);
1984 QuicPacketSequenceNumber ack_largest_observed = frame.largest_observed;
1985 QuicSequenceNumberLength largest_observed_length =
1986 GetMinSequenceNumberLength(ack_largest_observed);
1987 QuicSequenceNumberLength missing_sequence_number_length =
1988 GetMinSequenceNumberLength(ack_info.max_delta);
1989 // Determine whether we need to truncate ranges.
1990 size_t available_range_bytes = writer->capacity() - writer->length() -
1991 kNumberOfRevivedPacketsSize - kNumberOfNackRangesSize -
1992 GetMinAckFrameSize(header.public_header.sequence_number_length,
1993 largest_observed_length);
1994 size_t max_num_ranges = available_range_bytes /
1995 (missing_sequence_number_length + PACKET_1BYTE_SEQUENCE_NUMBER);
1996 max_num_ranges = min(kMaxNackRanges, max_num_ranges);
1997 bool truncated = ack_info.nack_ranges.size() > max_num_ranges;
1998 DVLOG_IF(1, truncated) << "Truncating ack from "
1999 << ack_info.nack_ranges.size() << " ranges to "
2000 << max_num_ranges;
2001 // Write out the type byte by setting the low order bits and doing shifts
2002 // to make room for the next bit flags to be set.
2003 // Whether there are any nacks.
2004 uint8 type_byte = ack_info.nack_ranges.empty() ? 0 : kQuicHasNacksMask;
2006 // truncating bit.
2007 type_byte <<= kQuicAckTruncatedShift;
2008 type_byte |= truncated ? kQuicAckTruncatedMask : 0;
2010 // Largest observed sequence number length.
2011 type_byte <<= kQuicSequenceNumberLengthShift;
2012 type_byte |= GetSequenceNumberFlags(largest_observed_length);
2014 // Missing sequence number length.
2015 type_byte <<= kQuicSequenceNumberLengthShift;
2016 type_byte |= GetSequenceNumberFlags(missing_sequence_number_length);
2018 type_byte |= kQuicFrameTypeAckMask;
2020 if (!writer->WriteUInt8(type_byte)) {
2021 return false;
2024 QuicPacketEntropyHash ack_entropy_hash = frame.entropy_hash;
2025 NackRangeMap::reverse_iterator ack_iter = ack_info.nack_ranges.rbegin();
2026 if (truncated) {
2027 // Skip the nack ranges which the truncated ack won't include and set
2028 // a correct largest observed for the truncated ack.
2029 for (size_t i = 1; i < (ack_info.nack_ranges.size() - max_num_ranges);
2030 ++i) {
2031 ++ack_iter;
2033 // If the last range is followed by acks, include them.
2034 // If the last range is followed by another range, specify the end of the
2035 // range as the largest_observed.
2036 ack_largest_observed = ack_iter->first - 1;
2037 // Also update the entropy so it matches the largest observed.
2038 ack_entropy_hash = entropy_calculator_->EntropyHash(ack_largest_observed);
2039 ++ack_iter;
2042 if (!writer->WriteUInt8(ack_entropy_hash)) {
2043 return false;
2046 if (!AppendPacketSequenceNumber(largest_observed_length,
2047 ack_largest_observed, writer)) {
2048 return false;
2051 uint64 delta_time_largest_observed_us = kUFloat16MaxValue;
2052 if (!frame.delta_time_largest_observed.IsInfinite()) {
2053 DCHECK_LE(0u, frame.delta_time_largest_observed.ToMicroseconds());
2054 delta_time_largest_observed_us =
2055 frame.delta_time_largest_observed.ToMicroseconds();
2058 if (!writer->WriteUFloat16(delta_time_largest_observed_us)) {
2059 return false;
2062 // Timestamp goes at the end of the required fields.
2063 if (version() > QUIC_VERSION_22 && !truncated) {
2064 if (!AppendTimestampToAckFrame(frame, writer)) {
2065 return false;
2069 if (ack_info.nack_ranges.empty()) {
2070 return true;
2073 const uint8 num_missing_ranges =
2074 min(ack_info.nack_ranges.size(), max_num_ranges);
2075 if (!writer->WriteBytes(&num_missing_ranges, 1)) {
2076 return false;
2079 int num_ranges_written = 0;
2080 QuicPacketSequenceNumber last_sequence_written = ack_largest_observed;
2081 for (; ack_iter != ack_info.nack_ranges.rend(); ++ack_iter) {
2082 // Calculate the delta to the last number in the range.
2083 QuicPacketSequenceNumber missing_delta =
2084 last_sequence_written - (ack_iter->first + ack_iter->second);
2085 if (!AppendPacketSequenceNumber(missing_sequence_number_length,
2086 missing_delta, writer)) {
2087 return false;
2089 if (!AppendPacketSequenceNumber(PACKET_1BYTE_SEQUENCE_NUMBER,
2090 ack_iter->second, writer)) {
2091 return false;
2093 // Subtract 1 so a missing_delta of 0 means an adjacent range.
2094 last_sequence_written = ack_iter->first - 1;
2095 ++num_ranges_written;
2097 DCHECK_EQ(num_missing_ranges, num_ranges_written);
2099 // Append revived packets.
2100 // If not all the revived packets fit, only mention the ones that do.
2101 uint8 num_revived_packets = min(frame.revived_packets.size(),
2102 kMaxRevivedPackets);
2103 num_revived_packets = min(
2104 static_cast<size_t>(num_revived_packets),
2105 (writer->capacity() - writer->length()) / largest_observed_length);
2106 if (!writer->WriteBytes(&num_revived_packets, 1)) {
2107 return false;
2110 SequenceNumberSet::const_iterator iter = frame.revived_packets.begin();
2111 for (int i = 0; i < num_revived_packets; ++i, ++iter) {
2112 LOG_IF(DFATAL, !ContainsKey(frame.missing_packets, *iter));
2113 if (!AppendPacketSequenceNumber(largest_observed_length,
2114 *iter, writer)) {
2115 return false;
2119 return true;
2122 bool QuicFramer::AppendCongestionFeedbackFrame(
2123 const QuicCongestionFeedbackFrame& frame,
2124 QuicDataWriter* writer) {
2125 if (!writer->WriteBytes(&frame.type, 1)) {
2126 return false;
2129 switch (frame.type) {
2130 case kTCP: {
2131 const CongestionFeedbackMessageTCP& tcp = frame.tcp;
2132 DCHECK_LE(tcp.receive_window, 1u << 20);
2133 // Simple bit packing, don't send the 4 least significant bits.
2134 uint16 receive_window = static_cast<uint16>(tcp.receive_window >> 4);
2135 if (!writer->WriteUInt16(receive_window)) {
2136 return false;
2138 break;
2140 default:
2141 return false;
2144 return true;
2147 bool QuicFramer::AppendTimestampToAckFrame(const QuicAckFrame& frame,
2148 QuicDataWriter* writer) {
2149 DCHECK_GE(version(), QUIC_VERSION_23);
2150 DCHECK_GE(numeric_limits<uint8>::max(), frame.received_packet_times.size());
2151 // num_received_packets is only 1 byte.
2152 if (frame.received_packet_times.size() > numeric_limits<uint8>::max()) {
2153 return false;
2156 uint8 num_received_packets = frame.received_packet_times.size();
2158 if (!writer->WriteBytes(&num_received_packets, 1)) {
2159 return false;
2161 if (num_received_packets == 0) {
2162 return true;
2165 PacketTimeList::const_iterator it = frame.received_packet_times.begin();
2166 QuicPacketSequenceNumber sequence_number = it->first;
2167 QuicPacketSequenceNumber delta_from_largest_observed =
2168 frame.largest_observed - sequence_number;
2170 DCHECK_GE(numeric_limits<uint8>::max(), delta_from_largest_observed);
2171 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2172 return false;
2175 if (!writer->WriteUInt8(
2176 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2177 return false;
2180 // Use the lowest 4 bytes of the time delta from the creation_time_.
2181 const uint64 time_epoch_delta_us = GG_UINT64_C(1) << 32;
2182 uint32 time_delta_us =
2183 static_cast<uint32>(it->second.Subtract(creation_time_).ToMicroseconds()
2184 & (time_epoch_delta_us - 1));
2185 if (!writer->WriteBytes(&time_delta_us, sizeof(time_delta_us))) {
2186 return false;
2189 QuicTime prev_time = it->second;
2191 for (++it; it != frame.received_packet_times.end(); ++it) {
2192 sequence_number = it->first;
2193 delta_from_largest_observed = frame.largest_observed - sequence_number;
2195 if (delta_from_largest_observed > numeric_limits<uint8>::max()) {
2196 return false;
2199 if (!writer->WriteUInt8(
2200 delta_from_largest_observed & k1ByteSequenceNumberMask)) {
2201 return false;
2204 uint64 time_delta_us = it->second.Subtract(prev_time).ToMicroseconds();
2205 prev_time = it->second;
2206 if (!writer->WriteUFloat16(time_delta_us)) {
2207 return false;
2210 return true;
2213 bool QuicFramer::AppendStopWaitingFrame(
2214 const QuicPacketHeader& header,
2215 const QuicStopWaitingFrame& frame,
2216 QuicDataWriter* writer) {
2217 DCHECK_GE(header.packet_sequence_number, frame.least_unacked);
2218 const QuicPacketSequenceNumber least_unacked_delta =
2219 header.packet_sequence_number - frame.least_unacked;
2220 const QuicPacketSequenceNumber length_shift =
2221 header.public_header.sequence_number_length * 8;
2222 if (!writer->WriteUInt8(frame.entropy_hash)) {
2223 LOG(DFATAL) << " hash failed";
2224 return false;
2227 if (least_unacked_delta >> length_shift > 0) {
2228 LOG(DFATAL) << "sequence_number_length "
2229 << header.public_header.sequence_number_length
2230 << " is too small for least_unacked_delta: "
2231 << least_unacked_delta;
2232 return false;
2234 if (!AppendPacketSequenceNumber(header.public_header.sequence_number_length,
2235 least_unacked_delta, writer)) {
2236 LOG(DFATAL) << " seq failed: "
2237 << header.public_header.sequence_number_length;
2238 return false;
2241 return true;
2244 bool QuicFramer::AppendRstStreamFrame(
2245 const QuicRstStreamFrame& frame,
2246 QuicDataWriter* writer) {
2247 if (!writer->WriteUInt32(frame.stream_id)) {
2248 return false;
2251 if (!writer->WriteUInt64(frame.byte_offset)) {
2252 return false;
2255 uint32 error_code = static_cast<uint32>(frame.error_code);
2256 if (!writer->WriteUInt32(error_code)) {
2257 return false;
2260 if (!writer->WriteStringPiece16(frame.error_details)) {
2261 return false;
2263 return true;
2266 bool QuicFramer::AppendConnectionCloseFrame(
2267 const QuicConnectionCloseFrame& frame,
2268 QuicDataWriter* writer) {
2269 uint32 error_code = static_cast<uint32>(frame.error_code);
2270 if (!writer->WriteUInt32(error_code)) {
2271 return false;
2273 if (!writer->WriteStringPiece16(frame.error_details)) {
2274 return false;
2276 return true;
2279 bool QuicFramer::AppendGoAwayFrame(const QuicGoAwayFrame& frame,
2280 QuicDataWriter* writer) {
2281 uint32 error_code = static_cast<uint32>(frame.error_code);
2282 if (!writer->WriteUInt32(error_code)) {
2283 return false;
2285 uint32 stream_id = static_cast<uint32>(frame.last_good_stream_id);
2286 if (!writer->WriteUInt32(stream_id)) {
2287 return false;
2289 if (!writer->WriteStringPiece16(frame.reason_phrase)) {
2290 return false;
2292 return true;
2295 bool QuicFramer::AppendWindowUpdateFrame(const QuicWindowUpdateFrame& frame,
2296 QuicDataWriter* writer) {
2297 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2298 if (!writer->WriteUInt32(stream_id)) {
2299 return false;
2301 if (!writer->WriteUInt64(frame.byte_offset)) {
2302 return false;
2304 return true;
2307 bool QuicFramer::AppendBlockedFrame(const QuicBlockedFrame& frame,
2308 QuicDataWriter* writer) {
2309 uint32 stream_id = static_cast<uint32>(frame.stream_id);
2310 if (!writer->WriteUInt32(stream_id)) {
2311 return false;
2313 return true;
2316 bool QuicFramer::RaiseError(QuicErrorCode error) {
2317 DVLOG(1) << "Error detail: " << detailed_error_;
2318 set_error(error);
2319 visitor_->OnError(this);
2320 reader_.reset(nullptr);
2321 return false;
2324 } // namespace net