1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/trees/layer_sorter.h"
12 #include "base/logging.h"
13 #include "cc/base/math_util.h"
14 #include "cc/layers/render_surface_impl.h"
15 #include "ui/gfx/transform.h"
19 // This epsilon is used to determine if two layers are too close to each other
20 // to be able to tell which is in front of the other. It's a relative epsilon
21 // so it is robust to changes in scene scale. This value was chosen by picking
22 // a value near machine epsilon and then increasing it until the flickering on
23 // the test scene went away.
24 const float k_layer_epsilon
= 1e-4f
;
26 // Tests if two edges defined by their endpoints (a,b) and (c,d) intersect.
27 // Returns true and the point of intersection if they do and false otherwise.
28 static bool EdgeEdgeTest(const gfx::PointF
& a
,
33 gfx::Vector2dF u
= b
- a
;
34 gfx::Vector2dF v
= d
- c
;
35 gfx::Vector2dF w
= a
- c
;
37 float denom
= static_cast<float>(gfx::CrossProduct(u
, v
));
39 // If denom == 0 then the edges are parallel. While they could be overlapping
40 // we don't bother to check here as the we'll find their intersections from
41 // the corner to quad tests.
45 float s
= static_cast<float>(gfx::CrossProduct(v
, w
)) / denom
;
46 if (s
< 0.f
|| s
> 1.f
)
49 float t
= static_cast<float>(gfx::CrossProduct(u
, w
)) / denom
;
50 if (t
< 0.f
|| t
> 1.f
)
58 GraphNode::GraphNode(LayerImpl
* layer_impl
)
60 incoming_edge_weight(0.f
) {}
62 GraphNode::~GraphNode() {}
64 LayerSorter::LayerSorter()
67 LayerSorter::~LayerSorter() {}
69 static float CheckFloatingPointNumericAccuracy(float a
, float b
) {
70 float abs_dif
= std::abs(b
- a
);
71 float abs_max
= std::max(std::abs(b
), std::abs(a
));
72 // Check to see if we've got a result with a reasonable amount of error.
73 return abs_dif
/ abs_max
;
76 // Checks whether layer "a" draws on top of layer "b". The weight value returned
77 // is an indication of the maximum z-depth difference between the layers or zero
78 // if the layers are found to be intesecting (some features are in front and
80 LayerSorter::ABCompareResult
LayerSorter::CheckOverlap(LayerShape
* a
,
86 // Early out if the projected bounds don't overlap.
87 if (!a
->projected_bounds
.Intersects(b
->projected_bounds
))
90 gfx::PointF aPoints
[4] = { a
->projected_quad
.p1(),
91 a
->projected_quad
.p2(),
92 a
->projected_quad
.p3(),
93 a
->projected_quad
.p4() };
94 gfx::PointF bPoints
[4] = { b
->projected_quad
.p1(),
95 b
->projected_quad
.p2(),
96 b
->projected_quad
.p3(),
97 b
->projected_quad
.p4() };
99 // Make a list of points that inside both layer quad projections.
100 std::vector
<gfx::PointF
> overlap_points
;
102 // Check all four corners of one layer against the other layer's quad.
103 for (int i
= 0; i
< 4; ++i
) {
104 if (a
->projected_quad
.Contains(bPoints
[i
]))
105 overlap_points
.push_back(bPoints
[i
]);
106 if (b
->projected_quad
.Contains(aPoints
[i
]))
107 overlap_points
.push_back(aPoints
[i
]);
110 // Check all the edges of one layer for intersection with the other layer's
113 for (int ea
= 0; ea
< 4; ++ea
)
114 for (int eb
= 0; eb
< 4; ++eb
)
115 if (EdgeEdgeTest(aPoints
[ea
], aPoints
[(ea
+ 1) % 4],
116 bPoints
[eb
], bPoints
[(eb
+ 1) % 4],
118 overlap_points
.push_back(r
);
120 if (overlap_points
.empty())
123 // Check the corresponding layer depth value for all overlap points to
124 // determine which layer is in front.
125 float max_positive
= 0.f
;
126 float max_negative
= 0.f
;
128 // This flag tracks the existance of a numerically accurate seperation
129 // between two layers. If there is no accurate seperation, the layers
130 // cannot be effectively sorted.
131 bool accurate
= false;
133 for (size_t o
= 0; o
< overlap_points
.size(); o
++) {
134 float za
= a
->LayerZFromProjectedPoint(overlap_points
[o
]);
135 float zb
= b
->LayerZFromProjectedPoint(overlap_points
[o
]);
137 // Here we attempt to avoid numeric issues with layers that are too
138 // close together. If we have 2-sided quads that are very close
139 // together then we will draw them in document order to avoid
140 // flickering. The correct solution is for the content maker to turn
141 // on back-face culling or move the quads apart (if they're not two
142 // sides of one object).
143 if (CheckFloatingPointNumericAccuracy(za
, zb
) > k_layer_epsilon
)
146 float diff
= za
- zb
;
147 if (diff
> max_positive
)
149 if (diff
< max_negative
)
153 // If we can't tell which should come first, we use document order.
158 std::abs(max_positive
) > std::abs(max_negative
) ?
159 max_positive
: max_negative
;
161 // If the results are inconsistent (and the z difference substantial to rule
162 // out numerical errors) then the layers are intersecting. We will still
163 // return an order based on the maximum depth difference but with an edge
164 // weight of zero these layers will get priority if a graph cycle is present
165 // and needs to be broken.
166 if (max_positive
> z_threshold
&& max_negative
< -z_threshold
)
169 *weight
= std::abs(max_diff
);
171 // Maintain relative order if the layers have the same depth at all
172 // intersection points.
179 LayerShape::LayerShape() {}
181 LayerShape::LayerShape(float width
,
183 const gfx::Transform
& draw_transform
) {
184 gfx::QuadF
layer_quad(gfx::RectF(0.f
, 0.f
, width
, height
));
186 // Compute the projection of the layer quad onto the z = 0 plane.
188 gfx::PointF clipped_quad
[8];
189 int num_vertices_in_clipped_quad
;
190 MathUtil::MapClippedQuad(draw_transform
,
193 &num_vertices_in_clipped_quad
);
195 if (num_vertices_in_clipped_quad
< 3) {
196 projected_bounds
= gfx::RectF();
201 MathUtil::ComputeEnclosingRectOfVertices(clipped_quad
,
202 num_vertices_in_clipped_quad
);
204 // NOTE: it will require very significant refactoring and overhead to deal
205 // with generalized polygons or multiple quads per layer here. For the sake of
206 // layer sorting it is equally correct to take a subsection of the polygon
207 // that can be made into a quad. This will only be incorrect in the case of
208 // intersecting layers, which are not supported yet anyway.
209 projected_quad
.set_p1(clipped_quad
[0]);
210 projected_quad
.set_p2(clipped_quad
[1]);
211 projected_quad
.set_p3(clipped_quad
[2]);
212 if (num_vertices_in_clipped_quad
>= 4) {
213 projected_quad
.set_p4(clipped_quad
[3]);
215 // This will be a degenerate quad that is actually a triangle.
216 projected_quad
.set_p4(clipped_quad
[2]);
219 // Compute the normal of the layer's plane.
220 bool clipped
= false;
222 MathUtil::MapPoint(draw_transform
, gfx::Point3F(0.f
, 0.f
, 0.f
), &clipped
);
224 MathUtil::MapPoint(draw_transform
, gfx::Point3F(0.f
, 1.f
, 0.f
), &clipped
);
226 MathUtil::MapPoint(draw_transform
, gfx::Point3F(1.f
, 0.f
, 0.f
), &clipped
);
227 // TODO(shawnsingh): Deal with clipping.
228 gfx::Vector3dF c12
= c2
- c1
;
229 gfx::Vector3dF c13
= c3
- c1
;
230 layer_normal
= gfx::CrossProduct(c13
, c12
);
232 transform_origin
= c1
;
235 LayerShape::~LayerShape() {}
237 // Returns the Z coordinate of a point on the layer that projects
238 // to point p which lies on the z = 0 plane. It does it by computing the
239 // intersection of a line starting from p along the Z axis and the plane
241 float LayerShape::LayerZFromProjectedPoint(const gfx::PointF
& p
) const {
242 gfx::Vector3dF
z_axis(0.f
, 0.f
, 1.f
);
243 gfx::Vector3dF w
= gfx::Point3F(p
) - transform_origin
;
245 float d
= gfx::DotProduct(layer_normal
, z_axis
);
246 float n
= -gfx::DotProduct(layer_normal
, w
);
248 // Check if layer is parallel to the z = 0 axis which will make it
249 // invisible and hence returning zero is fine.
253 // The intersection point would be given by:
254 // p + (n / d) * u but since we are only interested in the
255 // z coordinate and p's z coord is zero, all we need is the value of n/d.
259 void LayerSorter::CreateGraphNodes(LayerImplList::iterator first
,
260 LayerImplList::iterator last
) {
261 DVLOG(2) << "Creating graph nodes:";
262 float min_z
= FLT_MAX
;
263 float max_z
= -FLT_MAX
;
264 for (LayerImplList::const_iterator it
= first
; it
< last
; it
++) {
265 nodes_
.push_back(GraphNode(*it
));
266 GraphNode
& node
= nodes_
.at(nodes_
.size() - 1);
267 RenderSurfaceImpl
* render_surface
= node
.layer
->render_surface();
268 if (!node
.layer
->DrawsContent() && !render_surface
)
271 DVLOG(2) << "Layer " << node
.layer
->id() <<
272 " (" << node
.layer
->bounds().width() <<
273 " x " << node
.layer
->bounds().height() << ")";
275 gfx::Transform draw_transform
;
276 float layer_width
, layer_height
;
277 if (render_surface
) {
278 draw_transform
= render_surface
->draw_transform();
279 layer_width
= render_surface
->content_rect().width();
280 layer_height
= render_surface
->content_rect().height();
282 draw_transform
= node
.layer
->draw_transform();
283 layer_width
= node
.layer
->content_bounds().width();
284 layer_height
= node
.layer
->content_bounds().height();
287 node
.shape
= LayerShape(layer_width
, layer_height
, draw_transform
);
289 max_z
= std::max(max_z
, node
.shape
.transform_origin
.z());
290 min_z
= std::min(min_z
, node
.shape
.transform_origin
.z());
293 z_range_
= std::abs(max_z
- min_z
);
296 void LayerSorter::CreateGraphEdges() {
297 DVLOG(2) << "Edges:";
298 // Fraction of the total z_range below which z differences
299 // are not considered reliable.
300 const float z_threshold_factor
= 0.01f
;
301 float z_threshold
= z_range_
* z_threshold_factor
;
303 for (size_t na
= 0; na
< nodes_
.size(); na
++) {
304 GraphNode
& node_a
= nodes_
[na
];
305 if (!node_a
.layer
->DrawsContent() && !node_a
.layer
->render_surface())
307 for (size_t nb
= na
+ 1; nb
< nodes_
.size(); nb
++) {
308 GraphNode
& node_b
= nodes_
[nb
];
309 if (!node_b
.layer
->DrawsContent() && !node_b
.layer
->render_surface())
312 ABCompareResult overlap_result
= CheckOverlap(&node_a
.shape
,
316 GraphNode
* start_node
= NULL
;
317 GraphNode
* end_node
= NULL
;
318 if (overlap_result
== ABeforeB
) {
319 start_node
= &node_a
;
321 } else if (overlap_result
== BBeforeA
) {
322 start_node
= &node_b
;
327 DVLOG(2) << start_node
->layer
->id() << " -> " << end_node
->layer
->id();
328 edges_
.push_back(GraphEdge(start_node
, end_node
, weight
));
333 for (size_t i
= 0; i
< edges_
.size(); i
++) {
334 GraphEdge
& edge
= edges_
[i
];
335 active_edges_
[&edge
] = &edge
;
336 edge
.from
->outgoing
.push_back(&edge
);
337 edge
.to
->incoming
.push_back(&edge
);
338 edge
.to
->incoming_edge_weight
+= edge
.weight
;
342 // Finds and removes an edge from the list by doing a swap with the
343 // last element of the list.
344 void LayerSorter::RemoveEdgeFromList(GraphEdge
* edge
,
345 std::vector
<GraphEdge
*>* list
) {
346 std::vector
<GraphEdge
*>::iterator iter
=
347 std::find(list
->begin(), list
->end(), edge
);
348 DCHECK(iter
!= list
->end());
352 // Sorts the given list of layers such that they can be painted in a
353 // back-to-front order. Sorting produces correct results for non-intersecting
354 // layers that don't have cyclical order dependencies. Cycles and intersections
355 // are broken (somewhat) aribtrarily. Sorting of layers is done via a
356 // topological sort of a directed graph whose nodes are the layers themselves.
357 // An edge from node A to node B signifies that layer A needs to be drawn before
358 // layer B. If A and B have no dependency between each other, then we preserve
359 // the ordering of those layers as they were in the original list.
361 // The draw order between two layers is determined by projecting the two
362 // triangles making up each layer quad to the Z = 0 plane, finding points of
363 // intersection between the triangles and backprojecting those points to the
364 // plane of the layer to determine the corresponding Z coordinate. The layer
365 // with the lower Z coordinate (farther from the eye) needs to be rendered
368 // If the layer projections don't intersect, then no edges (dependencies) are
369 // created between them in the graph. HOWEVER, in this case we still need to
370 // preserve the ordering of the original list of layers, since that list should
371 // already have proper z-index ordering of layers.
373 void LayerSorter::Sort(LayerImplList::iterator first
,
374 LayerImplList::iterator last
) {
375 DVLOG(2) << "Sorting start ----";
376 CreateGraphNodes(first
, last
);
380 std::vector
<GraphNode
*> sorted_list
;
381 std::deque
<GraphNode
*> no_incoming_edge_node_list
;
383 // Find all the nodes that don't have incoming edges.
384 for (NodeList::iterator la
= nodes_
.begin(); la
< nodes_
.end(); la
++) {
385 if (!la
->incoming
.size())
386 no_incoming_edge_node_list
.push_back(&(*la
));
389 DVLOG(2) << "Sorted list: ";
390 while (active_edges_
.size() || no_incoming_edge_node_list
.size()) {
391 while (no_incoming_edge_node_list
.size()) {
392 // It is necessary to preserve the existing ordering of layers, when there
393 // are no explicit dependencies (because this existing ordering has
394 // correct z-index/layout ordering). To preserve this ordering, we process
395 // Nodes in the same order that they were added to the list.
396 GraphNode
* from_node
= no_incoming_edge_node_list
.front();
397 no_incoming_edge_node_list
.pop_front();
399 // Add it to the final list.
400 sorted_list
.push_back(from_node
);
402 DVLOG(2) << from_node
->layer
->id() << ", ";
404 // Remove all its outgoing edges from the graph.
405 for (size_t i
= 0; i
< from_node
->outgoing
.size(); i
++) {
406 GraphEdge
* outgoing_edge
= from_node
->outgoing
[i
];
408 active_edges_
.erase(outgoing_edge
);
409 RemoveEdgeFromList(outgoing_edge
, &outgoing_edge
->to
->incoming
);
410 outgoing_edge
->to
->incoming_edge_weight
-= outgoing_edge
->weight
;
412 if (!outgoing_edge
->to
->incoming
.size())
413 no_incoming_edge_node_list
.push_back(outgoing_edge
->to
);
415 from_node
->outgoing
.clear();
418 if (!active_edges_
.size())
421 // If there are still active edges but the list of nodes without incoming
422 // edges is empty then we have run into a cycle. Break the cycle by finding
423 // the node with the smallest overall incoming edge weight and use it. This
424 // will favor nodes that have zero-weight incoming edges i.e. layers that
425 // are being occluded by a layer that intersects them.
426 float min_incoming_edge_weight
= FLT_MAX
;
427 GraphNode
* next_node
= NULL
;
428 for (size_t i
= 0; i
< nodes_
.size(); i
++) {
429 if (nodes_
[i
].incoming
.size() &&
430 nodes_
[i
].incoming_edge_weight
< min_incoming_edge_weight
) {
431 min_incoming_edge_weight
= nodes_
[i
].incoming_edge_weight
;
432 next_node
= &nodes_
[i
];
436 // Remove all its incoming edges.
437 for (size_t e
= 0; e
< next_node
->incoming
.size(); e
++) {
438 GraphEdge
* incoming_edge
= next_node
->incoming
[e
];
440 active_edges_
.erase(incoming_edge
);
441 RemoveEdgeFromList(incoming_edge
, &incoming_edge
->from
->outgoing
);
443 next_node
->incoming
.clear();
444 next_node
->incoming_edge_weight
= 0.f
;
445 no_incoming_edge_node_list
.push_back(next_node
);
446 DVLOG(2) << "Breaking cycle by cleaning up incoming edges from " <<
447 next_node
->layer
->id() <<
448 " (weight = " << min_incoming_edge_weight
<< ")";
451 // Note: The original elements of the list are in no danger of having their
452 // ref count go to zero here as they are all nodes of the layer hierarchy and
453 // are kept alive by their parent nodes.
455 for (LayerImplList::iterator it
= first
; it
< last
; it
++)
456 *it
= sorted_list
[count
++]->layer
;
458 DVLOG(2) << "Sorting end ----";
462 active_edges_
.clear();