Removed data compression UMA from ProxyService
[chromium-blink-merge.git] / content / child / webcrypto / shared_crypto_unittest.cc
blob23a842dda3d93e1fcdfa4644e55d4d179813da85
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <algorithm>
6 #include <string>
7 #include <vector>
9 #include "base/basictypes.h"
10 #include "base/file_util.h"
11 #include "base/json/json_reader.h"
12 #include "base/json/json_writer.h"
13 #include "base/logging.h"
14 #include "base/memory/ref_counted.h"
15 #include "base/path_service.h"
16 #include "base/stl_util.h"
17 #include "base/strings/string_number_conversions.h"
18 #include "base/strings/string_util.h"
19 #include "base/strings/stringprintf.h"
20 #include "content/child/webcrypto/algorithm_dispatch.h"
21 #include "content/child/webcrypto/crypto_data.h"
22 #include "content/child/webcrypto/status.h"
23 #include "content/child/webcrypto/webcrypto_util.h"
24 #include "content/public/common/content_paths.h"
25 #include "testing/gtest/include/gtest/gtest.h"
26 #include "third_party/WebKit/public/platform/WebCryptoAlgorithm.h"
27 #include "third_party/WebKit/public/platform/WebCryptoAlgorithmParams.h"
28 #include "third_party/WebKit/public/platform/WebCryptoKey.h"
29 #include "third_party/WebKit/public/platform/WebCryptoKeyAlgorithm.h"
30 #include "third_party/re2/re2/re2.h"
32 #if !defined(USE_OPENSSL)
33 #include <nss.h>
34 #include <pk11pub.h>
36 #include "crypto/nss_util.h"
37 #include "crypto/scoped_nss_types.h"
38 #endif
40 #define EXPECT_BYTES_EQ(expected, actual) \
41 EXPECT_EQ(CryptoData(expected), CryptoData(actual))
43 #define EXPECT_BYTES_EQ_HEX(expected_hex, actual_bytes) \
44 EXPECT_BYTES_EQ(HexStringToBytes(expected_hex), actual_bytes)
46 namespace content {
48 namespace webcrypto {
50 // These functions are used by GTEST to support EXPECT_EQ() for
51 // webcrypto::Status and webcrypto::CryptoData
53 void PrintTo(const Status& status, ::std::ostream* os) {
54 if (status.IsSuccess())
55 *os << "Success";
56 else
57 *os << "Error type: " << status.error_type()
58 << " Error details: " << status.error_details();
61 bool operator==(const content::webcrypto::Status& a,
62 const content::webcrypto::Status& b) {
63 if (a.IsSuccess() != b.IsSuccess())
64 return false;
65 if (a.IsSuccess())
66 return true;
67 return a.error_type() == b.error_type() &&
68 a.error_details() == b.error_details();
71 bool operator!=(const content::webcrypto::Status& a,
72 const content::webcrypto::Status& b) {
73 return !(a == b);
76 void PrintTo(const CryptoData& data, ::std::ostream* os) {
77 *os << "[" << base::HexEncode(data.bytes(), data.byte_length()) << "]";
80 bool operator==(const content::webcrypto::CryptoData& a,
81 const content::webcrypto::CryptoData& b) {
82 return a.byte_length() == b.byte_length() &&
83 memcmp(a.bytes(), b.bytes(), a.byte_length()) == 0;
86 bool operator!=(const content::webcrypto::CryptoData& a,
87 const content::webcrypto::CryptoData& b) {
88 return !(a == b);
91 namespace {
93 // -----------------------------------------------------------------------------
95 // TODO(eroman): For Linux builds using system NSS, AES-GCM support is a
96 // runtime dependency. Test it by trying to import a key.
97 // TODO(padolph): Consider caching the result of the import key test.
98 bool SupportsAesGcm() {
99 std::vector<uint8_t> key_raw(16, 0);
101 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
102 Status status = ImportKey(blink::WebCryptoKeyFormatRaw,
103 CryptoData(key_raw),
104 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesGcm),
105 true,
106 blink::WebCryptoKeyUsageEncrypt,
107 &key);
109 if (status.IsError())
110 EXPECT_EQ(blink::WebCryptoErrorTypeNotSupported, status.error_type());
111 return status.IsSuccess();
114 bool SupportsRsaOaep() {
115 #if defined(USE_OPENSSL)
116 return true;
117 #else
118 crypto::EnsureNSSInit();
119 // TODO(eroman): Exclude version test for OS_CHROMEOS
120 #if defined(USE_NSS)
121 if (!NSS_VersionCheck("3.16.2"))
122 return false;
123 #endif
124 crypto::ScopedPK11Slot slot(PK11_GetInternalKeySlot());
125 return !!PK11_DoesMechanism(slot.get(), CKM_RSA_PKCS_OAEP);
126 #endif
129 bool SupportsRsaKeyImport() {
130 // TODO(eroman): Exclude version test for OS_CHROMEOS
131 #if defined(USE_NSS)
132 crypto::EnsureNSSInit();
133 if (!NSS_VersionCheck("3.16.2")) {
134 LOG(WARNING) << "RSA key import is not supported by this version of NSS. "
135 "Skipping some tests";
136 return false;
138 #endif
139 return true;
142 blink::WebCryptoAlgorithm CreateRsaHashedKeyGenAlgorithm(
143 blink::WebCryptoAlgorithmId algorithm_id,
144 const blink::WebCryptoAlgorithmId hash_id,
145 unsigned int modulus_length,
146 const std::vector<uint8_t>& public_exponent) {
147 DCHECK(algorithm_id == blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5 ||
148 algorithm_id == blink::WebCryptoAlgorithmIdRsaOaep);
149 DCHECK(blink::WebCryptoAlgorithm::isHash(hash_id));
150 return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
151 algorithm_id,
152 new blink::WebCryptoRsaHashedKeyGenParams(
153 CreateAlgorithm(hash_id),
154 modulus_length,
155 vector_as_array(&public_exponent),
156 public_exponent.size()));
159 // Creates an RSA-OAEP algorithm
160 blink::WebCryptoAlgorithm CreateRsaOaepAlgorithm(
161 const std::vector<uint8_t>& label) {
162 return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
163 blink::WebCryptoAlgorithmIdRsaOaep,
164 new blink::WebCryptoRsaOaepParams(
165 !label.empty(), vector_as_array(&label), label.size()));
168 // Creates an AES-CBC algorithm.
169 blink::WebCryptoAlgorithm CreateAesCbcAlgorithm(
170 const std::vector<uint8_t>& iv) {
171 return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
172 blink::WebCryptoAlgorithmIdAesCbc,
173 new blink::WebCryptoAesCbcParams(vector_as_array(&iv), iv.size()));
176 // Creates an AES-GCM algorithm.
177 blink::WebCryptoAlgorithm CreateAesGcmAlgorithm(
178 const std::vector<uint8_t>& iv,
179 const std::vector<uint8_t>& additional_data,
180 unsigned int tag_length_bits) {
181 EXPECT_TRUE(SupportsAesGcm());
182 return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
183 blink::WebCryptoAlgorithmIdAesGcm,
184 new blink::WebCryptoAesGcmParams(vector_as_array(&iv),
185 iv.size(),
186 true,
187 vector_as_array(&additional_data),
188 additional_data.size(),
189 true,
190 tag_length_bits));
193 // Creates an HMAC algorithm whose parameters struct is compatible with key
194 // generation. It is an error to call this with a hash_id that is not a SHA*.
195 // The key_length_bits parameter is optional, with zero meaning unspecified.
196 blink::WebCryptoAlgorithm CreateHmacKeyGenAlgorithm(
197 blink::WebCryptoAlgorithmId hash_id,
198 unsigned int key_length_bits) {
199 DCHECK(blink::WebCryptoAlgorithm::isHash(hash_id));
200 // key_length_bytes == 0 means unspecified
201 return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
202 blink::WebCryptoAlgorithmIdHmac,
203 new blink::WebCryptoHmacKeyGenParams(
204 CreateAlgorithm(hash_id), (key_length_bits != 0), key_length_bits));
207 // Returns a slightly modified version of the input vector.
209 // - For non-empty inputs a single bit is inverted.
210 // - For empty inputs, a byte is added.
211 std::vector<uint8_t> Corrupted(const std::vector<uint8_t>& input) {
212 std::vector<uint8_t> corrupted_data(input);
213 if (corrupted_data.empty())
214 corrupted_data.push_back(0);
215 corrupted_data[corrupted_data.size() / 2] ^= 0x01;
216 return corrupted_data;
219 std::vector<uint8_t> HexStringToBytes(const std::string& hex) {
220 std::vector<uint8_t> bytes;
221 base::HexStringToBytes(hex, &bytes);
222 return bytes;
225 std::vector<uint8_t> MakeJsonVector(const std::string& json_string) {
226 return std::vector<uint8_t>(json_string.begin(), json_string.end());
229 std::vector<uint8_t> MakeJsonVector(const base::DictionaryValue& dict) {
230 std::string json;
231 base::JSONWriter::Write(&dict, &json);
232 return MakeJsonVector(json);
235 // ----------------------------------------------------------------
236 // Helpers for working with JSON data files for test expectations.
237 // ----------------------------------------------------------------
239 // Reads a file in "src/content/test/data/webcrypto" to a base::Value.
240 // The file must be JSON, however it can also include C++ style comments.
241 ::testing::AssertionResult ReadJsonTestFile(const char* test_file_name,
242 scoped_ptr<base::Value>* value) {
243 base::FilePath test_data_dir;
244 if (!PathService::Get(DIR_TEST_DATA, &test_data_dir))
245 return ::testing::AssertionFailure() << "Couldn't retrieve test dir";
247 base::FilePath file_path =
248 test_data_dir.AppendASCII("webcrypto").AppendASCII(test_file_name);
250 std::string file_contents;
251 if (!base::ReadFileToString(file_path, &file_contents)) {
252 return ::testing::AssertionFailure()
253 << "Couldn't read test file: " << file_path.value();
256 // Strip C++ style comments out of the "json" file, otherwise it cannot be
257 // parsed.
258 re2::RE2::GlobalReplace(&file_contents, re2::RE2("\\s*//.*"), "");
260 // Parse the JSON to a dictionary.
261 value->reset(base::JSONReader::Read(file_contents));
262 if (!value->get()) {
263 return ::testing::AssertionFailure()
264 << "Couldn't parse test file JSON: " << file_path.value();
267 return ::testing::AssertionSuccess();
270 // Same as ReadJsonTestFile(), but return the value as a List.
271 ::testing::AssertionResult ReadJsonTestFileToList(
272 const char* test_file_name,
273 scoped_ptr<base::ListValue>* list) {
274 // Read the JSON.
275 scoped_ptr<base::Value> json;
276 ::testing::AssertionResult result = ReadJsonTestFile(test_file_name, &json);
277 if (!result)
278 return result;
280 // Cast to an ListValue.
281 base::ListValue* list_value = NULL;
282 if (!json->GetAsList(&list_value) || !list_value)
283 return ::testing::AssertionFailure() << "The JSON was not a list";
285 list->reset(list_value);
286 ignore_result(json.release());
288 return ::testing::AssertionSuccess();
291 // Read a string property from the dictionary with path |property_name|
292 // (which can include periods for nested dictionaries). Interprets the
293 // string as a hex encoded string and converts it to a bytes list.
295 // Returns empty vector on failure.
296 std::vector<uint8_t> GetBytesFromHexString(base::DictionaryValue* dict,
297 const char* property_name) {
298 std::string hex_string;
299 if (!dict->GetString(property_name, &hex_string)) {
300 EXPECT_TRUE(false) << "Couldn't get string property: " << property_name;
301 return std::vector<uint8_t>();
304 return HexStringToBytes(hex_string);
307 // Reads a string property with path "property_name" and converts it to a
308 // WebCryptoAlgorith. Returns null algorithm on failure.
309 blink::WebCryptoAlgorithm GetDigestAlgorithm(base::DictionaryValue* dict,
310 const char* property_name) {
311 std::string algorithm_name;
312 if (!dict->GetString(property_name, &algorithm_name)) {
313 EXPECT_TRUE(false) << "Couldn't get string property: " << property_name;
314 return blink::WebCryptoAlgorithm::createNull();
317 struct {
318 const char* name;
319 blink::WebCryptoAlgorithmId id;
320 } kDigestNameToId[] = {
321 {"sha-1", blink::WebCryptoAlgorithmIdSha1},
322 {"sha-256", blink::WebCryptoAlgorithmIdSha256},
323 {"sha-384", blink::WebCryptoAlgorithmIdSha384},
324 {"sha-512", blink::WebCryptoAlgorithmIdSha512},
327 for (size_t i = 0; i < ARRAYSIZE_UNSAFE(kDigestNameToId); ++i) {
328 if (kDigestNameToId[i].name == algorithm_name)
329 return CreateAlgorithm(kDigestNameToId[i].id);
332 return blink::WebCryptoAlgorithm::createNull();
335 // Helper for ImportJwkFailures and ImportJwkOctFailures. Restores the JWK JSON
336 // dictionary to a good state
337 void RestoreJwkOctDictionary(base::DictionaryValue* dict) {
338 dict->Clear();
339 dict->SetString("kty", "oct");
340 dict->SetString("alg", "A128CBC");
341 dict->SetString("use", "enc");
342 dict->SetBoolean("ext", false);
343 dict->SetString("k", "GADWrMRHwQfoNaXU5fZvTg==");
346 // Helper for ImportJwkRsaFailures. Restores the JWK JSON
347 // dictionary to a good state
348 void RestoreJwkRsaDictionary(base::DictionaryValue* dict) {
349 dict->Clear();
350 dict->SetString("kty", "RSA");
351 dict->SetString("alg", "RS256");
352 dict->SetString("use", "sig");
353 dict->SetBoolean("ext", false);
354 dict->SetString(
355 "n",
356 "qLOyhK-OtQs4cDSoYPFGxJGfMYdjzWxVmMiuSBGh4KvEx-CwgtaTpef87Wdc9GaFEncsDLxk"
357 "p0LGxjD1M8jMcvYq6DPEC_JYQumEu3i9v5fAEH1VvbZi9cTg-rmEXLUUjvc5LdOq_5OuHmtm"
358 "e7PUJHYW1PW6ENTP0ibeiNOfFvs");
359 dict->SetString("e", "AQAB");
362 // Returns true if any of the vectors in the input list have identical content.
363 // Dumb O(n^2) implementation but should be fast enough for the input sizes that
364 // are used.
365 bool CopiesExist(const std::vector<std::vector<uint8_t> >& bufs) {
366 for (size_t i = 0; i < bufs.size(); ++i) {
367 for (size_t j = i + 1; j < bufs.size(); ++j) {
368 if (CryptoData(bufs[i]) == CryptoData(bufs[j]))
369 return true;
372 return false;
375 blink::WebCryptoAlgorithm CreateAesKeyGenAlgorithm(
376 blink::WebCryptoAlgorithmId aes_alg_id,
377 unsigned short length) {
378 return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
379 aes_alg_id, new blink::WebCryptoAesKeyGenParams(length));
382 blink::WebCryptoAlgorithm CreateAesCbcKeyGenAlgorithm(
383 unsigned short key_length_bits) {
384 return CreateAesKeyGenAlgorithm(blink::WebCryptoAlgorithmIdAesCbc,
385 key_length_bits);
388 blink::WebCryptoAlgorithm CreateAesGcmKeyGenAlgorithm(
389 unsigned short key_length_bits) {
390 EXPECT_TRUE(SupportsAesGcm());
391 return CreateAesKeyGenAlgorithm(blink::WebCryptoAlgorithmIdAesGcm,
392 key_length_bits);
395 blink::WebCryptoAlgorithm CreateAesKwKeyGenAlgorithm(
396 unsigned short key_length_bits) {
397 return CreateAesKeyGenAlgorithm(blink::WebCryptoAlgorithmIdAesKw,
398 key_length_bits);
401 // The following key pair is comprised of the SPKI (public key) and PKCS#8
402 // (private key) representations of the key pair provided in Example 1 of the
403 // NIST test vectors at
404 // ftp://ftp.rsa.com/pub/rsalabs/tmp/pkcs1v15sign-vectors.txt
405 const unsigned int kModulusLengthBits = 1024;
406 const char* const kPublicKeySpkiDerHex =
407 "30819f300d06092a864886f70d010101050003818d0030818902818100a5"
408 "6e4a0e701017589a5187dc7ea841d156f2ec0e36ad52a44dfeb1e61f7ad9"
409 "91d8c51056ffedb162b4c0f283a12a88a394dff526ab7291cbb307ceabfc"
410 "e0b1dfd5cd9508096d5b2b8b6df5d671ef6377c0921cb23c270a70e2598e"
411 "6ff89d19f105acc2d3f0cb35f29280e1386b6f64c4ef22e1e1f20d0ce8cf"
412 "fb2249bd9a21370203010001";
413 const char* const kPrivateKeyPkcs8DerHex =
414 "30820275020100300d06092a864886f70d01010105000482025f3082025b"
415 "02010002818100a56e4a0e701017589a5187dc7ea841d156f2ec0e36ad52"
416 "a44dfeb1e61f7ad991d8c51056ffedb162b4c0f283a12a88a394dff526ab"
417 "7291cbb307ceabfce0b1dfd5cd9508096d5b2b8b6df5d671ef6377c0921c"
418 "b23c270a70e2598e6ff89d19f105acc2d3f0cb35f29280e1386b6f64c4ef"
419 "22e1e1f20d0ce8cffb2249bd9a2137020301000102818033a5042a90b27d"
420 "4f5451ca9bbbd0b44771a101af884340aef9885f2a4bbe92e894a724ac3c"
421 "568c8f97853ad07c0266c8c6a3ca0929f1e8f11231884429fc4d9ae55fee"
422 "896a10ce707c3ed7e734e44727a39574501a532683109c2abacaba283c31"
423 "b4bd2f53c3ee37e352cee34f9e503bd80c0622ad79c6dcee883547c6a3b3"
424 "25024100e7e8942720a877517273a356053ea2a1bc0c94aa72d55c6e8629"
425 "6b2dfc967948c0a72cbccca7eacb35706e09a1df55a1535bd9b3cc34160b"
426 "3b6dcd3eda8e6443024100b69dca1cf7d4d7ec81e75b90fcca874abcde12"
427 "3fd2700180aa90479b6e48de8d67ed24f9f19d85ba275874f542cd20dc72"
428 "3e6963364a1f9425452b269a6799fd024028fa13938655be1f8a159cbaca"
429 "5a72ea190c30089e19cd274a556f36c4f6e19f554b34c077790427bbdd8d"
430 "d3ede2448328f385d81b30e8e43b2fffa02786197902401a8b38f398fa71"
431 "2049898d7fb79ee0a77668791299cdfa09efc0e507acb21ed74301ef5bfd"
432 "48be455eaeb6e1678255827580a8e4e8e14151d1510a82a3f2e729024027"
433 "156aba4126d24a81f3a528cbfb27f56886f840a9f6e86e17a44b94fe9319"
434 "584b8e22fdde1e5a2e3bd8aa5ba8d8584194eb2190acf832b847f13a3d24"
435 "a79f4d";
436 // The modulus and exponent (in hex) of kPublicKeySpkiDerHex
437 const char* const kPublicKeyModulusHex =
438 "A56E4A0E701017589A5187DC7EA841D156F2EC0E36AD52A44DFEB1E61F7AD991D8C51056"
439 "FFEDB162B4C0F283A12A88A394DFF526AB7291CBB307CEABFCE0B1DFD5CD9508096D5B2B"
440 "8B6DF5D671EF6377C0921CB23C270A70E2598E6FF89D19F105ACC2D3F0CB35F29280E138"
441 "6B6F64C4EF22E1E1F20D0CE8CFFB2249BD9A2137";
442 const char* const kPublicKeyExponentHex = "010001";
444 // TODO(eroman): Remove unnecessary test fixture.
445 class SharedCryptoTest : public testing::Test {
448 blink::WebCryptoKey ImportSecretKeyFromRaw(
449 const std::vector<uint8_t>& key_raw,
450 const blink::WebCryptoAlgorithm& algorithm,
451 blink::WebCryptoKeyUsageMask usage) {
452 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
453 bool extractable = true;
454 EXPECT_EQ(Status::Success(),
455 ImportKey(blink::WebCryptoKeyFormatRaw,
456 CryptoData(key_raw),
457 algorithm,
458 extractable,
459 usage,
460 &key));
462 EXPECT_FALSE(key.isNull());
463 EXPECT_TRUE(key.handle());
464 EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
465 EXPECT_EQ(algorithm.id(), key.algorithm().id());
466 EXPECT_EQ(extractable, key.extractable());
467 EXPECT_EQ(usage, key.usages());
468 return key;
471 void ImportRsaKeyPair(const std::vector<uint8_t>& spki_der,
472 const std::vector<uint8_t>& pkcs8_der,
473 const blink::WebCryptoAlgorithm& algorithm,
474 bool extractable,
475 blink::WebCryptoKeyUsageMask public_key_usage_mask,
476 blink::WebCryptoKeyUsageMask private_key_usage_mask,
477 blink::WebCryptoKey* public_key,
478 blink::WebCryptoKey* private_key) {
479 ASSERT_EQ(Status::Success(),
480 ImportKey(blink::WebCryptoKeyFormatSpki,
481 CryptoData(spki_der),
482 algorithm,
483 true,
484 public_key_usage_mask,
485 public_key));
486 EXPECT_FALSE(public_key->isNull());
487 EXPECT_TRUE(public_key->handle());
488 EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key->type());
489 EXPECT_EQ(algorithm.id(), public_key->algorithm().id());
490 EXPECT_TRUE(public_key->extractable());
491 EXPECT_EQ(public_key_usage_mask, public_key->usages());
493 ASSERT_EQ(Status::Success(),
494 ImportKey(blink::WebCryptoKeyFormatPkcs8,
495 CryptoData(pkcs8_der),
496 algorithm,
497 extractable,
498 private_key_usage_mask,
499 private_key));
500 EXPECT_FALSE(private_key->isNull());
501 EXPECT_TRUE(private_key->handle());
502 EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key->type());
503 EXPECT_EQ(algorithm.id(), private_key->algorithm().id());
504 EXPECT_EQ(extractable, private_key->extractable());
505 EXPECT_EQ(private_key_usage_mask, private_key->usages());
508 Status AesGcmEncrypt(const blink::WebCryptoKey& key,
509 const std::vector<uint8_t>& iv,
510 const std::vector<uint8_t>& additional_data,
511 unsigned int tag_length_bits,
512 const std::vector<uint8_t>& plain_text,
513 std::vector<uint8_t>* cipher_text,
514 std::vector<uint8_t>* authentication_tag) {
515 EXPECT_TRUE(SupportsAesGcm());
516 blink::WebCryptoAlgorithm algorithm =
517 CreateAesGcmAlgorithm(iv, additional_data, tag_length_bits);
519 std::vector<uint8_t> output;
520 Status status = Encrypt(algorithm, key, CryptoData(plain_text), &output);
521 if (status.IsError())
522 return status;
524 if ((tag_length_bits % 8) != 0) {
525 EXPECT_TRUE(false) << "Encrypt should have failed.";
526 return Status::OperationError();
529 size_t tag_length_bytes = tag_length_bits / 8;
531 if (tag_length_bytes > output.size()) {
532 EXPECT_TRUE(false) << "tag length is larger than output";
533 return Status::OperationError();
536 // The encryption result is cipher text with authentication tag appended.
537 cipher_text->assign(output.begin(),
538 output.begin() + (output.size() - tag_length_bytes));
539 authentication_tag->assign(output.begin() + cipher_text->size(),
540 output.end());
542 return Status::Success();
545 Status AesGcmDecrypt(const blink::WebCryptoKey& key,
546 const std::vector<uint8_t>& iv,
547 const std::vector<uint8_t>& additional_data,
548 unsigned int tag_length_bits,
549 const std::vector<uint8_t>& cipher_text,
550 const std::vector<uint8_t>& authentication_tag,
551 std::vector<uint8_t>* plain_text) {
552 EXPECT_TRUE(SupportsAesGcm());
553 blink::WebCryptoAlgorithm algorithm =
554 CreateAesGcmAlgorithm(iv, additional_data, tag_length_bits);
556 // Join cipher text and authentication tag.
557 std::vector<uint8_t> cipher_text_with_tag;
558 cipher_text_with_tag.reserve(cipher_text.size() + authentication_tag.size());
559 cipher_text_with_tag.insert(
560 cipher_text_with_tag.end(), cipher_text.begin(), cipher_text.end());
561 cipher_text_with_tag.insert(cipher_text_with_tag.end(),
562 authentication_tag.begin(),
563 authentication_tag.end());
565 return Decrypt(algorithm, key, CryptoData(cipher_text_with_tag), plain_text);
568 Status ImportKeyJwk(const CryptoData& key_data,
569 const blink::WebCryptoAlgorithm& algorithm,
570 bool extractable,
571 blink::WebCryptoKeyUsageMask usage_mask,
572 blink::WebCryptoKey* key) {
573 return ImportKey(blink::WebCryptoKeyFormatJwk,
574 key_data,
575 algorithm,
576 extractable,
577 usage_mask,
578 key);
581 Status ImportKeyJwkFromDict(const base::DictionaryValue& dict,
582 const blink::WebCryptoAlgorithm& algorithm,
583 bool extractable,
584 blink::WebCryptoKeyUsageMask usage_mask,
585 blink::WebCryptoKey* key) {
586 return ImportKeyJwk(CryptoData(MakeJsonVector(dict)),
587 algorithm,
588 extractable,
589 usage_mask,
590 key);
593 // Parses a vector of JSON into a dictionary.
594 scoped_ptr<base::DictionaryValue> GetJwkDictionary(
595 const std::vector<uint8_t>& json) {
596 base::StringPiece json_string(
597 reinterpret_cast<const char*>(vector_as_array(&json)), json.size());
598 base::Value* value = base::JSONReader::Read(json_string);
599 EXPECT_TRUE(value);
600 base::DictionaryValue* dict_value = NULL;
601 value->GetAsDictionary(&dict_value);
602 return scoped_ptr<base::DictionaryValue>(dict_value);
605 // Verifies the input dictionary contains the expected values. Exact matches are
606 // required on the fields examined.
607 ::testing::AssertionResult VerifyJwk(
608 const scoped_ptr<base::DictionaryValue>& dict,
609 const std::string& kty_expected,
610 const std::string& alg_expected,
611 blink::WebCryptoKeyUsageMask use_mask_expected) {
612 // ---- kty
613 std::string value_string;
614 if (!dict->GetString("kty", &value_string))
615 return ::testing::AssertionFailure() << "Missing 'kty'";
616 if (value_string != kty_expected)
617 return ::testing::AssertionFailure() << "Expected 'kty' to be "
618 << kty_expected << "but found "
619 << value_string;
621 // ---- alg
622 if (!dict->GetString("alg", &value_string))
623 return ::testing::AssertionFailure() << "Missing 'alg'";
624 if (value_string != alg_expected)
625 return ::testing::AssertionFailure() << "Expected 'alg' to be "
626 << alg_expected << " but found "
627 << value_string;
629 // ---- ext
630 // always expect ext == true in this case
631 bool ext_value;
632 if (!dict->GetBoolean("ext", &ext_value))
633 return ::testing::AssertionFailure() << "Missing 'ext'";
634 if (!ext_value)
635 return ::testing::AssertionFailure()
636 << "Expected 'ext' to be true but found false";
638 // ---- key_ops
639 base::ListValue* key_ops;
640 if (!dict->GetList("key_ops", &key_ops))
641 return ::testing::AssertionFailure() << "Missing 'key_ops'";
642 blink::WebCryptoKeyUsageMask key_ops_mask = 0;
643 Status status = GetWebCryptoUsagesFromJwkKeyOps(key_ops, &key_ops_mask);
644 if (status.IsError())
645 return ::testing::AssertionFailure() << "Failure extracting 'key_ops'";
646 if (key_ops_mask != use_mask_expected)
647 return ::testing::AssertionFailure()
648 << "Expected 'key_ops' mask to be " << use_mask_expected
649 << " but found " << key_ops_mask << " (" << value_string << ")";
651 return ::testing::AssertionSuccess();
654 // Verifies that the JSON in the input vector contains the provided
655 // expected values. Exact matches are required on the fields examined.
656 ::testing::AssertionResult VerifySecretJwk(
657 const std::vector<uint8_t>& json,
658 const std::string& alg_expected,
659 const std::string& k_expected_hex,
660 blink::WebCryptoKeyUsageMask use_mask_expected) {
661 scoped_ptr<base::DictionaryValue> dict = GetJwkDictionary(json);
662 if (!dict.get() || dict->empty())
663 return ::testing::AssertionFailure() << "JSON parsing failed";
665 // ---- k
666 std::string value_string;
667 if (!dict->GetString("k", &value_string))
668 return ::testing::AssertionFailure() << "Missing 'k'";
669 std::string k_value;
670 if (!webcrypto::Base64DecodeUrlSafe(value_string, &k_value))
671 return ::testing::AssertionFailure() << "Base64DecodeUrlSafe(k) failed";
672 if (!LowerCaseEqualsASCII(base::HexEncode(k_value.data(), k_value.size()),
673 k_expected_hex.c_str())) {
674 return ::testing::AssertionFailure() << "Expected 'k' to be "
675 << k_expected_hex
676 << " but found something different";
679 return VerifyJwk(dict, "oct", alg_expected, use_mask_expected);
682 // Verifies that the JSON in the input vector contains the provided
683 // expected values. Exact matches are required on the fields examined.
684 ::testing::AssertionResult VerifyPublicJwk(
685 const std::vector<uint8_t>& json,
686 const std::string& alg_expected,
687 const std::string& n_expected_hex,
688 const std::string& e_expected_hex,
689 blink::WebCryptoKeyUsageMask use_mask_expected) {
690 scoped_ptr<base::DictionaryValue> dict = GetJwkDictionary(json);
691 if (!dict.get() || dict->empty())
692 return ::testing::AssertionFailure() << "JSON parsing failed";
694 // ---- n
695 std::string value_string;
696 if (!dict->GetString("n", &value_string))
697 return ::testing::AssertionFailure() << "Missing 'n'";
698 std::string n_value;
699 if (!webcrypto::Base64DecodeUrlSafe(value_string, &n_value))
700 return ::testing::AssertionFailure() << "Base64DecodeUrlSafe(n) failed";
701 if (base::HexEncode(n_value.data(), n_value.size()) != n_expected_hex) {
702 return ::testing::AssertionFailure() << "'n' does not match the expected "
703 "value";
705 // TODO(padolph): LowerCaseEqualsASCII() does not work for above!
707 // ---- e
708 if (!dict->GetString("e", &value_string))
709 return ::testing::AssertionFailure() << "Missing 'e'";
710 std::string e_value;
711 if (!webcrypto::Base64DecodeUrlSafe(value_string, &e_value))
712 return ::testing::AssertionFailure() << "Base64DecodeUrlSafe(e) failed";
713 if (!LowerCaseEqualsASCII(base::HexEncode(e_value.data(), e_value.size()),
714 e_expected_hex.c_str())) {
715 return ::testing::AssertionFailure() << "Expected 'e' to be "
716 << e_expected_hex
717 << " but found something different";
720 return VerifyJwk(dict, "RSA", alg_expected, use_mask_expected);
723 } // namespace
725 TEST_F(SharedCryptoTest, CheckAesGcm) {
726 if (!SupportsAesGcm()) {
727 LOG(WARNING) << "AES GCM not supported on this platform, so some tests "
728 "will be skipped. Consider upgrading local NSS libraries";
729 return;
733 // Tests several Status objects against their expected hard coded values, as
734 // well as ensuring that comparison of Status objects works.
735 // Comparison should take into account both the error details, as well as the
736 // error type.
737 TEST_F(SharedCryptoTest, Status) {
738 // Even though the error message is the same, these should not be considered
739 // the same by the tests because the error type is different.
740 EXPECT_NE(Status::DataError(), Status::OperationError());
741 EXPECT_NE(Status::Success(), Status::OperationError());
743 EXPECT_EQ(Status::Success(), Status::Success());
744 EXPECT_EQ(Status::ErrorJwkPropertyWrongType("kty", "string"),
745 Status::ErrorJwkPropertyWrongType("kty", "string"));
747 Status status = Status::Success();
749 EXPECT_FALSE(status.IsError());
750 EXPECT_EQ("", status.error_details());
752 status = Status::OperationError();
753 EXPECT_TRUE(status.IsError());
754 EXPECT_EQ("", status.error_details());
755 EXPECT_EQ(blink::WebCryptoErrorTypeOperation, status.error_type());
757 status = Status::DataError();
758 EXPECT_TRUE(status.IsError());
759 EXPECT_EQ("", status.error_details());
760 EXPECT_EQ(blink::WebCryptoErrorTypeData, status.error_type());
762 status = Status::ErrorUnsupported();
763 EXPECT_TRUE(status.IsError());
764 EXPECT_EQ("The requested operation is unsupported", status.error_details());
765 EXPECT_EQ(blink::WebCryptoErrorTypeNotSupported, status.error_type());
767 status = Status::ErrorJwkPropertyMissing("kty");
768 EXPECT_TRUE(status.IsError());
769 EXPECT_EQ("The required JWK property \"kty\" was missing",
770 status.error_details());
771 EXPECT_EQ(blink::WebCryptoErrorTypeData, status.error_type());
773 status = Status::ErrorJwkPropertyWrongType("kty", "string");
774 EXPECT_TRUE(status.IsError());
775 EXPECT_EQ("The JWK property \"kty\" must be a string",
776 status.error_details());
777 EXPECT_EQ(blink::WebCryptoErrorTypeData, status.error_type());
779 status = Status::ErrorJwkBase64Decode("n");
780 EXPECT_TRUE(status.IsError());
781 EXPECT_EQ("The JWK property \"n\" could not be base64 decoded",
782 status.error_details());
783 EXPECT_EQ(blink::WebCryptoErrorTypeData, status.error_type());
786 TEST_F(SharedCryptoTest, DigestSampleSets) {
787 scoped_ptr<base::ListValue> tests;
788 ASSERT_TRUE(ReadJsonTestFileToList("digest.json", &tests));
790 for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
791 SCOPED_TRACE(test_index);
792 base::DictionaryValue* test;
793 ASSERT_TRUE(tests->GetDictionary(test_index, &test));
795 blink::WebCryptoAlgorithm test_algorithm =
796 GetDigestAlgorithm(test, "algorithm");
797 std::vector<uint8_t> test_input = GetBytesFromHexString(test, "input");
798 std::vector<uint8_t> test_output = GetBytesFromHexString(test, "output");
800 std::vector<uint8_t> output;
801 ASSERT_EQ(Status::Success(),
802 Digest(test_algorithm, CryptoData(test_input), &output));
803 EXPECT_BYTES_EQ(test_output, output);
807 TEST_F(SharedCryptoTest, DigestSampleSetsInChunks) {
808 scoped_ptr<base::ListValue> tests;
809 ASSERT_TRUE(ReadJsonTestFileToList("digest.json", &tests));
811 for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
812 SCOPED_TRACE(test_index);
813 base::DictionaryValue* test;
814 ASSERT_TRUE(tests->GetDictionary(test_index, &test));
816 blink::WebCryptoAlgorithm test_algorithm =
817 GetDigestAlgorithm(test, "algorithm");
818 std::vector<uint8_t> test_input = GetBytesFromHexString(test, "input");
819 std::vector<uint8_t> test_output = GetBytesFromHexString(test, "output");
821 // Test the chunk version of the digest functions. Test with 129 byte chunks
822 // because the SHA-512 chunk size is 128 bytes.
823 unsigned char* output;
824 unsigned int output_length;
825 static const size_t kChunkSizeBytes = 129;
826 size_t length = test_input.size();
827 scoped_ptr<blink::WebCryptoDigestor> digestor(
828 CreateDigestor(test_algorithm.id()));
829 std::vector<uint8_t>::iterator begin = test_input.begin();
830 size_t chunk_index = 0;
831 while (begin != test_input.end()) {
832 size_t chunk_length = std::min(kChunkSizeBytes, length - chunk_index);
833 std::vector<uint8_t> chunk(begin, begin + chunk_length);
834 ASSERT_TRUE(chunk.size() > 0);
835 EXPECT_TRUE(digestor->consume(&chunk.front(), chunk.size()));
836 chunk_index = chunk_index + chunk_length;
837 begin = begin + chunk_length;
839 EXPECT_TRUE(digestor->finish(output, output_length));
840 EXPECT_BYTES_EQ(test_output, CryptoData(output, output_length));
844 TEST_F(SharedCryptoTest, HMACSampleSets) {
845 scoped_ptr<base::ListValue> tests;
846 ASSERT_TRUE(ReadJsonTestFileToList("hmac.json", &tests));
847 // TODO(padolph): Missing known answer tests for HMAC SHA384, and SHA512.
848 for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
849 SCOPED_TRACE(test_index);
850 base::DictionaryValue* test;
851 ASSERT_TRUE(tests->GetDictionary(test_index, &test));
853 blink::WebCryptoAlgorithm test_hash = GetDigestAlgorithm(test, "hash");
854 const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
855 const std::vector<uint8_t> test_message =
856 GetBytesFromHexString(test, "message");
857 const std::vector<uint8_t> test_mac = GetBytesFromHexString(test, "mac");
859 blink::WebCryptoAlgorithm algorithm =
860 CreateAlgorithm(blink::WebCryptoAlgorithmIdHmac);
862 blink::WebCryptoAlgorithm import_algorithm =
863 CreateHmacImportAlgorithm(test_hash.id());
865 blink::WebCryptoKey key = ImportSecretKeyFromRaw(
866 test_key,
867 import_algorithm,
868 blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify);
870 EXPECT_EQ(test_hash.id(), key.algorithm().hmacParams()->hash().id());
871 EXPECT_EQ(test_key.size() * 8, key.algorithm().hmacParams()->lengthBits());
873 // Verify exported raw key is identical to the imported data
874 std::vector<uint8_t> raw_key;
875 EXPECT_EQ(Status::Success(),
876 ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
877 EXPECT_BYTES_EQ(test_key, raw_key);
879 std::vector<uint8_t> output;
881 ASSERT_EQ(Status::Success(),
882 Sign(algorithm, key, CryptoData(test_message), &output));
884 EXPECT_BYTES_EQ(test_mac, output);
886 bool signature_match = false;
887 EXPECT_EQ(Status::Success(),
888 Verify(algorithm,
889 key,
890 CryptoData(output),
891 CryptoData(test_message),
892 &signature_match));
893 EXPECT_TRUE(signature_match);
895 // Ensure truncated signature does not verify by passing one less byte.
896 EXPECT_EQ(Status::Success(),
897 Verify(algorithm,
898 key,
899 CryptoData(vector_as_array(&output), output.size() - 1),
900 CryptoData(test_message),
901 &signature_match));
902 EXPECT_FALSE(signature_match);
904 // Ensure truncated signature does not verify by passing no bytes.
905 EXPECT_EQ(Status::Success(),
906 Verify(algorithm,
907 key,
908 CryptoData(),
909 CryptoData(test_message),
910 &signature_match));
911 EXPECT_FALSE(signature_match);
913 // Ensure extra long signature does not cause issues and fails.
914 const unsigned char kLongSignature[1024] = {0};
915 EXPECT_EQ(Status::Success(),
916 Verify(algorithm,
917 key,
918 CryptoData(kLongSignature, sizeof(kLongSignature)),
919 CryptoData(test_message),
920 &signature_match));
921 EXPECT_FALSE(signature_match);
925 TEST_F(SharedCryptoTest, AesCbcFailures) {
926 const std::string key_hex = "2b7e151628aed2a6abf7158809cf4f3c";
927 blink::WebCryptoKey key = ImportSecretKeyFromRaw(
928 HexStringToBytes(key_hex),
929 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
930 blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt);
932 // Verify exported raw key is identical to the imported data
933 std::vector<uint8_t> raw_key;
934 EXPECT_EQ(Status::Success(),
935 ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
936 EXPECT_BYTES_EQ_HEX(key_hex, raw_key);
938 std::vector<uint8_t> output;
940 // Use an invalid |iv| (fewer than 16 bytes)
942 std::vector<uint8_t> input(32);
943 std::vector<uint8_t> iv;
944 EXPECT_EQ(Status::ErrorIncorrectSizeAesCbcIv(),
945 Encrypt(webcrypto::CreateAesCbcAlgorithm(iv),
946 key,
947 CryptoData(input),
948 &output));
949 EXPECT_EQ(Status::ErrorIncorrectSizeAesCbcIv(),
950 Decrypt(webcrypto::CreateAesCbcAlgorithm(iv),
951 key,
952 CryptoData(input),
953 &output));
956 // Use an invalid |iv| (more than 16 bytes)
958 std::vector<uint8_t> input(32);
959 std::vector<uint8_t> iv(17);
960 EXPECT_EQ(Status::ErrorIncorrectSizeAesCbcIv(),
961 Encrypt(webcrypto::CreateAesCbcAlgorithm(iv),
962 key,
963 CryptoData(input),
964 &output));
965 EXPECT_EQ(Status::ErrorIncorrectSizeAesCbcIv(),
966 Decrypt(webcrypto::CreateAesCbcAlgorithm(iv),
967 key,
968 CryptoData(input),
969 &output));
972 // Give an input that is too large (would cause integer overflow when
973 // narrowing to an int).
975 std::vector<uint8_t> iv(16);
977 // Pretend the input is large. Don't pass data pointer as NULL in case that
978 // is special cased; the implementation shouldn't actually dereference the
979 // data.
980 CryptoData input(&iv[0], INT_MAX - 3);
982 EXPECT_EQ(Status::ErrorDataTooLarge(),
983 Encrypt(CreateAesCbcAlgorithm(iv), key, input, &output));
984 EXPECT_EQ(Status::ErrorDataTooLarge(),
985 Decrypt(CreateAesCbcAlgorithm(iv), key, input, &output));
988 // Fail importing the key (too few bytes specified)
990 std::vector<uint8_t> key_raw(1);
991 std::vector<uint8_t> iv(16);
993 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
994 EXPECT_EQ(Status::ErrorImportAesKeyLength(),
995 ImportKey(blink::WebCryptoKeyFormatRaw,
996 CryptoData(key_raw),
997 CreateAesCbcAlgorithm(iv),
998 true,
999 blink::WebCryptoKeyUsageEncrypt,
1000 &key));
1003 // Fail exporting the key in SPKI and PKCS#8 formats (not allowed for secret
1004 // keys).
1005 EXPECT_EQ(Status::ErrorUnsupportedExportKeyFormat(),
1006 ExportKey(blink::WebCryptoKeyFormatSpki, key, &output));
1007 EXPECT_EQ(Status::ErrorUnsupportedExportKeyFormat(),
1008 ExportKey(blink::WebCryptoKeyFormatPkcs8, key, &output));
1011 TEST_F(SharedCryptoTest, ImportAesCbcSpkiFailure) {
1012 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1013 ASSERT_EQ(Status::ErrorUnsupportedImportKeyFormat(),
1014 ImportKey(blink::WebCryptoKeyFormatSpki,
1015 CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
1016 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
1017 true,
1018 blink::WebCryptoKeyUsageEncrypt,
1019 &key));
1022 TEST_F(SharedCryptoTest, AesCbcSampleSets) {
1023 scoped_ptr<base::ListValue> tests;
1024 ASSERT_TRUE(ReadJsonTestFileToList("aes_cbc.json", &tests));
1026 for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
1027 SCOPED_TRACE(test_index);
1028 base::DictionaryValue* test;
1029 ASSERT_TRUE(tests->GetDictionary(test_index, &test));
1031 std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
1032 std::vector<uint8_t> test_iv = GetBytesFromHexString(test, "iv");
1033 std::vector<uint8_t> test_plain_text =
1034 GetBytesFromHexString(test, "plain_text");
1035 std::vector<uint8_t> test_cipher_text =
1036 GetBytesFromHexString(test, "cipher_text");
1038 blink::WebCryptoKey key = ImportSecretKeyFromRaw(
1039 test_key,
1040 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
1041 blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt);
1043 EXPECT_EQ(test_key.size() * 8, key.algorithm().aesParams()->lengthBits());
1045 // Verify exported raw key is identical to the imported data
1046 std::vector<uint8_t> raw_key;
1047 EXPECT_EQ(Status::Success(),
1048 ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
1049 EXPECT_BYTES_EQ(test_key, raw_key);
1051 std::vector<uint8_t> output;
1053 // Test encryption.
1054 EXPECT_EQ(Status::Success(),
1055 Encrypt(webcrypto::CreateAesCbcAlgorithm(test_iv),
1056 key,
1057 CryptoData(test_plain_text),
1058 &output));
1059 EXPECT_BYTES_EQ(test_cipher_text, output);
1061 // Test decryption.
1062 EXPECT_EQ(Status::Success(),
1063 Decrypt(webcrypto::CreateAesCbcAlgorithm(test_iv),
1064 key,
1065 CryptoData(test_cipher_text),
1066 &output));
1067 EXPECT_BYTES_EQ(test_plain_text, output);
1069 const unsigned int kAesCbcBlockSize = 16;
1071 // Decrypt with a padding error by stripping the last block. This also ends
1072 // up testing decryption over empty cipher text.
1073 if (test_cipher_text.size() >= kAesCbcBlockSize) {
1074 EXPECT_EQ(Status::OperationError(),
1075 Decrypt(CreateAesCbcAlgorithm(test_iv),
1076 key,
1077 CryptoData(&test_cipher_text[0],
1078 test_cipher_text.size() - kAesCbcBlockSize),
1079 &output));
1082 // Decrypt cipher text which is not a multiple of block size by stripping
1083 // a few bytes off the cipher text.
1084 if (test_cipher_text.size() > 3) {
1085 EXPECT_EQ(
1086 Status::OperationError(),
1087 Decrypt(CreateAesCbcAlgorithm(test_iv),
1088 key,
1089 CryptoData(&test_cipher_text[0], test_cipher_text.size() - 3),
1090 &output));
1095 TEST_F(SharedCryptoTest, GenerateKeyAes) {
1096 // Check key generation for each of AES-CBC, AES-GCM, and AES-KW, and for each
1097 // allowed key length.
1098 std::vector<blink::WebCryptoAlgorithm> algorithm;
1099 const unsigned short kKeyLength[] = {128, 256};
1100 for (size_t i = 0; i < ARRAYSIZE_UNSAFE(kKeyLength); ++i) {
1101 algorithm.push_back(CreateAesCbcKeyGenAlgorithm(kKeyLength[i]));
1102 algorithm.push_back(CreateAesKwKeyGenAlgorithm(kKeyLength[i]));
1103 if (SupportsAesGcm())
1104 algorithm.push_back(CreateAesGcmKeyGenAlgorithm(kKeyLength[i]));
1106 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1107 std::vector<std::vector<uint8_t> > keys;
1108 std::vector<uint8_t> key_bytes;
1109 for (size_t i = 0; i < algorithm.size(); ++i) {
1110 SCOPED_TRACE(i);
1111 // Generate a small sample of keys.
1112 keys.clear();
1113 for (int j = 0; j < 16; ++j) {
1114 ASSERT_EQ(Status::Success(),
1115 GenerateSecretKey(algorithm[i], true, 0, &key));
1116 EXPECT_TRUE(key.handle());
1117 EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
1118 ASSERT_EQ(Status::Success(),
1119 ExportKey(blink::WebCryptoKeyFormatRaw, key, &key_bytes));
1120 EXPECT_EQ(key_bytes.size() * 8,
1121 key.algorithm().aesParams()->lengthBits());
1122 keys.push_back(key_bytes);
1124 // Ensure all entries in the key sample set are unique. This is a simplistic
1125 // estimate of whether the generated keys appear random.
1126 EXPECT_FALSE(CopiesExist(keys));
1130 TEST_F(SharedCryptoTest, GenerateKeyAesBadLength) {
1131 const unsigned short kKeyLen[] = {0, 127, 257};
1132 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1133 for (size_t i = 0; i < ARRAYSIZE_UNSAFE(kKeyLen); ++i) {
1134 SCOPED_TRACE(i);
1135 EXPECT_EQ(Status::ErrorGenerateKeyLength(),
1136 GenerateSecretKey(
1137 CreateAesCbcKeyGenAlgorithm(kKeyLen[i]), true, 0, &key));
1138 EXPECT_EQ(Status::ErrorGenerateKeyLength(),
1139 GenerateSecretKey(
1140 CreateAesKwKeyGenAlgorithm(kKeyLen[i]), true, 0, &key));
1141 if (SupportsAesGcm()) {
1142 EXPECT_EQ(Status::ErrorGenerateKeyLength(),
1143 GenerateSecretKey(
1144 CreateAesGcmKeyGenAlgorithm(kKeyLen[i]), true, 0, &key));
1149 TEST_F(SharedCryptoTest, GenerateKeyHmac) {
1150 // Generate a small sample of HMAC keys.
1151 std::vector<std::vector<uint8_t> > keys;
1152 for (int i = 0; i < 16; ++i) {
1153 std::vector<uint8_t> key_bytes;
1154 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1155 blink::WebCryptoAlgorithm algorithm =
1156 CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha1, 512);
1157 ASSERT_EQ(Status::Success(), GenerateSecretKey(algorithm, true, 0, &key));
1158 EXPECT_FALSE(key.isNull());
1159 EXPECT_TRUE(key.handle());
1160 EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
1161 EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
1162 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
1163 key.algorithm().hmacParams()->hash().id());
1164 EXPECT_EQ(512u, key.algorithm().hmacParams()->lengthBits());
1166 std::vector<uint8_t> raw_key;
1167 ASSERT_EQ(Status::Success(),
1168 ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
1169 EXPECT_EQ(64U, raw_key.size());
1170 keys.push_back(raw_key);
1172 // Ensure all entries in the key sample set are unique. This is a simplistic
1173 // estimate of whether the generated keys appear random.
1174 EXPECT_FALSE(CopiesExist(keys));
1177 // If the key length is not provided, then the block size is used.
1178 TEST_F(SharedCryptoTest, GenerateKeyHmacNoLength) {
1179 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1180 blink::WebCryptoAlgorithm algorithm =
1181 CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha1, 0);
1182 ASSERT_EQ(Status::Success(), GenerateSecretKey(algorithm, true, 0, &key));
1183 EXPECT_TRUE(key.handle());
1184 EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
1185 EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
1186 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
1187 key.algorithm().hmacParams()->hash().id());
1188 EXPECT_EQ(512u, key.algorithm().hmacParams()->lengthBits());
1189 std::vector<uint8_t> raw_key;
1190 ASSERT_EQ(Status::Success(),
1191 ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
1192 EXPECT_EQ(64U, raw_key.size());
1194 // The block size for HMAC SHA-512 is larger.
1195 algorithm = CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha512, 0);
1196 ASSERT_EQ(Status::Success(), GenerateSecretKey(algorithm, true, 0, &key));
1197 EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
1198 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha512,
1199 key.algorithm().hmacParams()->hash().id());
1200 EXPECT_EQ(1024u, key.algorithm().hmacParams()->lengthBits());
1201 ASSERT_EQ(Status::Success(),
1202 ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
1203 EXPECT_EQ(128U, raw_key.size());
1206 TEST_F(SharedCryptoTest, ImportJwkKeyUsage) {
1207 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1208 base::DictionaryValue dict;
1209 dict.SetString("kty", "oct");
1210 dict.SetBoolean("ext", false);
1211 dict.SetString("k", "GADWrMRHwQfoNaXU5fZvTg==");
1212 const blink::WebCryptoAlgorithm aes_cbc_algorithm =
1213 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
1214 const blink::WebCryptoAlgorithm hmac_algorithm =
1215 webcrypto::CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256);
1216 const blink::WebCryptoAlgorithm aes_kw_algorithm =
1217 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
1219 // Test null usage.
1220 base::ListValue* key_ops = new base::ListValue;
1221 // Note: the following call makes dict assume ownership of key_ops.
1222 dict.Set("key_ops", key_ops);
1223 EXPECT_EQ(Status::Success(),
1224 ImportKeyJwkFromDict(dict, aes_cbc_algorithm, false, 0, &key));
1225 EXPECT_EQ(0, key.usages());
1227 // Test each key_ops value translates to the correct Web Crypto value.
1228 struct TestCase {
1229 const char* jwk_key_op;
1230 const char* jwk_alg;
1231 const blink::WebCryptoAlgorithm algorithm;
1232 const blink::WebCryptoKeyUsage usage;
1234 // TODO(padolph): Add 'deriveBits' key_ops value once it is supported.
1235 const TestCase test_case[] = {
1236 {"encrypt", "A128CBC", aes_cbc_algorithm,
1237 blink::WebCryptoKeyUsageEncrypt},
1238 {"decrypt", "A128CBC", aes_cbc_algorithm,
1239 blink::WebCryptoKeyUsageDecrypt},
1240 {"sign", "HS256", hmac_algorithm, blink::WebCryptoKeyUsageSign},
1241 {"verify", "HS256", hmac_algorithm, blink::WebCryptoKeyUsageVerify},
1242 {"wrapKey", "A128KW", aes_kw_algorithm, blink::WebCryptoKeyUsageWrapKey},
1243 {"unwrapKey", "A128KW", aes_kw_algorithm,
1244 blink::WebCryptoKeyUsageUnwrapKey}};
1245 for (size_t test_index = 0; test_index < ARRAYSIZE_UNSAFE(test_case);
1246 ++test_index) {
1247 SCOPED_TRACE(test_index);
1248 dict.SetString("alg", test_case[test_index].jwk_alg);
1249 key_ops->Clear();
1250 key_ops->AppendString(test_case[test_index].jwk_key_op);
1251 EXPECT_EQ(Status::Success(),
1252 ImportKeyJwkFromDict(dict,
1253 test_case[test_index].algorithm,
1254 false,
1255 test_case[test_index].usage,
1256 &key));
1257 EXPECT_EQ(test_case[test_index].usage, key.usages());
1260 // Test discrete multiple usages.
1261 dict.SetString("alg", "A128CBC");
1262 key_ops->Clear();
1263 key_ops->AppendString("encrypt");
1264 key_ops->AppendString("decrypt");
1265 EXPECT_EQ(Status::Success(),
1266 ImportKeyJwkFromDict(dict,
1267 aes_cbc_algorithm,
1268 false,
1269 blink::WebCryptoKeyUsageDecrypt |
1270 blink::WebCryptoKeyUsageEncrypt,
1271 &key));
1272 EXPECT_EQ(blink::WebCryptoKeyUsageDecrypt | blink::WebCryptoKeyUsageEncrypt,
1273 key.usages());
1275 // Test constrained key usage (input usage is a subset of JWK usage).
1276 key_ops->Clear();
1277 key_ops->AppendString("encrypt");
1278 key_ops->AppendString("decrypt");
1279 EXPECT_EQ(Status::Success(),
1280 ImportKeyJwkFromDict(dict,
1281 aes_cbc_algorithm,
1282 false,
1283 blink::WebCryptoKeyUsageDecrypt,
1284 &key));
1285 EXPECT_EQ(blink::WebCryptoKeyUsageDecrypt, key.usages());
1287 // Test failure if input usage is NOT a strict subset of the JWK usage.
1288 key_ops->Clear();
1289 key_ops->AppendString("encrypt");
1290 EXPECT_EQ(Status::ErrorJwkKeyopsInconsistent(),
1291 ImportKeyJwkFromDict(dict,
1292 aes_cbc_algorithm,
1293 false,
1294 blink::WebCryptoKeyUsageEncrypt |
1295 blink::WebCryptoKeyUsageDecrypt,
1296 &key));
1298 // Test 'use' inconsistent with 'key_ops'.
1299 dict.SetString("alg", "HS256");
1300 dict.SetString("use", "sig");
1301 key_ops->AppendString("sign");
1302 key_ops->AppendString("verify");
1303 key_ops->AppendString("encrypt");
1304 EXPECT_EQ(Status::ErrorJwkUseAndKeyopsInconsistent(),
1305 ImportKeyJwkFromDict(
1306 dict,
1307 hmac_algorithm,
1308 false,
1309 blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
1310 &key));
1312 // Test JWK composite 'sig' use
1313 dict.Remove("key_ops", NULL);
1314 dict.SetString("use", "sig");
1315 EXPECT_EQ(Status::Success(),
1316 ImportKeyJwkFromDict(
1317 dict,
1318 hmac_algorithm,
1319 false,
1320 blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
1321 &key));
1322 EXPECT_EQ(blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
1323 key.usages());
1325 // Test JWK composite use 'enc' usage
1326 dict.SetString("alg", "A128CBC");
1327 dict.SetString("use", "enc");
1328 EXPECT_EQ(Status::Success(),
1329 ImportKeyJwkFromDict(dict,
1330 aes_cbc_algorithm,
1331 false,
1332 blink::WebCryptoKeyUsageDecrypt |
1333 blink::WebCryptoKeyUsageEncrypt |
1334 blink::WebCryptoKeyUsageWrapKey |
1335 blink::WebCryptoKeyUsageUnwrapKey,
1336 &key));
1337 EXPECT_EQ(blink::WebCryptoKeyUsageDecrypt | blink::WebCryptoKeyUsageEncrypt |
1338 blink::WebCryptoKeyUsageWrapKey |
1339 blink::WebCryptoKeyUsageUnwrapKey,
1340 key.usages());
1343 TEST_F(SharedCryptoTest, ImportJwkFailures) {
1344 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1345 blink::WebCryptoAlgorithm algorithm =
1346 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
1347 blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt;
1349 // Baseline pass: each test below breaks a single item, so we start with a
1350 // passing case to make sure each failure is caused by the isolated break.
1351 // Each breaking subtest below resets the dictionary to this passing case when
1352 // complete.
1353 base::DictionaryValue dict;
1354 RestoreJwkOctDictionary(&dict);
1355 EXPECT_EQ(Status::Success(),
1356 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1358 // Fail on empty JSON.
1359 EXPECT_EQ(
1360 Status::ErrorImportEmptyKeyData(),
1361 ImportKeyJwk(
1362 CryptoData(MakeJsonVector("")), algorithm, false, usage_mask, &key));
1364 // Fail on invalid JSON.
1365 const std::vector<uint8_t> bad_json_vec = MakeJsonVector(
1367 "\"kty\" : \"oct\","
1368 "\"alg\" : \"HS256\","
1369 "\"use\" : ");
1370 EXPECT_EQ(Status::ErrorJwkNotDictionary(),
1371 ImportKeyJwk(
1372 CryptoData(bad_json_vec), algorithm, false, usage_mask, &key));
1374 // Fail on JWK alg present but incorrect (expecting A128CBC).
1375 dict.SetString("alg", "A127CBC");
1376 EXPECT_EQ(Status::ErrorJwkAlgorithmInconsistent(),
1377 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1378 RestoreJwkOctDictionary(&dict);
1380 // Fail on invalid kty.
1381 dict.SetString("kty", "foo");
1382 EXPECT_EQ(Status::ErrorJwkUnexpectedKty("oct"),
1383 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1384 RestoreJwkOctDictionary(&dict);
1386 // Fail on missing kty.
1387 dict.Remove("kty", NULL);
1388 EXPECT_EQ(Status::ErrorJwkPropertyMissing("kty"),
1389 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1390 RestoreJwkOctDictionary(&dict);
1392 // Fail on kty wrong type.
1393 dict.SetDouble("kty", 0.1);
1394 EXPECT_EQ(Status::ErrorJwkPropertyWrongType("kty", "string"),
1395 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1396 RestoreJwkOctDictionary(&dict);
1398 // Fail on invalid use.
1399 dict.SetString("use", "foo");
1400 EXPECT_EQ(Status::ErrorJwkUnrecognizedUse(),
1401 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1402 RestoreJwkOctDictionary(&dict);
1404 // Fail on invalid use (wrong type).
1405 dict.SetBoolean("use", true);
1406 EXPECT_EQ(Status::ErrorJwkPropertyWrongType("use", "string"),
1407 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1408 RestoreJwkOctDictionary(&dict);
1410 // Fail on invalid extractable (wrong type).
1411 dict.SetInteger("ext", 0);
1412 EXPECT_EQ(Status::ErrorJwkPropertyWrongType("ext", "boolean"),
1413 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1414 RestoreJwkOctDictionary(&dict);
1416 // Fail on invalid key_ops (wrong type).
1417 dict.SetBoolean("key_ops", true);
1418 EXPECT_EQ(Status::ErrorJwkPropertyWrongType("key_ops", "list"),
1419 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1420 RestoreJwkOctDictionary(&dict);
1422 // Fail on inconsistent key_ops - asking for "encrypt" however JWK contains
1423 // only "foo".
1424 base::ListValue* key_ops = new base::ListValue;
1425 // Note: the following call makes dict assume ownership of key_ops.
1426 dict.Set("key_ops", key_ops);
1427 key_ops->AppendString("foo");
1428 EXPECT_EQ(Status::ErrorJwkKeyopsInconsistent(),
1429 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1430 RestoreJwkOctDictionary(&dict);
1433 // Import a JWK with unrecognized values for "key_ops".
1434 TEST_F(SharedCryptoTest, ImportJwkUnrecognizedKeyOps) {
1435 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1436 blink::WebCryptoAlgorithm algorithm =
1437 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
1438 blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt;
1440 base::DictionaryValue dict;
1441 RestoreJwkOctDictionary(&dict);
1443 base::ListValue* key_ops = new base::ListValue;
1444 dict.Set("key_ops", key_ops);
1445 key_ops->AppendString("foo");
1446 key_ops->AppendString("bar");
1447 key_ops->AppendString("baz");
1448 key_ops->AppendString("encrypt");
1449 EXPECT_EQ(Status::Success(),
1450 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1453 // Import a JWK with a value in key_ops array that is not a string.
1454 TEST_F(SharedCryptoTest, ImportJwkNonStringKeyOp) {
1455 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1456 blink::WebCryptoAlgorithm algorithm =
1457 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
1458 blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt;
1460 base::DictionaryValue dict;
1461 RestoreJwkOctDictionary(&dict);
1463 base::ListValue* key_ops = new base::ListValue;
1464 dict.Set("key_ops", key_ops);
1465 key_ops->AppendString("encrypt");
1466 key_ops->AppendInteger(3);
1467 EXPECT_EQ(Status::ErrorJwkPropertyWrongType("key_ops[1]", "string"),
1468 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1471 TEST_F(SharedCryptoTest, ImportJwkOctFailures) {
1472 base::DictionaryValue dict;
1473 RestoreJwkOctDictionary(&dict);
1474 blink::WebCryptoAlgorithm algorithm =
1475 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
1476 blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt;
1477 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1479 // Baseline pass.
1480 EXPECT_EQ(Status::Success(),
1481 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1482 EXPECT_EQ(algorithm.id(), key.algorithm().id());
1483 EXPECT_FALSE(key.extractable());
1484 EXPECT_EQ(blink::WebCryptoKeyUsageEncrypt, key.usages());
1485 EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
1487 // The following are specific failure cases for when kty = "oct".
1489 // Fail on missing k.
1490 dict.Remove("k", NULL);
1491 EXPECT_EQ(Status::ErrorJwkPropertyMissing("k"),
1492 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1493 RestoreJwkOctDictionary(&dict);
1495 // Fail on bad b64 encoding for k.
1496 dict.SetString("k", "Qk3f0DsytU8lfza2au #$% Htaw2xpop9GYyTuH0p5GghxTI=");
1497 EXPECT_EQ(Status::ErrorJwkBase64Decode("k"),
1498 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1499 RestoreJwkOctDictionary(&dict);
1501 // Fail on empty k.
1502 dict.SetString("k", "");
1503 EXPECT_EQ(Status::ErrorJwkIncorrectKeyLength(),
1504 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1505 RestoreJwkOctDictionary(&dict);
1507 // Fail on k actual length (120 bits) inconsistent with the embedded JWK alg
1508 // value (128) for an AES key.
1509 dict.SetString("k", "AVj42h0Y5aqGtE3yluKL");
1510 EXPECT_EQ(Status::ErrorJwkIncorrectKeyLength(),
1511 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1512 RestoreJwkOctDictionary(&dict);
1514 // Fail on k actual length (192 bits) inconsistent with the embedded JWK alg
1515 // value (128) for an AES key.
1516 dict.SetString("k", "dGhpcyAgaXMgIDI0ICBieXRlcyBsb25n");
1517 EXPECT_EQ(Status::ErrorJwkIncorrectKeyLength(),
1518 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1519 RestoreJwkOctDictionary(&dict);
1522 TEST_F(SharedCryptoTest, ImportExportJwkRsaPublicKey) {
1523 if (!SupportsRsaKeyImport())
1524 return;
1526 const bool supports_rsa_oaep = SupportsRsaOaep();
1527 if (!supports_rsa_oaep) {
1528 LOG(WARNING) << "RSA-OAEP not supported on this platform. Skipping some"
1529 << "tests.";
1532 struct TestCase {
1533 const blink::WebCryptoAlgorithm algorithm;
1534 const blink::WebCryptoKeyUsageMask usage;
1535 const char* const jwk_alg;
1537 const TestCase kTests[] = {
1538 // RSASSA-PKCS1-v1_5 SHA-1
1539 {CreateRsaHashedImportAlgorithm(
1540 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
1541 blink::WebCryptoAlgorithmIdSha1),
1542 blink::WebCryptoKeyUsageVerify, "RS1"},
1543 // RSASSA-PKCS1-v1_5 SHA-256
1544 {CreateRsaHashedImportAlgorithm(
1545 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
1546 blink::WebCryptoAlgorithmIdSha256),
1547 blink::WebCryptoKeyUsageVerify, "RS256"},
1548 // RSASSA-PKCS1-v1_5 SHA-384
1549 {CreateRsaHashedImportAlgorithm(
1550 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
1551 blink::WebCryptoAlgorithmIdSha384),
1552 blink::WebCryptoKeyUsageVerify, "RS384"},
1553 // RSASSA-PKCS1-v1_5 SHA-512
1554 {CreateRsaHashedImportAlgorithm(
1555 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
1556 blink::WebCryptoAlgorithmIdSha512),
1557 blink::WebCryptoKeyUsageVerify, "RS512"},
1558 // RSA-OAEP with SHA-1 and MGF-1 / SHA-1
1559 {CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaOaep,
1560 blink::WebCryptoAlgorithmIdSha1),
1561 blink::WebCryptoKeyUsageEncrypt, "RSA-OAEP"},
1562 // RSA-OAEP with SHA-256 and MGF-1 / SHA-256
1563 {CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaOaep,
1564 blink::WebCryptoAlgorithmIdSha256),
1565 blink::WebCryptoKeyUsageEncrypt, "RSA-OAEP-256"},
1566 // RSA-OAEP with SHA-384 and MGF-1 / SHA-384
1567 {CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaOaep,
1568 blink::WebCryptoAlgorithmIdSha384),
1569 blink::WebCryptoKeyUsageEncrypt, "RSA-OAEP-384"},
1570 // RSA-OAEP with SHA-512 and MGF-1 / SHA-512
1571 {CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaOaep,
1572 blink::WebCryptoAlgorithmIdSha512),
1573 blink::WebCryptoKeyUsageEncrypt, "RSA-OAEP-512"}};
1575 for (size_t test_index = 0; test_index < ARRAYSIZE_UNSAFE(kTests);
1576 ++test_index) {
1577 SCOPED_TRACE(test_index);
1578 const TestCase& test = kTests[test_index];
1579 if (!supports_rsa_oaep &&
1580 test.algorithm.id() == blink::WebCryptoAlgorithmIdRsaOaep) {
1581 continue;
1584 // Import the spki to create a public key
1585 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
1586 ASSERT_EQ(Status::Success(),
1587 ImportKey(blink::WebCryptoKeyFormatSpki,
1588 CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
1589 test.algorithm,
1590 true,
1591 test.usage,
1592 &public_key));
1594 // Export the public key as JWK and verify its contents
1595 std::vector<uint8_t> jwk;
1596 ASSERT_EQ(Status::Success(),
1597 ExportKey(blink::WebCryptoKeyFormatJwk, public_key, &jwk));
1598 EXPECT_TRUE(VerifyPublicJwk(jwk,
1599 test.jwk_alg,
1600 kPublicKeyModulusHex,
1601 kPublicKeyExponentHex,
1602 test.usage));
1604 // Import the JWK back in to create a new key
1605 blink::WebCryptoKey public_key2 = blink::WebCryptoKey::createNull();
1606 ASSERT_EQ(
1607 Status::Success(),
1608 ImportKeyJwk(
1609 CryptoData(jwk), test.algorithm, true, test.usage, &public_key2));
1610 ASSERT_TRUE(public_key2.handle());
1611 EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key2.type());
1612 EXPECT_TRUE(public_key2.extractable());
1613 EXPECT_EQ(test.algorithm.id(), public_key2.algorithm().id());
1615 // Only perform SPKI consistency test for RSA-SSA as its
1616 // export format is the same as kPublicKeySpkiDerHex
1617 if (test.algorithm.id() == blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5) {
1618 // Export the new key as spki and compare to the original.
1619 std::vector<uint8_t> spki;
1620 ASSERT_EQ(Status::Success(),
1621 ExportKey(blink::WebCryptoKeyFormatSpki, public_key2, &spki));
1622 EXPECT_BYTES_EQ_HEX(kPublicKeySpkiDerHex, CryptoData(spki));
1627 TEST_F(SharedCryptoTest, ImportJwkRsaFailures) {
1628 base::DictionaryValue dict;
1629 RestoreJwkRsaDictionary(&dict);
1630 blink::WebCryptoAlgorithm algorithm =
1631 CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
1632 blink::WebCryptoAlgorithmIdSha256);
1633 blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageVerify;
1634 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1636 // An RSA public key JWK _must_ have an "n" (modulus) and an "e" (exponent)
1637 // entry, while an RSA private key must have those plus at least a "d"
1638 // (private exponent) entry.
1639 // See http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms-18,
1640 // section 6.3.
1642 // Baseline pass.
1643 EXPECT_EQ(Status::Success(),
1644 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1645 EXPECT_EQ(algorithm.id(), key.algorithm().id());
1646 EXPECT_FALSE(key.extractable());
1647 EXPECT_EQ(blink::WebCryptoKeyUsageVerify, key.usages());
1648 EXPECT_EQ(blink::WebCryptoKeyTypePublic, key.type());
1650 // The following are specific failure cases for when kty = "RSA".
1652 // Fail if either "n" or "e" is not present or malformed.
1653 const std::string kKtyParmName[] = {"n", "e"};
1654 for (size_t idx = 0; idx < ARRAYSIZE_UNSAFE(kKtyParmName); ++idx) {
1655 // Fail on missing parameter.
1656 dict.Remove(kKtyParmName[idx], NULL);
1657 EXPECT_NE(Status::Success(),
1658 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1659 RestoreJwkRsaDictionary(&dict);
1661 // Fail on bad b64 parameter encoding.
1662 dict.SetString(kKtyParmName[idx], "Qk3f0DsytU8lfza2au #$% Htaw2xpop9yTuH0");
1663 EXPECT_NE(Status::Success(),
1664 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1665 RestoreJwkRsaDictionary(&dict);
1667 // Fail on empty parameter.
1668 dict.SetString(kKtyParmName[idx], "");
1669 EXPECT_EQ(Status::ErrorJwkEmptyBigInteger(kKtyParmName[idx]),
1670 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1671 RestoreJwkRsaDictionary(&dict);
1675 TEST_F(SharedCryptoTest, ImportJwkInputConsistency) {
1676 // The Web Crypto spec says that if a JWK value is present, but is
1677 // inconsistent with the input value, the operation must fail.
1679 // Consistency rules when JWK value is not present: Inputs should be used.
1680 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1681 bool extractable = false;
1682 blink::WebCryptoAlgorithm algorithm =
1683 CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256);
1684 blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageVerify;
1685 base::DictionaryValue dict;
1686 dict.SetString("kty", "oct");
1687 dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
1688 std::vector<uint8_t> json_vec = MakeJsonVector(dict);
1689 EXPECT_EQ(
1690 Status::Success(),
1691 ImportKeyJwk(
1692 CryptoData(json_vec), algorithm, extractable, usage_mask, &key));
1693 EXPECT_TRUE(key.handle());
1694 EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
1695 EXPECT_EQ(extractable, key.extractable());
1696 EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
1697 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
1698 key.algorithm().hmacParams()->hash().id());
1699 EXPECT_EQ(320u, key.algorithm().hmacParams()->lengthBits());
1700 EXPECT_EQ(blink::WebCryptoKeyUsageVerify, key.usages());
1701 key = blink::WebCryptoKey::createNull();
1703 // Consistency rules when JWK value exists: Fail if inconsistency is found.
1705 // Pass: All input values are consistent with the JWK values.
1706 dict.Clear();
1707 dict.SetString("kty", "oct");
1708 dict.SetString("alg", "HS256");
1709 dict.SetString("use", "sig");
1710 dict.SetBoolean("ext", false);
1711 dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
1712 json_vec = MakeJsonVector(dict);
1713 EXPECT_EQ(
1714 Status::Success(),
1715 ImportKeyJwk(
1716 CryptoData(json_vec), algorithm, extractable, usage_mask, &key));
1718 // Extractable cases:
1719 // 1. input=T, JWK=F ==> fail (inconsistent)
1720 // 4. input=F, JWK=F ==> pass, result extractable is F
1721 // 2. input=T, JWK=T ==> pass, result extractable is T
1722 // 3. input=F, JWK=T ==> pass, result extractable is F
1723 EXPECT_EQ(
1724 Status::ErrorJwkExtInconsistent(),
1725 ImportKeyJwk(CryptoData(json_vec), algorithm, true, usage_mask, &key));
1726 EXPECT_EQ(
1727 Status::Success(),
1728 ImportKeyJwk(CryptoData(json_vec), algorithm, false, usage_mask, &key));
1729 EXPECT_FALSE(key.extractable());
1730 dict.SetBoolean("ext", true);
1731 EXPECT_EQ(Status::Success(),
1732 ImportKeyJwkFromDict(dict, algorithm, true, usage_mask, &key));
1733 EXPECT_TRUE(key.extractable());
1734 EXPECT_EQ(Status::Success(),
1735 ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
1736 EXPECT_FALSE(key.extractable());
1737 dict.SetBoolean("ext", true); // restore previous value
1739 // Fail: Input algorithm (AES-CBC) is inconsistent with JWK value
1740 // (HMAC SHA256).
1741 dict.Clear();
1742 dict.SetString("kty", "oct");
1743 dict.SetString("alg", "HS256");
1744 dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
1745 EXPECT_EQ(
1746 Status::ErrorJwkAlgorithmInconsistent(),
1747 ImportKeyJwkFromDict(dict,
1748 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
1749 extractable,
1750 blink::WebCryptoKeyUsageEncrypt,
1751 &key));
1752 // Fail: Input usage (encrypt) is inconsistent with JWK value (use=sig).
1753 EXPECT_EQ(Status::ErrorJwkUseInconsistent(),
1754 ImportKeyJwk(CryptoData(json_vec),
1755 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
1756 extractable,
1757 blink::WebCryptoKeyUsageEncrypt,
1758 &key));
1760 // Fail: Input algorithm (HMAC SHA1) is inconsistent with JWK value
1761 // (HMAC SHA256).
1762 EXPECT_EQ(
1763 Status::ErrorJwkAlgorithmInconsistent(),
1764 ImportKeyJwk(CryptoData(json_vec),
1765 CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1),
1766 extractable,
1767 usage_mask,
1768 &key));
1770 // Pass: JWK alg missing but input algorithm specified: use input value
1771 dict.Remove("alg", NULL);
1772 EXPECT_EQ(Status::Success(),
1773 ImportKeyJwkFromDict(
1774 dict,
1775 CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256),
1776 extractable,
1777 usage_mask,
1778 &key));
1779 EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, algorithm.id());
1780 dict.SetString("alg", "HS256");
1782 // Fail: Input usage_mask (encrypt) is not a subset of the JWK value
1783 // (sign|verify). Moreover "encrypt" is not a valid usage for HMAC.
1784 EXPECT_EQ(Status::ErrorCreateKeyBadUsages(),
1785 ImportKeyJwk(CryptoData(json_vec),
1786 algorithm,
1787 extractable,
1788 blink::WebCryptoKeyUsageEncrypt,
1789 &key));
1791 // Fail: Input usage_mask (encrypt|sign|verify) is not a subset of the JWK
1792 // value (sign|verify). Moreover "encrypt" is not a valid usage for HMAC.
1793 usage_mask = blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageSign |
1794 blink::WebCryptoKeyUsageVerify;
1795 EXPECT_EQ(
1796 Status::ErrorCreateKeyBadUsages(),
1797 ImportKeyJwk(
1798 CryptoData(json_vec), algorithm, extractable, usage_mask, &key));
1800 // TODO(padolph): kty vs alg consistency tests: Depending on the kty value,
1801 // only certain alg values are permitted. For example, when kty = "RSA" alg
1802 // must be of the RSA family, or when kty = "oct" alg must be symmetric
1803 // algorithm.
1805 // TODO(padolph): key_ops consistency tests
1808 TEST_F(SharedCryptoTest, ImportJwkHappy) {
1809 // This test verifies the happy path of JWK import, including the application
1810 // of the imported key material.
1812 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1813 bool extractable = false;
1814 blink::WebCryptoAlgorithm algorithm =
1815 CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256);
1816 blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageSign;
1818 // Import a symmetric key JWK and HMAC-SHA256 sign()
1819 // Uses the first SHA256 test vector from the HMAC sample set above.
1821 base::DictionaryValue dict;
1822 dict.SetString("kty", "oct");
1823 dict.SetString("alg", "HS256");
1824 dict.SetString("use", "sig");
1825 dict.SetBoolean("ext", false);
1826 dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
1828 ASSERT_EQ(
1829 Status::Success(),
1830 ImportKeyJwkFromDict(dict, algorithm, extractable, usage_mask, &key));
1832 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
1833 key.algorithm().hmacParams()->hash().id());
1835 const std::vector<uint8_t> message_raw = HexStringToBytes(
1836 "b1689c2591eaf3c9e66070f8a77954ffb81749f1b00346f9dfe0b2ee905dcc288baf4a"
1837 "92de3f4001dd9f44c468c3d07d6c6ee82faceafc97c2fc0fc0601719d2dcd0aa2aec92"
1838 "d1b0ae933c65eb06a03c9c935c2bad0459810241347ab87e9f11adb30415424c6c7f5f"
1839 "22a003b8ab8de54f6ded0e3ab9245fa79568451dfa258e");
1841 std::vector<uint8_t> output;
1843 ASSERT_EQ(Status::Success(),
1844 Sign(CreateAlgorithm(blink::WebCryptoAlgorithmIdHmac),
1845 key,
1846 CryptoData(message_raw),
1847 &output));
1849 const std::string mac_raw =
1850 "769f00d3e6a6cc1fb426a14a4f76c6462e6149726e0dee0ec0cf97a16605ac8b";
1852 EXPECT_BYTES_EQ_HEX(mac_raw, output);
1854 // TODO(padolph): Import an RSA public key JWK and use it
1857 TEST_F(SharedCryptoTest, ImportExportJwkSymmetricKey) {
1858 // Raw keys are generated by openssl:
1859 // % openssl rand -hex <key length bytes>
1860 const char* const key_hex_128 = "3f1e7cd4f6f8543f6b1e16002e688623";
1861 const char* const key_hex_256 =
1862 "bd08286b81a74783fd1ccf46b7e05af84ee25ae021210074159e0c4d9d907692";
1863 const char* const key_hex_384 =
1864 "a22c5441c8b185602283d64c7221de1d0951e706bfc09539435ec0e0ed614e1d406623f2"
1865 "b31d31819fec30993380dd82";
1866 const char* const key_hex_512 =
1867 "5834f639000d4cf82de124fbfd26fb88d463e99f839a76ba41ac88967c80a3f61e1239a4"
1868 "52e573dba0750e988152988576efd75b8d0229b7aca2ada2afd392ee";
1869 const blink::WebCryptoAlgorithm aes_cbc_alg =
1870 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
1871 const blink::WebCryptoAlgorithm aes_gcm_alg =
1872 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesGcm);
1873 const blink::WebCryptoAlgorithm aes_kw_alg =
1874 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
1875 const blink::WebCryptoAlgorithm hmac_sha_1_alg =
1876 webcrypto::CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1);
1877 const blink::WebCryptoAlgorithm hmac_sha_256_alg =
1878 webcrypto::CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256);
1879 const blink::WebCryptoAlgorithm hmac_sha_384_alg =
1880 webcrypto::CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha384);
1881 const blink::WebCryptoAlgorithm hmac_sha_512_alg =
1882 webcrypto::CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha512);
1884 struct TestCase {
1885 const char* const key_hex;
1886 const blink::WebCryptoAlgorithm algorithm;
1887 const blink::WebCryptoKeyUsageMask usage;
1888 const char* const jwk_alg;
1891 // TODO(padolph): Test AES-CTR JWK export, once AES-CTR import works.
1892 const TestCase kTests[] = {
1893 // AES-CBC 128
1894 {key_hex_128, aes_cbc_alg,
1895 blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt,
1896 "A128CBC"},
1897 // AES-CBC 256
1898 {key_hex_256, aes_cbc_alg, blink::WebCryptoKeyUsageDecrypt, "A256CBC"},
1899 // AES-GCM 128
1900 {key_hex_128, aes_gcm_alg,
1901 blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt,
1902 "A128GCM"},
1903 // AES-GCM 256
1904 {key_hex_256, aes_gcm_alg, blink::WebCryptoKeyUsageDecrypt, "A256GCM"},
1905 // AES-KW 128
1906 {key_hex_128, aes_kw_alg,
1907 blink::WebCryptoKeyUsageWrapKey | blink::WebCryptoKeyUsageUnwrapKey,
1908 "A128KW"},
1909 // AES-KW 256
1910 {key_hex_256, aes_kw_alg,
1911 blink::WebCryptoKeyUsageWrapKey | blink::WebCryptoKeyUsageUnwrapKey,
1912 "A256KW"},
1913 // HMAC SHA-1
1914 {key_hex_256, hmac_sha_1_alg,
1915 blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify, "HS1"},
1916 // HMAC SHA-384
1917 {key_hex_384, hmac_sha_384_alg, blink::WebCryptoKeyUsageSign, "HS384"},
1918 // HMAC SHA-512
1919 {key_hex_512, hmac_sha_512_alg, blink::WebCryptoKeyUsageVerify, "HS512"},
1920 // Large usage value
1921 {key_hex_256, aes_cbc_alg,
1922 blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt |
1923 blink::WebCryptoKeyUsageWrapKey | blink::WebCryptoKeyUsageUnwrapKey,
1924 "A256CBC"},
1925 // Zero usage value
1926 {key_hex_512, hmac_sha_512_alg, 0, "HS512"},
1929 // Round-trip import/export each key.
1931 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1932 std::vector<uint8_t> json;
1933 for (size_t test_index = 0; test_index < ARRAYSIZE_UNSAFE(kTests);
1934 ++test_index) {
1935 SCOPED_TRACE(test_index);
1936 const TestCase& test = kTests[test_index];
1938 // Skip AES-GCM tests where not supported.
1939 if (test.algorithm.id() == blink::WebCryptoAlgorithmIdAesGcm &&
1940 !SupportsAesGcm()) {
1941 continue;
1944 // Import a raw key.
1945 key = ImportSecretKeyFromRaw(
1946 HexStringToBytes(test.key_hex), test.algorithm, test.usage);
1948 // Export the key in JWK format and validate.
1949 ASSERT_EQ(Status::Success(),
1950 ExportKey(blink::WebCryptoKeyFormatJwk, key, &json));
1951 EXPECT_TRUE(VerifySecretJwk(json, test.jwk_alg, test.key_hex, test.usage));
1953 // Import the JWK-formatted key.
1954 ASSERT_EQ(
1955 Status::Success(),
1956 ImportKeyJwk(CryptoData(json), test.algorithm, true, test.usage, &key));
1957 EXPECT_TRUE(key.handle());
1958 EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
1959 EXPECT_EQ(test.algorithm.id(), key.algorithm().id());
1960 EXPECT_EQ(true, key.extractable());
1961 EXPECT_EQ(test.usage, key.usages());
1963 // Export the key in raw format and compare to the original.
1964 std::vector<uint8_t> key_raw_out;
1965 ASSERT_EQ(Status::Success(),
1966 ExportKey(blink::WebCryptoKeyFormatRaw, key, &key_raw_out));
1967 EXPECT_BYTES_EQ_HEX(test.key_hex, key_raw_out);
1971 TEST_F(SharedCryptoTest, ExportJwkEmptySymmetricKey) {
1972 const blink::WebCryptoAlgorithm import_algorithm =
1973 webcrypto::CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1);
1975 blink::WebCryptoKeyUsageMask usages = blink::WebCryptoKeyUsageSign;
1976 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
1978 // Import a zero-byte HMAC key.
1979 const char key_data_hex[] = "";
1980 key = ImportSecretKeyFromRaw(
1981 HexStringToBytes(key_data_hex), import_algorithm, usages);
1982 EXPECT_EQ(0u, key.algorithm().hmacParams()->lengthBits());
1984 // Export the key in JWK format and validate.
1985 std::vector<uint8_t> json;
1986 ASSERT_EQ(Status::Success(),
1987 ExportKey(blink::WebCryptoKeyFormatJwk, key, &json));
1988 EXPECT_TRUE(VerifySecretJwk(json, "HS1", key_data_hex, usages));
1990 // Now try re-importing the JWK key.
1991 key = blink::WebCryptoKey::createNull();
1992 EXPECT_EQ(Status::Success(),
1993 ImportKey(blink::WebCryptoKeyFormatJwk,
1994 CryptoData(json),
1995 import_algorithm,
1996 true,
1997 usages,
1998 &key));
2000 EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
2001 EXPECT_EQ(0u, key.algorithm().hmacParams()->lengthBits());
2003 std::vector<uint8_t> exported_key_data;
2004 EXPECT_EQ(Status::Success(),
2005 ExportKey(blink::WebCryptoKeyFormatRaw, key, &exported_key_data));
2007 EXPECT_EQ(0u, exported_key_data.size());
2010 TEST_F(SharedCryptoTest, ImportExportSpki) {
2011 if (!SupportsRsaKeyImport())
2012 return;
2014 // Passing case: Import a valid RSA key in SPKI format.
2015 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
2016 ASSERT_EQ(Status::Success(),
2017 ImportKey(blink::WebCryptoKeyFormatSpki,
2018 CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
2019 CreateRsaHashedImportAlgorithm(
2020 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2021 blink::WebCryptoAlgorithmIdSha256),
2022 true,
2023 blink::WebCryptoKeyUsageVerify,
2024 &key));
2025 EXPECT_TRUE(key.handle());
2026 EXPECT_EQ(blink::WebCryptoKeyTypePublic, key.type());
2027 EXPECT_TRUE(key.extractable());
2028 EXPECT_EQ(blink::WebCryptoKeyUsageVerify, key.usages());
2029 EXPECT_EQ(kModulusLengthBits,
2030 key.algorithm().rsaHashedParams()->modulusLengthBits());
2031 EXPECT_BYTES_EQ_HEX(
2032 "010001",
2033 CryptoData(key.algorithm().rsaHashedParams()->publicExponent()));
2035 // Failing case: Empty SPKI data
2036 EXPECT_EQ(
2037 Status::ErrorImportEmptyKeyData(),
2038 ImportKey(blink::WebCryptoKeyFormatSpki,
2039 CryptoData(std::vector<uint8_t>()),
2040 CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5),
2041 true,
2042 blink::WebCryptoKeyUsageVerify,
2043 &key));
2045 // Failing case: Bad DER encoding.
2046 EXPECT_EQ(
2047 Status::DataError(),
2048 ImportKey(blink::WebCryptoKeyFormatSpki,
2049 CryptoData(HexStringToBytes("618333c4cb")),
2050 CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5),
2051 true,
2052 blink::WebCryptoKeyUsageVerify,
2053 &key));
2055 // Failing case: Import RSA key but provide an inconsistent input algorithm.
2056 EXPECT_EQ(Status::ErrorUnsupportedImportKeyFormat(),
2057 ImportKey(blink::WebCryptoKeyFormatSpki,
2058 CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
2059 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
2060 true,
2061 blink::WebCryptoKeyUsageEncrypt,
2062 &key));
2064 // Passing case: Export a previously imported RSA public key in SPKI format
2065 // and compare to original data.
2066 std::vector<uint8_t> output;
2067 ASSERT_EQ(Status::Success(),
2068 ExportKey(blink::WebCryptoKeyFormatSpki, key, &output));
2069 EXPECT_BYTES_EQ_HEX(kPublicKeySpkiDerHex, output);
2071 // Failing case: Try to export a previously imported RSA public key in raw
2072 // format (not allowed for a public key).
2073 EXPECT_EQ(Status::ErrorUnsupportedExportKeyFormat(),
2074 ExportKey(blink::WebCryptoKeyFormatRaw, key, &output));
2076 // Failing case: Try to export a non-extractable key
2077 ASSERT_EQ(Status::Success(),
2078 ImportKey(blink::WebCryptoKeyFormatSpki,
2079 CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
2080 CreateRsaHashedImportAlgorithm(
2081 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2082 blink::WebCryptoAlgorithmIdSha256),
2083 false,
2084 blink::WebCryptoKeyUsageVerify,
2085 &key));
2086 EXPECT_TRUE(key.handle());
2087 EXPECT_FALSE(key.extractable());
2088 EXPECT_EQ(Status::ErrorKeyNotExtractable(),
2089 ExportKey(blink::WebCryptoKeyFormatSpki, key, &output));
2091 // TODO(eroman): Failing test: Import a SPKI with an unrecognized hash OID
2092 // TODO(eroman): Failing test: Import a SPKI with invalid algorithm params
2093 // TODO(eroman): Failing test: Import a SPKI with inconsistent parameters
2094 // (e.g. SHA-1 in OID, SHA-256 in params)
2095 // TODO(eroman): Failing test: Import a SPKI for RSA-SSA, but with params
2096 // as OAEP/PSS
2099 TEST_F(SharedCryptoTest, ImportExportPkcs8) {
2100 if (!SupportsRsaKeyImport())
2101 return;
2103 // Passing case: Import a valid RSA key in PKCS#8 format.
2104 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
2105 ASSERT_EQ(Status::Success(),
2106 ImportKey(blink::WebCryptoKeyFormatPkcs8,
2107 CryptoData(HexStringToBytes(kPrivateKeyPkcs8DerHex)),
2108 CreateRsaHashedImportAlgorithm(
2109 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2110 blink::WebCryptoAlgorithmIdSha1),
2111 true,
2112 blink::WebCryptoKeyUsageSign,
2113 &key));
2114 EXPECT_TRUE(key.handle());
2115 EXPECT_EQ(blink::WebCryptoKeyTypePrivate, key.type());
2116 EXPECT_TRUE(key.extractable());
2117 EXPECT_EQ(blink::WebCryptoKeyUsageSign, key.usages());
2118 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
2119 key.algorithm().rsaHashedParams()->hash().id());
2120 EXPECT_EQ(kModulusLengthBits,
2121 key.algorithm().rsaHashedParams()->modulusLengthBits());
2122 EXPECT_BYTES_EQ_HEX(
2123 "010001",
2124 CryptoData(key.algorithm().rsaHashedParams()->publicExponent()));
2126 std::vector<uint8_t> exported_key;
2127 ASSERT_EQ(Status::Success(),
2128 ExportKey(blink::WebCryptoKeyFormatPkcs8, key, &exported_key));
2129 EXPECT_BYTES_EQ_HEX(kPrivateKeyPkcs8DerHex, exported_key);
2131 // Failing case: Empty PKCS#8 data
2132 EXPECT_EQ(Status::ErrorImportEmptyKeyData(),
2133 ImportKey(blink::WebCryptoKeyFormatPkcs8,
2134 CryptoData(std::vector<uint8_t>()),
2135 CreateRsaHashedImportAlgorithm(
2136 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2137 blink::WebCryptoAlgorithmIdSha1),
2138 true,
2139 blink::WebCryptoKeyUsageSign,
2140 &key));
2142 // Failing case: Bad DER encoding.
2143 EXPECT_EQ(
2144 Status::DataError(),
2145 ImportKey(blink::WebCryptoKeyFormatPkcs8,
2146 CryptoData(HexStringToBytes("618333c4cb")),
2147 CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5),
2148 true,
2149 blink::WebCryptoKeyUsageSign,
2150 &key));
2152 // Failing case: Import RSA key but provide an inconsistent input algorithm
2153 // and usage. Several issues here:
2154 // * AES-CBC doesn't support PKCS8 key format
2155 // * AES-CBC doesn't support "sign" usage
2156 EXPECT_EQ(Status::ErrorUnsupportedImportKeyFormat(),
2157 ImportKey(blink::WebCryptoKeyFormatPkcs8,
2158 CryptoData(HexStringToBytes(kPrivateKeyPkcs8DerHex)),
2159 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
2160 true,
2161 blink::WebCryptoKeyUsageSign,
2162 &key));
2165 // Tests importing of PKCS8 data that does not define a valid RSA key.
2166 TEST_F(SharedCryptoTest, ImportInvalidPkcs8) {
2167 if (!SupportsRsaKeyImport())
2168 return;
2170 // kPrivateKeyPkcs8DerHex defines an RSA private key in PKCS8 format, whose
2171 // parameters appear at the following offsets:
2173 // n: (offset=36, len=129)
2174 // e: (offset=167, len=3)
2175 // d: (offset=173, len=128)
2176 // p: (offset=303, len=65)
2177 // q: (offset=370, len=65)
2178 // dp: (offset=437, len=64)
2179 // dq; (offset=503, len=64)
2180 // qi: (offset=569, len=64)
2182 // Do several tests, each of which invert a single byte within the input.
2183 const unsigned int kOffsetsToCorrupt[] = {
2184 50, // inside n
2185 168, // inside e
2186 175, // inside d
2187 333, // inside p
2188 373, // inside q
2189 450, // inside dp
2190 550, // inside dq
2191 600, // inside qi
2194 for (size_t test_index = 0; test_index < arraysize(kOffsetsToCorrupt);
2195 ++test_index) {
2196 SCOPED_TRACE(test_index);
2198 unsigned int i = kOffsetsToCorrupt[test_index];
2199 std::vector<uint8_t> corrupted_data =
2200 HexStringToBytes(kPrivateKeyPkcs8DerHex);
2201 corrupted_data[i] = ~corrupted_data[i];
2203 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
2204 EXPECT_EQ(Status::DataError(),
2205 ImportKey(blink::WebCryptoKeyFormatPkcs8,
2206 CryptoData(corrupted_data),
2207 CreateRsaHashedImportAlgorithm(
2208 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2209 blink::WebCryptoAlgorithmIdSha1),
2210 true,
2211 blink::WebCryptoKeyUsageSign,
2212 &key));
2216 // Tests JWK import and export by doing a roundtrip key conversion and ensuring
2217 // it was lossless:
2219 // PKCS8 --> JWK --> PKCS8
2220 TEST_F(SharedCryptoTest, ImportRsaPrivateKeyJwkToPkcs8RoundTrip) {
2221 if (!SupportsRsaKeyImport())
2222 return;
2224 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
2225 ASSERT_EQ(Status::Success(),
2226 ImportKey(blink::WebCryptoKeyFormatPkcs8,
2227 CryptoData(HexStringToBytes(kPrivateKeyPkcs8DerHex)),
2228 CreateRsaHashedImportAlgorithm(
2229 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2230 blink::WebCryptoAlgorithmIdSha1),
2231 true,
2232 blink::WebCryptoKeyUsageSign,
2233 &key));
2235 std::vector<uint8_t> exported_key_jwk;
2236 ASSERT_EQ(Status::Success(),
2237 ExportKey(blink::WebCryptoKeyFormatJwk, key, &exported_key_jwk));
2239 // All of the optional parameters (p, q, dp, dq, qi) should be present in the
2240 // output.
2241 const char* expected_jwk =
2242 "{\"alg\":\"RS1\",\"d\":\"M6UEKpCyfU9UUcqbu9C0R3GhAa-IQ0Cu-YhfKku-"
2243 "kuiUpySsPFaMj5eFOtB8AmbIxqPKCSnx6PESMYhEKfxNmuVf7olqEM5wfD7X5zTkRyejlXRQ"
2244 "GlMmgxCcKrrKuig8MbS9L1PD7jfjUs7jT55QO9gMBiKtecbc7og1R8ajsyU\",\"dp\":"
2245 "\"KPoTk4ZVvh-"
2246 "KFZy6ylpy6hkMMAieGc0nSlVvNsT24Z9VSzTAd3kEJ7vdjdPt4kSDKPOF2Bsw6OQ7L_-"
2247 "gJ4YZeQ\",\"dq\":\"Gos485j6cSBJiY1_t57gp3ZoeRKZzfoJ78DlB6yyHtdDAe9b_Ui-"
2248 "RV6utuFnglWCdYCo5OjhQVHRUQqCo_LnKQ\",\"e\":\"AQAB\",\"ext\":true,\"key_"
2249 "ops\":[\"sign\"],\"kty\":\"RSA\",\"n\":"
2250 "\"pW5KDnAQF1iaUYfcfqhB0Vby7A42rVKkTf6x5h962ZHYxRBW_-2xYrTA8oOhKoijlN_"
2251 "1JqtykcuzB86r_OCx39XNlQgJbVsri2311nHvY3fAkhyyPCcKcOJZjm_4nRnxBazC0_"
2252 "DLNfKSgOE4a29kxO8i4eHyDQzoz_siSb2aITc\",\"p\":\"5-"
2253 "iUJyCod1Fyc6NWBT6iobwMlKpy1VxuhilrLfyWeUjApyy8zKfqyzVwbgmh31WhU1vZs8w0Fg"
2254 "s7bc0-2o5kQw\",\"q\":\"tp3KHPfU1-yB51uQ_MqHSrzeEj_"
2255 "ScAGAqpBHm25I3o1n7ST58Z2FuidYdPVCzSDccj5pYzZKH5QlRSsmmmeZ_Q\",\"qi\":"
2256 "\"JxVqukEm0kqB86Uoy_sn9WiG-"
2257 "ECp9uhuF6RLlP6TGVhLjiL93h5aLjvYqluo2FhBlOshkKz4MrhH8To9JKefTQ\"}";
2259 ASSERT_EQ(CryptoData(std::string(expected_jwk)),
2260 CryptoData(exported_key_jwk));
2262 ASSERT_EQ(Status::Success(),
2263 ImportKey(blink::WebCryptoKeyFormatJwk,
2264 CryptoData(exported_key_jwk),
2265 CreateRsaHashedImportAlgorithm(
2266 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2267 blink::WebCryptoAlgorithmIdSha1),
2268 true,
2269 blink::WebCryptoKeyUsageSign,
2270 &key));
2272 std::vector<uint8_t> exported_key_pkcs8;
2273 ASSERT_EQ(
2274 Status::Success(),
2275 ExportKey(blink::WebCryptoKeyFormatPkcs8, key, &exported_key_pkcs8));
2277 ASSERT_EQ(CryptoData(HexStringToBytes(kPrivateKeyPkcs8DerHex)),
2278 CryptoData(exported_key_pkcs8));
2281 // Tests importing multiple RSA private keys from JWK, and then exporting to
2282 // PKCS8.
2284 // This is a regression test for http://crbug.com/378315, for which importing
2285 // a sequence of keys from JWK could yield the wrong key. The first key would
2286 // be imported correctly, however every key after that would actually import
2287 // the first key.
2288 TEST_F(SharedCryptoTest, ImportMultipleRSAPrivateKeysJwk) {
2289 if (!SupportsRsaKeyImport())
2290 return;
2292 scoped_ptr<base::ListValue> key_list;
2293 ASSERT_TRUE(ReadJsonTestFileToList("rsa_private_keys.json", &key_list));
2295 // For this test to be meaningful the keys MUST be kept alive before importing
2296 // new keys.
2297 std::vector<blink::WebCryptoKey> live_keys;
2299 for (size_t key_index = 0; key_index < key_list->GetSize(); ++key_index) {
2300 SCOPED_TRACE(key_index);
2302 base::DictionaryValue* key_values;
2303 ASSERT_TRUE(key_list->GetDictionary(key_index, &key_values));
2305 // Get the JWK representation of the key.
2306 base::DictionaryValue* key_jwk;
2307 ASSERT_TRUE(key_values->GetDictionary("jwk", &key_jwk));
2309 // Get the PKCS8 representation of the key.
2310 std::string pkcs8_hex_string;
2311 ASSERT_TRUE(key_values->GetString("pkcs8", &pkcs8_hex_string));
2312 std::vector<uint8_t> pkcs8_bytes = HexStringToBytes(pkcs8_hex_string);
2314 // Get the modulus length for the key.
2315 int modulus_length_bits = 0;
2316 ASSERT_TRUE(key_values->GetInteger("modulusLength", &modulus_length_bits));
2318 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
2320 // Import the key from JWK.
2321 ASSERT_EQ(
2322 Status::Success(),
2323 ImportKeyJwkFromDict(*key_jwk,
2324 CreateRsaHashedImportAlgorithm(
2325 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2326 blink::WebCryptoAlgorithmIdSha256),
2327 true,
2328 blink::WebCryptoKeyUsageSign,
2329 &private_key));
2331 live_keys.push_back(private_key);
2333 EXPECT_EQ(
2334 modulus_length_bits,
2335 static_cast<int>(
2336 private_key.algorithm().rsaHashedParams()->modulusLengthBits()));
2338 // Export to PKCS8 and verify that it matches expectation.
2339 std::vector<uint8_t> exported_key_pkcs8;
2340 ASSERT_EQ(
2341 Status::Success(),
2342 ExportKey(
2343 blink::WebCryptoKeyFormatPkcs8, private_key, &exported_key_pkcs8));
2345 EXPECT_BYTES_EQ(pkcs8_bytes, exported_key_pkcs8);
2349 // Import an RSA private key using JWK. Next import a JWK containing the same
2350 // modulus, but mismatched parameters for the rest. It should NOT be possible
2351 // that the second import retrieves the first key. See http://crbug.com/378315
2352 // for how that could happen.
2353 TEST_F(SharedCryptoTest, ImportJwkExistingModulusAndInvalid) {
2354 #if defined(USE_NSS)
2355 if (!NSS_VersionCheck("3.16.2")) {
2356 LOG(WARNING) << "Skipping test because lacks NSS support";
2357 return;
2359 #endif
2361 scoped_ptr<base::ListValue> key_list;
2362 ASSERT_TRUE(ReadJsonTestFileToList("rsa_private_keys.json", &key_list));
2364 // Import a 1024-bit private key.
2365 base::DictionaryValue* key1_props;
2366 ASSERT_TRUE(key_list->GetDictionary(1, &key1_props));
2367 base::DictionaryValue* key1_jwk;
2368 ASSERT_TRUE(key1_props->GetDictionary("jwk", &key1_jwk));
2370 blink::WebCryptoKey key1 = blink::WebCryptoKey::createNull();
2371 ASSERT_EQ(Status::Success(),
2372 ImportKeyJwkFromDict(*key1_jwk,
2373 CreateRsaHashedImportAlgorithm(
2374 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2375 blink::WebCryptoAlgorithmIdSha256),
2376 true,
2377 blink::WebCryptoKeyUsageSign,
2378 &key1));
2380 ASSERT_EQ(1024u, key1.algorithm().rsaHashedParams()->modulusLengthBits());
2382 // Construct a JWK using the modulus of key1, but all the other fields from
2383 // another key (also a 1024-bit private key).
2384 base::DictionaryValue* key2_props;
2385 ASSERT_TRUE(key_list->GetDictionary(5, &key2_props));
2386 base::DictionaryValue* key2_jwk;
2387 ASSERT_TRUE(key2_props->GetDictionary("jwk", &key2_jwk));
2388 std::string modulus;
2389 key1_jwk->GetString("n", &modulus);
2390 key2_jwk->SetString("n", modulus);
2392 // This should fail, as the n,e,d parameters are not consistent. It MUST NOT
2393 // somehow return the key created earlier.
2394 blink::WebCryptoKey key2 = blink::WebCryptoKey::createNull();
2395 ASSERT_EQ(Status::OperationError(),
2396 ImportKeyJwkFromDict(*key2_jwk,
2397 CreateRsaHashedImportAlgorithm(
2398 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2399 blink::WebCryptoAlgorithmIdSha256),
2400 true,
2401 blink::WebCryptoKeyUsageSign,
2402 &key2));
2405 // Import a JWK RSA private key with some optional parameters missing (q, dp,
2406 // dq, qi).
2408 // The only optional parameter included is "p".
2410 // This fails because JWA says that producers must include either ALL optional
2411 // parameters or NONE.
2412 TEST_F(SharedCryptoTest, ImportRsaPrivateKeyJwkMissingOptionalParams) {
2413 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
2415 base::DictionaryValue dict;
2416 dict.SetString("kty", "RSA");
2417 dict.SetString("alg", "RS1");
2419 dict.SetString(
2420 "n",
2421 "pW5KDnAQF1iaUYfcfqhB0Vby7A42rVKkTf6x5h962ZHYxRBW_-2xYrTA8oOhKoijlN_"
2422 "1JqtykcuzB86r_OCx39XNlQgJbVsri2311nHvY3fAkhyyPCcKcOJZjm_4nRnxBazC0_"
2423 "DLNfKSgOE4a29kxO8i4eHyDQzoz_siSb2aITc");
2424 dict.SetString("e", "AQAB");
2425 dict.SetString(
2426 "d",
2427 "M6UEKpCyfU9UUcqbu9C0R3GhAa-IQ0Cu-YhfKku-"
2428 "kuiUpySsPFaMj5eFOtB8AmbIxqPKCSnx6PESMYhEKfxNmuVf7olqEM5wfD7X5zTkRyejlXRQ"
2429 "GlMmgxCcKrrKuig8MbS9L1PD7jfjUs7jT55QO9gMBiKtecbc7og1R8ajsyU");
2431 dict.SetString("p",
2432 "5-"
2433 "iUJyCod1Fyc6NWBT6iobwMlKpy1VxuhilrLfyWeUjApyy8zKfqyzVwbgmh31W"
2434 "hU1vZs8w0Fgs7bc0-2o5kQw");
2436 ASSERT_EQ(Status::ErrorJwkPropertyMissing("q"),
2437 ImportKeyJwkFromDict(dict,
2438 CreateRsaHashedImportAlgorithm(
2439 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2440 blink::WebCryptoAlgorithmIdSha1),
2441 true,
2442 blink::WebCryptoKeyUsageSign,
2443 &key));
2446 // Import a JWK RSA private key, without any of the optional parameters.
2448 // According to JWA, such keys are valid, but applications SHOULD
2449 // include all the parameters when sending, and recipients MAY
2450 // accept them, but are not required to. Chromium's WebCrypto does
2451 // not allow such degenerate keys.
2452 TEST_F(SharedCryptoTest, ImportRsaPrivateKeyJwkIncorrectOptionalEmpty) {
2453 if (!SupportsRsaKeyImport())
2454 return;
2456 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
2458 base::DictionaryValue dict;
2459 dict.SetString("kty", "RSA");
2460 dict.SetString("alg", "RS1");
2462 dict.SetString(
2463 "n",
2464 "pW5KDnAQF1iaUYfcfqhB0Vby7A42rVKkTf6x5h962ZHYxRBW_-2xYrTA8oOhKoijlN_"
2465 "1JqtykcuzB86r_OCx39XNlQgJbVsri2311nHvY3fAkhyyPCcKcOJZjm_4nRnxBazC0_"
2466 "DLNfKSgOE4a29kxO8i4eHyDQzoz_siSb2aITc");
2467 dict.SetString("e", "AQAB");
2468 dict.SetString(
2469 "d",
2470 "M6UEKpCyfU9UUcqbu9C0R3GhAa-IQ0Cu-YhfKku-"
2471 "kuiUpySsPFaMj5eFOtB8AmbIxqPKCSnx6PESMYhEKfxNmuVf7olqEM5wfD7X5zTkRyejlXRQ"
2472 "GlMmgxCcKrrKuig8MbS9L1PD7jfjUs7jT55QO9gMBiKtecbc7og1R8ajsyU");
2474 ASSERT_EQ(Status::ErrorJwkPropertyMissing("p"),
2475 ImportKeyJwkFromDict(dict,
2476 CreateRsaHashedImportAlgorithm(
2477 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2478 blink::WebCryptoAlgorithmIdSha1),
2479 true,
2480 blink::WebCryptoKeyUsageSign,
2481 &key));
2484 // Tries importing a public RSA key whose exponent contains leading zeros.
2485 TEST_F(SharedCryptoTest, ImportJwkRsaNonMinimalExponent) {
2486 base::DictionaryValue dict;
2488 dict.SetString("kty", "RSA");
2489 dict.SetString("e", "AAEAAQ"); // 00 01 00 01
2490 dict.SetString(
2491 "n",
2492 "qLOyhK-OtQs4cDSoYPFGxJGfMYdjzWxVmMiuSBGh4KvEx-CwgtaTpef87Wdc9GaFEncsDLxk"
2493 "p0LGxjD1M8jMcvYq6DPEC_JYQumEu3i9v5fAEH1VvbZi9cTg-rmEXLUUjvc5LdOq_5OuHmtm"
2494 "e7PUJHYW1PW6ENTP0ibeiNOfFvs");
2496 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
2498 EXPECT_EQ(Status::ErrorJwkBigIntegerHasLeadingZero("e"),
2499 ImportKeyJwkFromDict(dict,
2500 CreateRsaHashedImportAlgorithm(
2501 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2502 blink::WebCryptoAlgorithmIdSha256),
2503 false,
2504 blink::WebCryptoKeyUsageVerify,
2505 &key));
2508 TEST_F(SharedCryptoTest, GenerateKeyPairRsa) {
2509 // Note: using unrealistic short key lengths here to avoid bogging down tests.
2511 // Successful WebCryptoAlgorithmIdRsaSsaPkcs1v1_5 key generation (sha256)
2512 const unsigned int modulus_length = 256;
2513 const std::vector<uint8_t> public_exponent = HexStringToBytes("010001");
2514 blink::WebCryptoAlgorithm algorithm =
2515 CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2516 blink::WebCryptoAlgorithmIdSha256,
2517 modulus_length,
2518 public_exponent);
2519 bool extractable = true;
2520 const blink::WebCryptoKeyUsageMask usage_mask = 0;
2521 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
2522 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
2524 EXPECT_EQ(Status::Success(),
2525 GenerateKeyPair(
2526 algorithm, extractable, usage_mask, &public_key, &private_key));
2527 EXPECT_FALSE(public_key.isNull());
2528 EXPECT_FALSE(private_key.isNull());
2529 EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key.type());
2530 EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key.type());
2531 EXPECT_EQ(modulus_length,
2532 public_key.algorithm().rsaHashedParams()->modulusLengthBits());
2533 EXPECT_EQ(modulus_length,
2534 private_key.algorithm().rsaHashedParams()->modulusLengthBits());
2535 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
2536 public_key.algorithm().rsaHashedParams()->hash().id());
2537 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
2538 private_key.algorithm().rsaHashedParams()->hash().id());
2539 EXPECT_TRUE(public_key.extractable());
2540 EXPECT_EQ(extractable, private_key.extractable());
2541 EXPECT_EQ(usage_mask, public_key.usages());
2542 EXPECT_EQ(usage_mask, private_key.usages());
2544 // Try exporting the generated key pair, and then re-importing to verify that
2545 // the exported data was valid.
2546 std::vector<uint8_t> public_key_spki;
2547 EXPECT_EQ(
2548 Status::Success(),
2549 ExportKey(blink::WebCryptoKeyFormatSpki, public_key, &public_key_spki));
2551 if (SupportsRsaKeyImport()) {
2552 public_key = blink::WebCryptoKey::createNull();
2553 EXPECT_EQ(Status::Success(),
2554 ImportKey(blink::WebCryptoKeyFormatSpki,
2555 CryptoData(public_key_spki),
2556 CreateRsaHashedImportAlgorithm(
2557 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2558 blink::WebCryptoAlgorithmIdSha256),
2559 true,
2560 usage_mask,
2561 &public_key));
2562 EXPECT_EQ(modulus_length,
2563 public_key.algorithm().rsaHashedParams()->modulusLengthBits());
2565 std::vector<uint8_t> private_key_pkcs8;
2566 EXPECT_EQ(
2567 Status::Success(),
2568 ExportKey(
2569 blink::WebCryptoKeyFormatPkcs8, private_key, &private_key_pkcs8));
2570 private_key = blink::WebCryptoKey::createNull();
2571 EXPECT_EQ(Status::Success(),
2572 ImportKey(blink::WebCryptoKeyFormatPkcs8,
2573 CryptoData(private_key_pkcs8),
2574 CreateRsaHashedImportAlgorithm(
2575 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2576 blink::WebCryptoAlgorithmIdSha256),
2577 true,
2578 usage_mask,
2579 &private_key));
2580 EXPECT_EQ(modulus_length,
2581 private_key.algorithm().rsaHashedParams()->modulusLengthBits());
2584 // Fail with bad modulus.
2585 algorithm =
2586 CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2587 blink::WebCryptoAlgorithmIdSha256,
2589 public_exponent);
2590 EXPECT_EQ(Status::ErrorGenerateRsaUnsupportedModulus(),
2591 GenerateKeyPair(
2592 algorithm, extractable, usage_mask, &public_key, &private_key));
2594 // Fail with bad exponent: larger than unsigned long.
2595 unsigned int exponent_length = sizeof(unsigned long) + 1; // NOLINT
2596 const std::vector<uint8_t> long_exponent(exponent_length, 0x01);
2597 algorithm =
2598 CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2599 blink::WebCryptoAlgorithmIdSha256,
2600 modulus_length,
2601 long_exponent);
2602 EXPECT_EQ(Status::ErrorGenerateKeyPublicExponent(),
2603 GenerateKeyPair(
2604 algorithm, extractable, usage_mask, &public_key, &private_key));
2606 // Fail with bad exponent: empty.
2607 const std::vector<uint8_t> empty_exponent;
2608 algorithm =
2609 CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2610 blink::WebCryptoAlgorithmIdSha256,
2611 modulus_length,
2612 empty_exponent);
2613 EXPECT_EQ(Status::ErrorGenerateKeyPublicExponent(),
2614 GenerateKeyPair(
2615 algorithm, extractable, usage_mask, &public_key, &private_key));
2617 // Fail with bad exponent: all zeros.
2618 std::vector<uint8_t> exponent_with_leading_zeros(15, 0x00);
2619 algorithm =
2620 CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2621 blink::WebCryptoAlgorithmIdSha256,
2622 modulus_length,
2623 exponent_with_leading_zeros);
2624 EXPECT_EQ(Status::ErrorGenerateKeyPublicExponent(),
2625 GenerateKeyPair(
2626 algorithm, extractable, usage_mask, &public_key, &private_key));
2628 // Key generation success using exponent with leading zeros.
2629 exponent_with_leading_zeros.insert(exponent_with_leading_zeros.end(),
2630 public_exponent.begin(),
2631 public_exponent.end());
2632 algorithm =
2633 CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2634 blink::WebCryptoAlgorithmIdSha256,
2635 modulus_length,
2636 exponent_with_leading_zeros);
2637 EXPECT_EQ(Status::Success(),
2638 GenerateKeyPair(
2639 algorithm, extractable, usage_mask, &public_key, &private_key));
2640 EXPECT_FALSE(public_key.isNull());
2641 EXPECT_FALSE(private_key.isNull());
2642 EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key.type());
2643 EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key.type());
2644 EXPECT_TRUE(public_key.extractable());
2645 EXPECT_EQ(extractable, private_key.extractable());
2646 EXPECT_EQ(usage_mask, public_key.usages());
2647 EXPECT_EQ(usage_mask, private_key.usages());
2649 // Successful WebCryptoAlgorithmIdRsaSsaPkcs1v1_5 key generation (sha1)
2650 algorithm =
2651 CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2652 blink::WebCryptoAlgorithmIdSha1,
2653 modulus_length,
2654 public_exponent);
2655 EXPECT_EQ(
2656 Status::Success(),
2657 GenerateKeyPair(algorithm, false, usage_mask, &public_key, &private_key));
2658 EXPECT_FALSE(public_key.isNull());
2659 EXPECT_FALSE(private_key.isNull());
2660 EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key.type());
2661 EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key.type());
2662 EXPECT_EQ(modulus_length,
2663 public_key.algorithm().rsaHashedParams()->modulusLengthBits());
2664 EXPECT_EQ(modulus_length,
2665 private_key.algorithm().rsaHashedParams()->modulusLengthBits());
2666 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
2667 public_key.algorithm().rsaHashedParams()->hash().id());
2668 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
2669 private_key.algorithm().rsaHashedParams()->hash().id());
2670 // Even though "extractable" was set to false, the public key remains
2671 // extractable.
2672 EXPECT_TRUE(public_key.extractable());
2673 EXPECT_FALSE(private_key.extractable());
2674 EXPECT_EQ(usage_mask, public_key.usages());
2675 EXPECT_EQ(usage_mask, private_key.usages());
2677 // Exporting a private key as SPKI format doesn't make sense. However this
2678 // will first fail because the key is not extractable.
2679 std::vector<uint8_t> output;
2680 EXPECT_EQ(Status::ErrorKeyNotExtractable(),
2681 ExportKey(blink::WebCryptoKeyFormatSpki, private_key, &output));
2683 // Re-generate an extractable private_key and try to export it as SPKI format.
2684 // This should fail since spki is for public keys.
2685 EXPECT_EQ(
2686 Status::Success(),
2687 GenerateKeyPair(algorithm, true, usage_mask, &public_key, &private_key));
2688 EXPECT_EQ(Status::ErrorUnexpectedKeyType(),
2689 ExportKey(blink::WebCryptoKeyFormatSpki, private_key, &output));
2692 TEST_F(SharedCryptoTest, GenerateKeyPairRsaBadModulusLength) {
2693 const unsigned int kBadModulusBits[] = {
2695 248, // Too small.
2696 257, // Not a multiple of 8.
2697 1023, // Not a multiple of 8.
2698 0xFFFFFFFF, // Too big.
2699 16384 + 8, // 16384 is the maxmimum length that NSS succeeds for.
2702 const std::vector<uint8_t> public_exponent = HexStringToBytes("010001");
2704 for (size_t i = 0; i < arraysize(kBadModulusBits); ++i) {
2705 const unsigned int modulus_length_bits = kBadModulusBits[i];
2706 blink::WebCryptoAlgorithm algorithm = CreateRsaHashedKeyGenAlgorithm(
2707 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2708 blink::WebCryptoAlgorithmIdSha256,
2709 modulus_length_bits,
2710 public_exponent);
2711 bool extractable = true;
2712 const blink::WebCryptoKeyUsageMask usage_mask = 0;
2713 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
2714 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
2716 EXPECT_EQ(
2717 Status::ErrorGenerateRsaUnsupportedModulus(),
2718 GenerateKeyPair(
2719 algorithm, extractable, usage_mask, &public_key, &private_key));
2723 // Try generating RSA key pairs using unsupported public exponents. Only
2724 // exponents of 3 and 65537 are supported. While both OpenSSL and NSS can
2725 // support other values, OpenSSL hangs when given invalid exponents, so use a
2726 // whitelist to validate the parameters.
2727 TEST_F(SharedCryptoTest, GenerateKeyPairRsaBadExponent) {
2728 const unsigned int modulus_length = 1024;
2730 const char* const kPublicExponents[] = {
2731 "11", // 17 - This is a valid public exponent, but currently disallowed.
2732 "00",
2733 "01",
2734 "02",
2735 "010000", // 65536
2738 for (size_t i = 0; i < arraysize(kPublicExponents); ++i) {
2739 SCOPED_TRACE(i);
2740 blink::WebCryptoAlgorithm algorithm = CreateRsaHashedKeyGenAlgorithm(
2741 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2742 blink::WebCryptoAlgorithmIdSha256,
2743 modulus_length,
2744 HexStringToBytes(kPublicExponents[i]));
2746 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
2747 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
2749 EXPECT_EQ(Status::ErrorGenerateKeyPublicExponent(),
2750 GenerateKeyPair(algorithm, true, 0, &public_key, &private_key));
2754 TEST_F(SharedCryptoTest, RsaSsaSignVerifyFailures) {
2755 if (!SupportsRsaKeyImport())
2756 return;
2758 // Import a key pair.
2759 blink::WebCryptoAlgorithm import_algorithm =
2760 CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2761 blink::WebCryptoAlgorithmIdSha1);
2762 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
2763 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
2764 ASSERT_NO_FATAL_FAILURE(
2765 ImportRsaKeyPair(HexStringToBytes(kPublicKeySpkiDerHex),
2766 HexStringToBytes(kPrivateKeyPkcs8DerHex),
2767 import_algorithm,
2768 false,
2769 blink::WebCryptoKeyUsageVerify,
2770 blink::WebCryptoKeyUsageSign,
2771 &public_key,
2772 &private_key));
2774 blink::WebCryptoAlgorithm algorithm =
2775 CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5);
2777 std::vector<uint8_t> signature;
2778 bool signature_match;
2780 // Compute a signature.
2781 const std::vector<uint8_t> data = HexStringToBytes("010203040506070809");
2782 ASSERT_EQ(Status::Success(),
2783 Sign(algorithm, private_key, CryptoData(data), &signature));
2785 // Ensure truncated signature does not verify by passing one less byte.
2786 EXPECT_EQ(
2787 Status::Success(),
2788 Verify(algorithm,
2789 public_key,
2790 CryptoData(vector_as_array(&signature), signature.size() - 1),
2791 CryptoData(data),
2792 &signature_match));
2793 EXPECT_FALSE(signature_match);
2795 // Ensure truncated signature does not verify by passing no bytes.
2796 EXPECT_EQ(Status::Success(),
2797 Verify(algorithm,
2798 public_key,
2799 CryptoData(),
2800 CryptoData(data),
2801 &signature_match));
2802 EXPECT_FALSE(signature_match);
2804 // Ensure corrupted signature does not verify.
2805 std::vector<uint8_t> corrupt_sig = signature;
2806 corrupt_sig[corrupt_sig.size() / 2] ^= 0x1;
2807 EXPECT_EQ(Status::Success(),
2808 Verify(algorithm,
2809 public_key,
2810 CryptoData(corrupt_sig),
2811 CryptoData(data),
2812 &signature_match));
2813 EXPECT_FALSE(signature_match);
2815 // Ensure signatures that are greater than the modulus size fail.
2816 const unsigned int long_message_size_bytes = 1024;
2817 DCHECK_GT(long_message_size_bytes, kModulusLengthBits / 8);
2818 const unsigned char kLongSignature[long_message_size_bytes] = {0};
2819 EXPECT_EQ(Status::Success(),
2820 Verify(algorithm,
2821 public_key,
2822 CryptoData(kLongSignature, sizeof(kLongSignature)),
2823 CryptoData(data),
2824 &signature_match));
2825 EXPECT_FALSE(signature_match);
2827 // Ensure that signing and verifying with an incompatible algorithm fails.
2828 algorithm = CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaOaep);
2830 EXPECT_EQ(Status::ErrorUnexpected(),
2831 Sign(algorithm, private_key, CryptoData(data), &signature));
2832 EXPECT_EQ(Status::ErrorUnexpected(),
2833 Verify(algorithm,
2834 public_key,
2835 CryptoData(signature),
2836 CryptoData(data),
2837 &signature_match));
2839 // Some crypto libraries (NSS) can automatically select the RSA SSA inner hash
2840 // based solely on the contents of the input signature data. In the Web Crypto
2841 // implementation, the inner hash should be specified uniquely by the key
2842 // algorithm parameter. To validate this behavior, call Verify with a computed
2843 // signature that used one hash type (SHA-1), but pass in a key with a
2844 // different inner hash type (SHA-256). If the hash type is determined by the
2845 // signature itself (undesired), the verify will pass, while if the hash type
2846 // is specified by the key algorithm (desired), the verify will fail.
2848 // Compute a signature using SHA-1 as the inner hash.
2849 EXPECT_EQ(Status::Success(),
2850 Sign(CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5),
2851 private_key,
2852 CryptoData(data),
2853 &signature));
2855 blink::WebCryptoKey public_key_256 = blink::WebCryptoKey::createNull();
2856 EXPECT_EQ(Status::Success(),
2857 ImportKey(blink::WebCryptoKeyFormatSpki,
2858 CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
2859 CreateRsaHashedImportAlgorithm(
2860 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2861 blink::WebCryptoAlgorithmIdSha256),
2862 true,
2863 blink::WebCryptoKeyUsageVerify,
2864 &public_key_256));
2866 // Now verify using an algorithm whose inner hash is SHA-256, not SHA-1. The
2867 // signature should not verify.
2868 // NOTE: public_key was produced by generateKey, and so its associated
2869 // algorithm has WebCryptoRsaKeyGenParams and not WebCryptoRsaSsaParams. Thus
2870 // it has no inner hash to conflict with the input algorithm.
2871 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
2872 private_key.algorithm().rsaHashedParams()->hash().id());
2873 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
2874 public_key_256.algorithm().rsaHashedParams()->hash().id());
2876 bool is_match;
2877 EXPECT_EQ(Status::Success(),
2878 Verify(CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5),
2879 public_key_256,
2880 CryptoData(signature),
2881 CryptoData(data),
2882 &is_match));
2883 EXPECT_FALSE(is_match);
2886 TEST_F(SharedCryptoTest, RsaSignVerifyKnownAnswer) {
2887 if (!SupportsRsaKeyImport())
2888 return;
2890 scoped_ptr<base::ListValue> tests;
2891 ASSERT_TRUE(ReadJsonTestFileToList("pkcs1v15_sign.json", &tests));
2893 // Import the key pair.
2894 blink::WebCryptoAlgorithm import_algorithm =
2895 CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
2896 blink::WebCryptoAlgorithmIdSha1);
2897 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
2898 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
2899 ASSERT_NO_FATAL_FAILURE(
2900 ImportRsaKeyPair(HexStringToBytes(kPublicKeySpkiDerHex),
2901 HexStringToBytes(kPrivateKeyPkcs8DerHex),
2902 import_algorithm,
2903 false,
2904 blink::WebCryptoKeyUsageVerify,
2905 blink::WebCryptoKeyUsageSign,
2906 &public_key,
2907 &private_key));
2909 blink::WebCryptoAlgorithm algorithm =
2910 CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5);
2912 // Validate the signatures are computed and verified as expected.
2913 std::vector<uint8_t> signature;
2914 for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
2915 SCOPED_TRACE(test_index);
2917 base::DictionaryValue* test;
2918 ASSERT_TRUE(tests->GetDictionary(test_index, &test));
2920 std::vector<uint8_t> test_message =
2921 GetBytesFromHexString(test, "message_hex");
2922 std::vector<uint8_t> test_signature =
2923 GetBytesFromHexString(test, "signature_hex");
2925 signature.clear();
2926 ASSERT_EQ(
2927 Status::Success(),
2928 Sign(algorithm, private_key, CryptoData(test_message), &signature));
2929 EXPECT_BYTES_EQ(test_signature, signature);
2931 bool is_match = false;
2932 ASSERT_EQ(Status::Success(),
2933 Verify(algorithm,
2934 public_key,
2935 CryptoData(test_signature),
2936 CryptoData(test_message),
2937 &is_match));
2938 EXPECT_TRUE(is_match);
2942 TEST_F(SharedCryptoTest, AesKwKeyImport) {
2943 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
2944 blink::WebCryptoAlgorithm algorithm =
2945 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
2947 // Import a 128-bit Key Encryption Key (KEK)
2948 std::string key_raw_hex_in = "025a8cf3f08b4f6c5f33bbc76a471939";
2949 ASSERT_EQ(Status::Success(),
2950 ImportKey(blink::WebCryptoKeyFormatRaw,
2951 CryptoData(HexStringToBytes(key_raw_hex_in)),
2952 algorithm,
2953 true,
2954 blink::WebCryptoKeyUsageWrapKey,
2955 &key));
2956 std::vector<uint8_t> key_raw_out;
2957 EXPECT_EQ(Status::Success(),
2958 ExportKey(blink::WebCryptoKeyFormatRaw, key, &key_raw_out));
2959 EXPECT_BYTES_EQ_HEX(key_raw_hex_in, key_raw_out);
2961 // Import a 192-bit KEK
2962 key_raw_hex_in = "c0192c6466b2370decbb62b2cfef4384544ffeb4d2fbc103";
2963 ASSERT_EQ(Status::ErrorAes192BitUnsupported(),
2964 ImportKey(blink::WebCryptoKeyFormatRaw,
2965 CryptoData(HexStringToBytes(key_raw_hex_in)),
2966 algorithm,
2967 true,
2968 blink::WebCryptoKeyUsageWrapKey,
2969 &key));
2971 // Import a 256-bit Key Encryption Key (KEK)
2972 key_raw_hex_in =
2973 "e11fe66380d90fa9ebefb74e0478e78f95664d0c67ca20ce4a0b5842863ac46f";
2974 ASSERT_EQ(Status::Success(),
2975 ImportKey(blink::WebCryptoKeyFormatRaw,
2976 CryptoData(HexStringToBytes(key_raw_hex_in)),
2977 algorithm,
2978 true,
2979 blink::WebCryptoKeyUsageWrapKey,
2980 &key));
2981 EXPECT_EQ(Status::Success(),
2982 ExportKey(blink::WebCryptoKeyFormatRaw, key, &key_raw_out));
2983 EXPECT_BYTES_EQ_HEX(key_raw_hex_in, key_raw_out);
2985 // Fail import of 0 length key
2986 EXPECT_EQ(Status::ErrorImportAesKeyLength(),
2987 ImportKey(blink::WebCryptoKeyFormatRaw,
2988 CryptoData(HexStringToBytes("")),
2989 algorithm,
2990 true,
2991 blink::WebCryptoKeyUsageWrapKey,
2992 &key));
2994 // Fail import of 124-bit KEK
2995 key_raw_hex_in = "3e4566a2bdaa10cb68134fa66c15ddb";
2996 EXPECT_EQ(Status::ErrorImportAesKeyLength(),
2997 ImportKey(blink::WebCryptoKeyFormatRaw,
2998 CryptoData(HexStringToBytes(key_raw_hex_in)),
2999 algorithm,
3000 true,
3001 blink::WebCryptoKeyUsageWrapKey,
3002 &key));
3004 // Fail import of 200-bit KEK
3005 key_raw_hex_in = "0a1d88608a5ad9fec64f1ada269ebab4baa2feeb8d95638c0e";
3006 EXPECT_EQ(Status::ErrorImportAesKeyLength(),
3007 ImportKey(blink::WebCryptoKeyFormatRaw,
3008 CryptoData(HexStringToBytes(key_raw_hex_in)),
3009 algorithm,
3010 true,
3011 blink::WebCryptoKeyUsageWrapKey,
3012 &key));
3014 // Fail import of 260-bit KEK
3015 key_raw_hex_in =
3016 "72d4e475ff34215416c9ad9c8281247a4d730c5f275ac23f376e73e3bce8d7d5a";
3017 EXPECT_EQ(Status::ErrorImportAesKeyLength(),
3018 ImportKey(blink::WebCryptoKeyFormatRaw,
3019 CryptoData(HexStringToBytes(key_raw_hex_in)),
3020 algorithm,
3021 true,
3022 blink::WebCryptoKeyUsageWrapKey,
3023 &key));
3026 TEST_F(SharedCryptoTest, UnwrapFailures) {
3027 // This test exercises the code path common to all unwrap operations.
3028 scoped_ptr<base::ListValue> tests;
3029 ASSERT_TRUE(ReadJsonTestFileToList("aes_kw.json", &tests));
3030 base::DictionaryValue* test;
3031 ASSERT_TRUE(tests->GetDictionary(0, &test));
3032 const std::vector<uint8_t> test_kek = GetBytesFromHexString(test, "kek");
3033 const std::vector<uint8_t> test_ciphertext =
3034 GetBytesFromHexString(test, "ciphertext");
3036 blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
3038 // Using a wrapping algorithm that does not match the wrapping key algorithm
3039 // should fail.
3040 blink::WebCryptoKey wrapping_key = ImportSecretKeyFromRaw(
3041 test_kek,
3042 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw),
3043 blink::WebCryptoKeyUsageUnwrapKey);
3044 EXPECT_EQ(
3045 Status::ErrorUnexpected(),
3046 UnwrapKey(blink::WebCryptoKeyFormatRaw,
3047 CryptoData(test_ciphertext),
3048 wrapping_key,
3049 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
3050 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
3051 true,
3052 blink::WebCryptoKeyUsageEncrypt,
3053 &unwrapped_key));
3056 TEST_F(SharedCryptoTest, AesKwRawSymkeyWrapUnwrapKnownAnswer) {
3057 scoped_ptr<base::ListValue> tests;
3058 ASSERT_TRUE(ReadJsonTestFileToList("aes_kw.json", &tests));
3060 for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
3061 SCOPED_TRACE(test_index);
3062 base::DictionaryValue* test;
3063 ASSERT_TRUE(tests->GetDictionary(test_index, &test));
3064 const std::vector<uint8_t> test_kek = GetBytesFromHexString(test, "kek");
3065 const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
3066 const std::vector<uint8_t> test_ciphertext =
3067 GetBytesFromHexString(test, "ciphertext");
3068 const blink::WebCryptoAlgorithm wrapping_algorithm =
3069 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
3071 // Import the wrapping key.
3072 blink::WebCryptoKey wrapping_key = ImportSecretKeyFromRaw(
3073 test_kek,
3074 wrapping_algorithm,
3075 blink::WebCryptoKeyUsageWrapKey | blink::WebCryptoKeyUsageUnwrapKey);
3077 // Import the key to be wrapped.
3078 blink::WebCryptoKey key = ImportSecretKeyFromRaw(
3079 test_key,
3080 CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1),
3081 blink::WebCryptoKeyUsageSign);
3083 // Wrap the key and verify the ciphertext result against the known answer.
3084 std::vector<uint8_t> wrapped_key;
3085 ASSERT_EQ(Status::Success(),
3086 WrapKey(blink::WebCryptoKeyFormatRaw,
3087 key,
3088 wrapping_key,
3089 wrapping_algorithm,
3090 &wrapped_key));
3091 EXPECT_BYTES_EQ(test_ciphertext, wrapped_key);
3093 // Unwrap the known ciphertext to get a new test_key.
3094 blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
3095 ASSERT_EQ(
3096 Status::Success(),
3097 UnwrapKey(blink::WebCryptoKeyFormatRaw,
3098 CryptoData(test_ciphertext),
3099 wrapping_key,
3100 wrapping_algorithm,
3101 CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1),
3102 true,
3103 blink::WebCryptoKeyUsageSign,
3104 &unwrapped_key));
3105 EXPECT_FALSE(key.isNull());
3106 EXPECT_TRUE(key.handle());
3107 EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
3108 EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
3109 EXPECT_EQ(true, key.extractable());
3110 EXPECT_EQ(blink::WebCryptoKeyUsageSign, key.usages());
3112 // Export the new key and compare its raw bytes with the original known key.
3113 std::vector<uint8_t> raw_key;
3114 EXPECT_EQ(Status::Success(),
3115 ExportKey(blink::WebCryptoKeyFormatRaw, unwrapped_key, &raw_key));
3116 EXPECT_BYTES_EQ(test_key, raw_key);
3120 // Unwrap a HMAC key using AES-KW, and then try doing a sign/verify with the
3121 // unwrapped key
3122 TEST_F(SharedCryptoTest, AesKwRawSymkeyUnwrapSignVerifyHmac) {
3123 scoped_ptr<base::ListValue> tests;
3124 ASSERT_TRUE(ReadJsonTestFileToList("aes_kw.json", &tests));
3126 base::DictionaryValue* test;
3127 ASSERT_TRUE(tests->GetDictionary(0, &test));
3128 const std::vector<uint8_t> test_kek = GetBytesFromHexString(test, "kek");
3129 const std::vector<uint8_t> test_ciphertext =
3130 GetBytesFromHexString(test, "ciphertext");
3131 const blink::WebCryptoAlgorithm wrapping_algorithm =
3132 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
3134 // Import the wrapping key.
3135 blink::WebCryptoKey wrapping_key = ImportSecretKeyFromRaw(
3136 test_kek, wrapping_algorithm, blink::WebCryptoKeyUsageUnwrapKey);
3138 // Unwrap the known ciphertext.
3139 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
3140 ASSERT_EQ(
3141 Status::Success(),
3142 UnwrapKey(blink::WebCryptoKeyFormatRaw,
3143 CryptoData(test_ciphertext),
3144 wrapping_key,
3145 wrapping_algorithm,
3146 CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1),
3147 false,
3148 blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
3149 &key));
3151 EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
3152 EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
3153 EXPECT_FALSE(key.extractable());
3154 EXPECT_EQ(blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
3155 key.usages());
3157 // Sign an empty message and ensure it is verified.
3158 std::vector<uint8_t> test_message;
3159 std::vector<uint8_t> signature;
3161 ASSERT_EQ(Status::Success(),
3162 Sign(CreateAlgorithm(blink::WebCryptoAlgorithmIdHmac),
3163 key,
3164 CryptoData(test_message),
3165 &signature));
3167 EXPECT_GT(signature.size(), 0u);
3169 bool verify_result;
3170 ASSERT_EQ(Status::Success(),
3171 Verify(CreateAlgorithm(blink::WebCryptoAlgorithmIdHmac),
3172 key,
3173 CryptoData(signature),
3174 CryptoData(test_message),
3175 &verify_result));
3178 TEST_F(SharedCryptoTest, AesKwRawSymkeyWrapUnwrapErrors) {
3179 scoped_ptr<base::ListValue> tests;
3180 ASSERT_TRUE(ReadJsonTestFileToList("aes_kw.json", &tests));
3181 base::DictionaryValue* test;
3182 // Use 256 bits of data with a 256-bit KEK
3183 ASSERT_TRUE(tests->GetDictionary(3, &test));
3184 const std::vector<uint8_t> test_kek = GetBytesFromHexString(test, "kek");
3185 const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
3186 const std::vector<uint8_t> test_ciphertext =
3187 GetBytesFromHexString(test, "ciphertext");
3188 const blink::WebCryptoAlgorithm wrapping_algorithm =
3189 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
3190 const blink::WebCryptoAlgorithm key_algorithm =
3191 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
3192 // Import the wrapping key.
3193 blink::WebCryptoKey wrapping_key = ImportSecretKeyFromRaw(
3194 test_kek,
3195 wrapping_algorithm,
3196 blink::WebCryptoKeyUsageWrapKey | blink::WebCryptoKeyUsageUnwrapKey);
3197 // Import the key to be wrapped.
3198 blink::WebCryptoKey key = ImportSecretKeyFromRaw(
3199 test_key,
3200 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
3201 blink::WebCryptoKeyUsageEncrypt);
3203 // Unwrap with wrapped data too small must fail.
3204 const std::vector<uint8_t> small_data(test_ciphertext.begin(),
3205 test_ciphertext.begin() + 23);
3206 blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
3207 EXPECT_EQ(Status::ErrorDataTooSmall(),
3208 UnwrapKey(blink::WebCryptoKeyFormatRaw,
3209 CryptoData(small_data),
3210 wrapping_key,
3211 wrapping_algorithm,
3212 key_algorithm,
3213 true,
3214 blink::WebCryptoKeyUsageEncrypt,
3215 &unwrapped_key));
3217 // Unwrap with wrapped data size not a multiple of 8 bytes must fail.
3218 const std::vector<uint8_t> unaligned_data(test_ciphertext.begin(),
3219 test_ciphertext.end() - 2);
3220 EXPECT_EQ(Status::ErrorInvalidAesKwDataLength(),
3221 UnwrapKey(blink::WebCryptoKeyFormatRaw,
3222 CryptoData(unaligned_data),
3223 wrapping_key,
3224 wrapping_algorithm,
3225 key_algorithm,
3226 true,
3227 blink::WebCryptoKeyUsageEncrypt,
3228 &unwrapped_key));
3231 TEST_F(SharedCryptoTest, AesKwRawSymkeyUnwrapCorruptData) {
3232 scoped_ptr<base::ListValue> tests;
3233 ASSERT_TRUE(ReadJsonTestFileToList("aes_kw.json", &tests));
3234 base::DictionaryValue* test;
3235 // Use 256 bits of data with a 256-bit KEK
3236 ASSERT_TRUE(tests->GetDictionary(3, &test));
3237 const std::vector<uint8_t> test_kek = GetBytesFromHexString(test, "kek");
3238 const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
3239 const std::vector<uint8_t> test_ciphertext =
3240 GetBytesFromHexString(test, "ciphertext");
3241 const blink::WebCryptoAlgorithm wrapping_algorithm =
3242 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
3244 // Import the wrapping key.
3245 blink::WebCryptoKey wrapping_key = ImportSecretKeyFromRaw(
3246 test_kek,
3247 wrapping_algorithm,
3248 blink::WebCryptoKeyUsageWrapKey | blink::WebCryptoKeyUsageUnwrapKey);
3250 // Unwrap of a corrupted version of the known ciphertext should fail, due to
3251 // AES-KW's built-in integrity check.
3252 blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
3253 EXPECT_EQ(
3254 Status::OperationError(),
3255 UnwrapKey(blink::WebCryptoKeyFormatRaw,
3256 CryptoData(Corrupted(test_ciphertext)),
3257 wrapping_key,
3258 wrapping_algorithm,
3259 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
3260 true,
3261 blink::WebCryptoKeyUsageEncrypt,
3262 &unwrapped_key));
3265 TEST_F(SharedCryptoTest, AesKwJwkSymkeyUnwrapKnownData) {
3266 // The following data lists a known HMAC SHA-256 key, then a JWK
3267 // representation of this key which was encrypted ("wrapped") using AES-KW and
3268 // the following wrapping key.
3269 // For reference, the intermediate clear JWK is
3270 // {"alg":"HS256","ext":true,"k":<b64urlKey>,"key_ops":["verify"],"kty":"oct"}
3271 // (Not shown is space padding to ensure the cleartext meets the size
3272 // requirements of the AES-KW algorithm.)
3273 const std::vector<uint8_t> key_data = HexStringToBytes(
3274 "000102030405060708090A0B0C0D0E0F000102030405060708090A0B0C0D0E0F");
3275 const std::vector<uint8_t> wrapped_key_data = HexStringToBytes(
3276 "14E6380B35FDC5B72E1994764B6CB7BFDD64E7832894356AAEE6C3768FC3D0F115E6B0"
3277 "6729756225F999AA99FDF81FD6A359F1576D3D23DE6CB69C3937054EB497AC1E8C38D5"
3278 "5E01B9783A20C8D930020932CF25926103002213D0FC37279888154FEBCEDF31832158"
3279 "97938C5CFE5B10B4254D0C399F39D0");
3280 const std::vector<uint8_t> wrapping_key_data =
3281 HexStringToBytes("000102030405060708090A0B0C0D0E0F");
3282 const blink::WebCryptoAlgorithm wrapping_algorithm =
3283 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
3285 // Import the wrapping key.
3286 blink::WebCryptoKey wrapping_key = ImportSecretKeyFromRaw(
3287 wrapping_key_data, wrapping_algorithm, blink::WebCryptoKeyUsageUnwrapKey);
3289 // Unwrap the known wrapped key data to produce a new key
3290 blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
3291 ASSERT_EQ(
3292 Status::Success(),
3293 UnwrapKey(blink::WebCryptoKeyFormatJwk,
3294 CryptoData(wrapped_key_data),
3295 wrapping_key,
3296 wrapping_algorithm,
3297 CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256),
3298 true,
3299 blink::WebCryptoKeyUsageVerify,
3300 &unwrapped_key));
3302 // Validate the new key's attributes.
3303 EXPECT_FALSE(unwrapped_key.isNull());
3304 EXPECT_TRUE(unwrapped_key.handle());
3305 EXPECT_EQ(blink::WebCryptoKeyTypeSecret, unwrapped_key.type());
3306 EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, unwrapped_key.algorithm().id());
3307 EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
3308 unwrapped_key.algorithm().hmacParams()->hash().id());
3309 EXPECT_EQ(256u, unwrapped_key.algorithm().hmacParams()->lengthBits());
3310 EXPECT_EQ(true, unwrapped_key.extractable());
3311 EXPECT_EQ(blink::WebCryptoKeyUsageVerify, unwrapped_key.usages());
3313 // Export the new key's raw data and compare to the known original.
3314 std::vector<uint8_t> raw_key;
3315 EXPECT_EQ(Status::Success(),
3316 ExportKey(blink::WebCryptoKeyFormatRaw, unwrapped_key, &raw_key));
3317 EXPECT_BYTES_EQ(key_data, raw_key);
3320 // TODO(eroman):
3321 // * Test decryption when the tag length exceeds input size
3322 // * Test decryption with empty input
3323 // * Test decryption with tag length of 0.
3324 TEST_F(SharedCryptoTest, AesGcmSampleSets) {
3325 // Some Linux test runners may not have a new enough version of NSS.
3326 if (!SupportsAesGcm()) {
3327 LOG(WARNING) << "AES GCM not supported, skipping tests";
3328 return;
3331 scoped_ptr<base::ListValue> tests;
3332 ASSERT_TRUE(ReadJsonTestFileToList("aes_gcm.json", &tests));
3334 // Note that WebCrypto appends the authentication tag to the ciphertext.
3335 for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
3336 SCOPED_TRACE(test_index);
3337 base::DictionaryValue* test;
3338 ASSERT_TRUE(tests->GetDictionary(test_index, &test));
3340 const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
3341 const std::vector<uint8_t> test_iv = GetBytesFromHexString(test, "iv");
3342 const std::vector<uint8_t> test_additional_data =
3343 GetBytesFromHexString(test, "additional_data");
3344 const std::vector<uint8_t> test_plain_text =
3345 GetBytesFromHexString(test, "plain_text");
3346 const std::vector<uint8_t> test_authentication_tag =
3347 GetBytesFromHexString(test, "authentication_tag");
3348 const unsigned int test_tag_size_bits = test_authentication_tag.size() * 8;
3349 const std::vector<uint8_t> test_cipher_text =
3350 GetBytesFromHexString(test, "cipher_text");
3352 blink::WebCryptoKey key = ImportSecretKeyFromRaw(
3353 test_key,
3354 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesGcm),
3355 blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt);
3357 // Verify exported raw key is identical to the imported data
3358 std::vector<uint8_t> raw_key;
3359 EXPECT_EQ(Status::Success(),
3360 ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
3362 EXPECT_BYTES_EQ(test_key, raw_key);
3364 // Test encryption.
3365 std::vector<uint8_t> cipher_text;
3366 std::vector<uint8_t> authentication_tag;
3367 EXPECT_EQ(Status::Success(),
3368 AesGcmEncrypt(key,
3369 test_iv,
3370 test_additional_data,
3371 test_tag_size_bits,
3372 test_plain_text,
3373 &cipher_text,
3374 &authentication_tag));
3376 EXPECT_BYTES_EQ(test_cipher_text, cipher_text);
3377 EXPECT_BYTES_EQ(test_authentication_tag, authentication_tag);
3379 // Test decryption.
3380 std::vector<uint8_t> plain_text;
3381 EXPECT_EQ(Status::Success(),
3382 AesGcmDecrypt(key,
3383 test_iv,
3384 test_additional_data,
3385 test_tag_size_bits,
3386 test_cipher_text,
3387 test_authentication_tag,
3388 &plain_text));
3389 EXPECT_BYTES_EQ(test_plain_text, plain_text);
3391 // Decryption should fail if any of the inputs are tampered with.
3392 EXPECT_EQ(Status::OperationError(),
3393 AesGcmDecrypt(key,
3394 Corrupted(test_iv),
3395 test_additional_data,
3396 test_tag_size_bits,
3397 test_cipher_text,
3398 test_authentication_tag,
3399 &plain_text));
3400 EXPECT_EQ(Status::OperationError(),
3401 AesGcmDecrypt(key,
3402 test_iv,
3403 Corrupted(test_additional_data),
3404 test_tag_size_bits,
3405 test_cipher_text,
3406 test_authentication_tag,
3407 &plain_text));
3408 EXPECT_EQ(Status::OperationError(),
3409 AesGcmDecrypt(key,
3410 test_iv,
3411 test_additional_data,
3412 test_tag_size_bits,
3413 Corrupted(test_cipher_text),
3414 test_authentication_tag,
3415 &plain_text));
3416 EXPECT_EQ(Status::OperationError(),
3417 AesGcmDecrypt(key,
3418 test_iv,
3419 test_additional_data,
3420 test_tag_size_bits,
3421 test_cipher_text,
3422 Corrupted(test_authentication_tag),
3423 &plain_text));
3425 // Try different incorrect tag lengths
3426 uint8_t kAlternateTagLengths[] = {0, 8, 96, 120, 128, 160, 255};
3427 for (size_t tag_i = 0; tag_i < arraysize(kAlternateTagLengths); ++tag_i) {
3428 unsigned int wrong_tag_size_bits = kAlternateTagLengths[tag_i];
3429 if (test_tag_size_bits == wrong_tag_size_bits)
3430 continue;
3431 EXPECT_NE(Status::Success(),
3432 AesGcmDecrypt(key,
3433 test_iv,
3434 test_additional_data,
3435 wrong_tag_size_bits,
3436 test_cipher_text,
3437 test_authentication_tag,
3438 &plain_text));
3443 // AES 192-bit is not allowed: http://crbug.com/381829
3444 TEST_F(SharedCryptoTest, ImportAesCbc192Raw) {
3445 std::vector<uint8_t> key_raw(24, 0);
3446 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
3447 Status status = ImportKey(blink::WebCryptoKeyFormatRaw,
3448 CryptoData(key_raw),
3449 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
3450 true,
3451 blink::WebCryptoKeyUsageEncrypt,
3452 &key);
3453 ASSERT_EQ(Status::ErrorAes192BitUnsupported(), status);
3456 // AES 192-bit is not allowed: http://crbug.com/381829
3457 TEST_F(SharedCryptoTest, ImportAesCbc192Jwk) {
3458 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
3460 base::DictionaryValue dict;
3461 dict.SetString("kty", "oct");
3462 dict.SetString("alg", "A192CBC");
3463 dict.SetString("k", "YWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFh");
3465 EXPECT_EQ(
3466 Status::ErrorAes192BitUnsupported(),
3467 ImportKeyJwkFromDict(dict,
3468 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
3469 false,
3470 blink::WebCryptoKeyUsageEncrypt,
3471 &key));
3474 // AES 192-bit is not allowed: http://crbug.com/381829
3475 TEST_F(SharedCryptoTest, GenerateAesCbc192) {
3476 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
3477 Status status = GenerateSecretKey(CreateAesCbcKeyGenAlgorithm(192),
3478 true,
3479 blink::WebCryptoKeyUsageEncrypt,
3480 &key);
3481 ASSERT_EQ(Status::ErrorAes192BitUnsupported(), status);
3484 // AES 192-bit is not allowed: http://crbug.com/381829
3485 TEST_F(SharedCryptoTest, UnwrapAesCbc192) {
3486 std::vector<uint8_t> wrapping_key_data(16, 0);
3487 std::vector<uint8_t> wrapped_key = HexStringToBytes(
3488 "1A07ACAB6C906E50883173C29441DB1DE91D34F45C435B5F99C822867FB3956F");
3490 blink::WebCryptoKey wrapping_key =
3491 ImportSecretKeyFromRaw(wrapping_key_data,
3492 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw),
3493 blink::WebCryptoKeyUsageUnwrapKey);
3495 blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
3496 ASSERT_EQ(Status::ErrorAes192BitUnsupported(),
3497 UnwrapKey(blink::WebCryptoKeyFormatRaw,
3498 CryptoData(wrapped_key),
3499 wrapping_key,
3500 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw),
3501 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
3502 true,
3503 blink::WebCryptoKeyUsageEncrypt,
3504 &unwrapped_key));
3507 class SharedCryptoRsaOaepTest : public ::testing::Test {
3508 public:
3509 scoped_ptr<base::DictionaryValue> CreatePublicKeyJwkDict() {
3510 scoped_ptr<base::DictionaryValue> jwk(new base::DictionaryValue());
3511 jwk->SetString("kty", "RSA");
3512 jwk->SetString("n",
3513 Base64EncodeUrlSafe(HexStringToBytes(kPublicKeyModulusHex)));
3514 jwk->SetString(
3515 "e", Base64EncodeUrlSafe(HexStringToBytes(kPublicKeyExponentHex)));
3516 return jwk.Pass();
3520 // Import a PKCS#8 private key that uses RSAPrivateKey with the
3521 // id-rsaEncryption OID.
3522 TEST_F(SharedCryptoRsaOaepTest, ImportPkcs8WithRsaEncryption) {
3523 if (!SupportsRsaOaep()) {
3524 LOG(WARNING) << "RSA-OAEP support not present; skipping.";
3525 return;
3528 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
3529 ASSERT_EQ(Status::Success(),
3530 ImportKey(blink::WebCryptoKeyFormatPkcs8,
3531 CryptoData(HexStringToBytes(kPrivateKeyPkcs8DerHex)),
3532 CreateRsaHashedImportAlgorithm(
3533 blink::WebCryptoAlgorithmIdRsaOaep,
3534 blink::WebCryptoAlgorithmIdSha1),
3535 true,
3536 blink::WebCryptoKeyUsageDecrypt,
3537 &private_key));
3540 TEST_F(SharedCryptoRsaOaepTest, ImportPublicJwkWithNoAlg) {
3541 if (!SupportsRsaOaep()) {
3542 LOG(WARNING) << "RSA-OAEP support not present; skipping.";
3543 return;
3546 scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
3548 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
3549 ASSERT_EQ(Status::Success(),
3550 ImportKeyJwkFromDict(*jwk.get(),
3551 CreateRsaHashedImportAlgorithm(
3552 blink::WebCryptoAlgorithmIdRsaOaep,
3553 blink::WebCryptoAlgorithmIdSha1),
3554 true,
3555 blink::WebCryptoKeyUsageEncrypt,
3556 &public_key));
3559 TEST_F(SharedCryptoRsaOaepTest, ImportPublicJwkWithMatchingAlg) {
3560 if (!SupportsRsaOaep()) {
3561 LOG(WARNING) << "RSA-OAEP support not present; skipping.";
3562 return;
3565 scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
3566 jwk->SetString("alg", "RSA-OAEP");
3568 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
3569 ASSERT_EQ(Status::Success(),
3570 ImportKeyJwkFromDict(*jwk.get(),
3571 CreateRsaHashedImportAlgorithm(
3572 blink::WebCryptoAlgorithmIdRsaOaep,
3573 blink::WebCryptoAlgorithmIdSha1),
3574 true,
3575 blink::WebCryptoKeyUsageEncrypt,
3576 &public_key));
3579 TEST_F(SharedCryptoRsaOaepTest, ImportPublicJwkWithMismatchedAlgFails) {
3580 if (!SupportsRsaOaep()) {
3581 LOG(WARNING) << "RSA-OAEP support not present; skipping.";
3582 return;
3585 scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
3586 jwk->SetString("alg", "RSA-OAEP-512");
3588 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
3589 ASSERT_EQ(Status::ErrorJwkAlgorithmInconsistent(),
3590 ImportKeyJwkFromDict(*jwk.get(),
3591 CreateRsaHashedImportAlgorithm(
3592 blink::WebCryptoAlgorithmIdRsaOaep,
3593 blink::WebCryptoAlgorithmIdSha1),
3594 true,
3595 blink::WebCryptoKeyUsageEncrypt,
3596 &public_key));
3599 TEST_F(SharedCryptoRsaOaepTest, ImportPublicJwkWithMismatchedTypeFails) {
3600 if (!SupportsRsaOaep()) {
3601 LOG(WARNING) << "RSA-OAEP support not present; skipping.";
3602 return;
3605 scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
3606 jwk->SetString("kty", "oct");
3607 jwk->SetString("alg", "RSA-OAEP");
3609 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
3610 ASSERT_EQ(Status::ErrorJwkUnexpectedKty("RSA"),
3611 ImportKeyJwkFromDict(*jwk.get(),
3612 CreateRsaHashedImportAlgorithm(
3613 blink::WebCryptoAlgorithmIdRsaOaep,
3614 blink::WebCryptoAlgorithmIdSha1),
3615 true,
3616 blink::WebCryptoKeyUsageEncrypt,
3617 &public_key));
3620 TEST_F(SharedCryptoRsaOaepTest, ExportPublicJwk) {
3621 if (!SupportsRsaOaep()) {
3622 LOG(WARNING) << "RSA-OAEP support not present; skipping.";
3623 return;
3626 struct TestData {
3627 blink::WebCryptoAlgorithmId hash_alg;
3628 const char* expected_jwk_alg;
3629 } kTestData[] = {{blink::WebCryptoAlgorithmIdSha1, "RSA-OAEP"},
3630 {blink::WebCryptoAlgorithmIdSha256, "RSA-OAEP-256"},
3631 {blink::WebCryptoAlgorithmIdSha384, "RSA-OAEP-384"},
3632 {blink::WebCryptoAlgorithmIdSha512, "RSA-OAEP-512"}};
3633 for (size_t i = 0; i < ARRAYSIZE_UNSAFE(kTestData); ++i) {
3634 const TestData& test_data = kTestData[i];
3635 SCOPED_TRACE(test_data.expected_jwk_alg);
3637 scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
3638 jwk->SetString("alg", test_data.expected_jwk_alg);
3640 // Import the key in a known-good format
3641 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
3642 ASSERT_EQ(Status::Success(),
3643 ImportKeyJwkFromDict(
3644 *jwk.get(),
3645 CreateRsaHashedImportAlgorithm(
3646 blink::WebCryptoAlgorithmIdRsaOaep, test_data.hash_alg),
3647 true,
3648 blink::WebCryptoKeyUsageEncrypt,
3649 &public_key));
3651 // Now export the key as JWK and verify its contents
3652 std::vector<uint8_t> jwk_data;
3653 ASSERT_EQ(Status::Success(),
3654 ExportKey(blink::WebCryptoKeyFormatJwk, public_key, &jwk_data));
3655 EXPECT_TRUE(VerifyPublicJwk(jwk_data,
3656 test_data.expected_jwk_alg,
3657 kPublicKeyModulusHex,
3658 kPublicKeyExponentHex,
3659 blink::WebCryptoKeyUsageEncrypt));
3663 TEST_F(SharedCryptoRsaOaepTest, EncryptDecryptKnownAnswerTest) {
3664 if (!SupportsRsaOaep()) {
3665 LOG(WARNING) << "RSA-OAEP support not present; skipping.";
3666 return;
3669 scoped_ptr<base::ListValue> tests;
3670 ASSERT_TRUE(ReadJsonTestFileToList("rsa_oaep.json", &tests));
3672 for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
3673 SCOPED_TRACE(test_index);
3675 base::DictionaryValue* test = NULL;
3676 ASSERT_TRUE(tests->GetDictionary(test_index, &test));
3678 blink::WebCryptoAlgorithm digest_algorithm =
3679 GetDigestAlgorithm(test, "hash");
3680 ASSERT_FALSE(digest_algorithm.isNull());
3681 std::vector<uint8_t> public_key_der =
3682 GetBytesFromHexString(test, "public_key");
3683 std::vector<uint8_t> private_key_der =
3684 GetBytesFromHexString(test, "private_key");
3685 std::vector<uint8_t> ciphertext = GetBytesFromHexString(test, "ciphertext");
3686 std::vector<uint8_t> plaintext = GetBytesFromHexString(test, "plaintext");
3687 std::vector<uint8_t> label = GetBytesFromHexString(test, "label");
3689 blink::WebCryptoAlgorithm import_algorithm = CreateRsaHashedImportAlgorithm(
3690 blink::WebCryptoAlgorithmIdRsaOaep, digest_algorithm.id());
3691 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
3692 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
3694 ASSERT_NO_FATAL_FAILURE(ImportRsaKeyPair(public_key_der,
3695 private_key_der,
3696 import_algorithm,
3697 false,
3698 blink::WebCryptoKeyUsageEncrypt,
3699 blink::WebCryptoKeyUsageDecrypt,
3700 &public_key,
3701 &private_key));
3703 blink::WebCryptoAlgorithm op_algorithm = CreateRsaOaepAlgorithm(label);
3704 std::vector<uint8_t> decrypted_data;
3705 ASSERT_EQ(Status::Success(),
3706 Decrypt(op_algorithm,
3707 private_key,
3708 CryptoData(ciphertext),
3709 &decrypted_data));
3710 EXPECT_BYTES_EQ(plaintext, decrypted_data);
3711 std::vector<uint8_t> encrypted_data;
3712 ASSERT_EQ(
3713 Status::Success(),
3714 Encrypt(
3715 op_algorithm, public_key, CryptoData(plaintext), &encrypted_data));
3716 std::vector<uint8_t> redecrypted_data;
3717 ASSERT_EQ(Status::Success(),
3718 Decrypt(op_algorithm,
3719 private_key,
3720 CryptoData(encrypted_data),
3721 &redecrypted_data));
3722 EXPECT_BYTES_EQ(plaintext, redecrypted_data);
3726 TEST_F(SharedCryptoRsaOaepTest, EncryptWithLargeMessageFails) {
3727 if (!SupportsRsaOaep()) {
3728 LOG(WARNING) << "RSA-OAEP support not present; skipping.";
3729 return;
3732 const blink::WebCryptoAlgorithmId kHash = blink::WebCryptoAlgorithmIdSha1;
3733 const size_t kHashSize = 20;
3735 scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
3737 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
3738 ASSERT_EQ(Status::Success(),
3739 ImportKeyJwkFromDict(*jwk.get(),
3740 CreateRsaHashedImportAlgorithm(
3741 blink::WebCryptoAlgorithmIdRsaOaep, kHash),
3742 true,
3743 blink::WebCryptoKeyUsageEncrypt,
3744 &public_key));
3746 // The maximum size of an encrypted message is:
3747 // modulus length
3748 // - 1 (leading octet)
3749 // - hash size (maskedSeed)
3750 // - hash size (lHash portion of maskedDB)
3751 // - 1 (at least one octet for the padding string)
3752 size_t kMaxMessageSize = (kModulusLengthBits / 8) - 2 - (2 * kHashSize);
3754 // The label has no influence on the maximum message size. For simplicity,
3755 // use the empty string.
3756 std::vector<uint8_t> label;
3757 blink::WebCryptoAlgorithm op_algorithm = CreateRsaOaepAlgorithm(label);
3759 // Test that a message just before the boundary succeeds.
3760 std::string large_message;
3761 large_message.resize(kMaxMessageSize - 1, 'A');
3763 std::vector<uint8_t> ciphertext;
3764 ASSERT_EQ(
3765 Status::Success(),
3766 Encrypt(
3767 op_algorithm, public_key, CryptoData(large_message), &ciphertext));
3769 // Test that a message at the boundary succeeds.
3770 large_message.resize(kMaxMessageSize, 'A');
3771 ciphertext.clear();
3773 ASSERT_EQ(
3774 Status::Success(),
3775 Encrypt(
3776 op_algorithm, public_key, CryptoData(large_message), &ciphertext));
3778 // Test that a message greater than the largest size fails.
3779 large_message.resize(kMaxMessageSize + 1, 'A');
3780 ciphertext.clear();
3782 ASSERT_EQ(
3783 Status::OperationError(),
3784 Encrypt(
3785 op_algorithm, public_key, CryptoData(large_message), &ciphertext));
3788 // Ensures that if the selected hash algorithm for the RSA-OAEP message is too
3789 // large, then it is rejected, independent of the actual message to be
3790 // encrypted.
3791 // For example, a 1024-bit RSA key is too small to accomodate a message that
3792 // uses OAEP with SHA-512, since it requires 1040 bits to encode
3793 // (2 * hash size + 2 padding bytes).
3794 TEST_F(SharedCryptoRsaOaepTest, EncryptWithLargeDigestFails) {
3795 if (!SupportsRsaOaep()) {
3796 LOG(WARNING) << "RSA-OAEP support not present; skipping.";
3797 return;
3800 const blink::WebCryptoAlgorithmId kHash = blink::WebCryptoAlgorithmIdSha512;
3802 scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
3804 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
3805 ASSERT_EQ(Status::Success(),
3806 ImportKeyJwkFromDict(*jwk.get(),
3807 CreateRsaHashedImportAlgorithm(
3808 blink::WebCryptoAlgorithmIdRsaOaep, kHash),
3809 true,
3810 blink::WebCryptoKeyUsageEncrypt,
3811 &public_key));
3813 // The label has no influence on the maximum message size. For simplicity,
3814 // use the empty string.
3815 std::vector<uint8_t> label;
3816 blink::WebCryptoAlgorithm op_algorithm = CreateRsaOaepAlgorithm(label);
3818 std::string small_message("A");
3819 std::vector<uint8_t> ciphertext;
3820 // This is an operation error, as the internal consistency checking of the
3821 // algorithm parameters is up to the implementation.
3822 ASSERT_EQ(
3823 Status::OperationError(),
3824 Encrypt(
3825 op_algorithm, public_key, CryptoData(small_message), &ciphertext));
3828 TEST_F(SharedCryptoRsaOaepTest, DecryptWithLargeMessageFails) {
3829 if (!SupportsRsaOaep()) {
3830 LOG(WARNING) << "RSA-OAEP support not present; skipping.";
3831 return;
3834 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
3835 ASSERT_EQ(Status::Success(),
3836 ImportKey(blink::WebCryptoKeyFormatPkcs8,
3837 CryptoData(HexStringToBytes(kPrivateKeyPkcs8DerHex)),
3838 CreateRsaHashedImportAlgorithm(
3839 blink::WebCryptoAlgorithmIdRsaOaep,
3840 blink::WebCryptoAlgorithmIdSha1),
3841 true,
3842 blink::WebCryptoKeyUsageDecrypt,
3843 &private_key));
3845 // The label has no influence on the maximum message size. For simplicity,
3846 // use the empty string.
3847 std::vector<uint8_t> label;
3848 blink::WebCryptoAlgorithm op_algorithm = CreateRsaOaepAlgorithm(label);
3850 std::string large_dummy_message(kModulusLengthBits / 8, 'A');
3851 std::vector<uint8_t> plaintext;
3853 ASSERT_EQ(Status::OperationError(),
3854 Decrypt(op_algorithm,
3855 private_key,
3856 CryptoData(large_dummy_message),
3857 &plaintext));
3860 TEST_F(SharedCryptoRsaOaepTest, WrapUnwrapRawKey) {
3861 if (!SupportsRsaOaep()) {
3862 LOG(WARNING) << "RSA-OAEP support not present; skipping.";
3863 return;
3866 blink::WebCryptoAlgorithm import_algorithm = CreateRsaHashedImportAlgorithm(
3867 blink::WebCryptoAlgorithmIdRsaOaep, blink::WebCryptoAlgorithmIdSha1);
3868 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
3869 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
3871 ASSERT_NO_FATAL_FAILURE(ImportRsaKeyPair(
3872 HexStringToBytes(kPublicKeySpkiDerHex),
3873 HexStringToBytes(kPrivateKeyPkcs8DerHex),
3874 import_algorithm,
3875 false,
3876 blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageWrapKey,
3877 blink::WebCryptoKeyUsageDecrypt | blink::WebCryptoKeyUsageUnwrapKey,
3878 &public_key,
3879 &private_key));
3881 std::vector<uint8_t> label;
3882 blink::WebCryptoAlgorithm wrapping_algorithm = CreateRsaOaepAlgorithm(label);
3884 const std::string key_hex = "000102030405060708090A0B0C0D0E0F";
3885 const blink::WebCryptoAlgorithm key_algorithm =
3886 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
3888 blink::WebCryptoKey key =
3889 ImportSecretKeyFromRaw(HexStringToBytes(key_hex),
3890 key_algorithm,
3891 blink::WebCryptoKeyUsageEncrypt);
3892 ASSERT_FALSE(key.isNull());
3894 std::vector<uint8_t> wrapped_key;
3895 ASSERT_EQ(Status::Success(),
3896 WrapKey(blink::WebCryptoKeyFormatRaw,
3897 key,
3898 public_key,
3899 wrapping_algorithm,
3900 &wrapped_key));
3902 // Verify that |wrapped_key| can be decrypted and yields the key data.
3903 // Because |private_key| supports both decrypt and unwrap, this is valid.
3904 std::vector<uint8_t> decrypted_key;
3905 ASSERT_EQ(Status::Success(),
3906 Decrypt(wrapping_algorithm,
3907 private_key,
3908 CryptoData(wrapped_key),
3909 &decrypted_key));
3910 EXPECT_BYTES_EQ_HEX(key_hex, decrypted_key);
3912 // Now attempt to unwrap the key, which should also decrypt the data.
3913 blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
3914 ASSERT_EQ(Status::Success(),
3915 UnwrapKey(blink::WebCryptoKeyFormatRaw,
3916 CryptoData(wrapped_key),
3917 private_key,
3918 wrapping_algorithm,
3919 key_algorithm,
3920 true,
3921 blink::WebCryptoKeyUsageEncrypt,
3922 &unwrapped_key));
3923 ASSERT_FALSE(unwrapped_key.isNull());
3925 std::vector<uint8_t> raw_key;
3926 ASSERT_EQ(Status::Success(),
3927 ExportKey(blink::WebCryptoKeyFormatRaw, unwrapped_key, &raw_key));
3928 EXPECT_BYTES_EQ_HEX(key_hex, raw_key);
3931 TEST_F(SharedCryptoRsaOaepTest, WrapUnwrapJwkSymKey) {
3932 if (!SupportsRsaOaep()) {
3933 LOG(WARNING) << "RSA-OAEP support not present; skipping.";
3934 return;
3937 // The public and private portions of a 2048-bit RSA key with the
3938 // id-rsaEncryption OID
3939 const char kPublicKey2048SpkiDerHex[] =
3940 "30820122300d06092a864886f70d01010105000382010f003082010a0282010100c5d8ce"
3941 "137a38168c8ab70229cfa5accc640567159750a312ce2e7d54b6e2fdd59b300c6a6c9764"
3942 "f8de6f00519cdb90111453d273a967462786480621f9e7cee5b73d63358448e7183a3a68"
3943 "e991186359f26aa88fbca5f53e673e502e4c5a2ba5068aeba60c9d0c44d872458d1b1e2f"
3944 "7f339f986076d516e93dc750f0b7680b6f5f02bc0d5590495be04c4ae59d34ba17bc5d08"
3945 "a93c75cfda2828f4a55b153af912038438276cb4a14f8116ca94db0ea9893652d02fc606"
3946 "36f19975e3d79a4d8ea8bfed6f8e0a24b63d243b08ea70a086ad56dd6341d733711c89ca"
3947 "749d4a80b3e6ecd2f8e53731eadeac2ea77788ee55d7b4b47c0f2523fbd61b557c16615d"
3948 "5d0203010001";
3949 const char kPrivateKey2048Pkcs8DerHex[] =
3950 "308204bd020100300d06092a864886f70d0101010500048204a7308204a3020100028201"
3951 "0100c5d8ce137a38168c8ab70229cfa5accc640567159750a312ce2e7d54b6e2fdd59b30"
3952 "0c6a6c9764f8de6f00519cdb90111453d273a967462786480621f9e7cee5b73d63358448"
3953 "e7183a3a68e991186359f26aa88fbca5f53e673e502e4c5a2ba5068aeba60c9d0c44d872"
3954 "458d1b1e2f7f339f986076d516e93dc750f0b7680b6f5f02bc0d5590495be04c4ae59d34"
3955 "ba17bc5d08a93c75cfda2828f4a55b153af912038438276cb4a14f8116ca94db0ea98936"
3956 "52d02fc60636f19975e3d79a4d8ea8bfed6f8e0a24b63d243b08ea70a086ad56dd6341d7"
3957 "33711c89ca749d4a80b3e6ecd2f8e53731eadeac2ea77788ee55d7b4b47c0f2523fbd61b"
3958 "557c16615d5d02030100010282010074b70feb41a0b0fcbc207670400556c9450042ede3"
3959 "d4383fb1ce8f3558a6d4641d26dd4c333fa4db842d2b9cf9d2354d3e16ad027a9f682d8c"
3960 "f4145a1ad97b9edcd8a41c402bd9d8db10f62f43df854cdccbbb2100834f083f53ed6d42"
3961 "b1b729a59072b004a4e945fc027db15e9c121d1251464d320d4774d5732df6b3dbf751f4"
3962 "9b19c9db201e19989c883bbaad5333db47f64f6f7a95b8d4936b10d945aa3f794cfaab62"
3963 "e7d47686129358914f3b8085f03698a650ab5b8c7e45813f2b0515ec05b6e5195b6a7c2a"
3964 "0d36969745f431ded4fd059f6aa361a4649541016d356297362b778e90f077d48815b339"
3965 "ec6f43aba345df93e67fcb6c2cb5b4544e9be902818100e9c90abe5f9f32468c5b6d630c"
3966 "54a4d7d75e29a72cf792f21e242aac78fd7995c42dfd4ae871d2619ff7096cb05baa78e3"
3967 "23ecab338401a8059adf7a0d8be3b21edc9a9c82c5605634a2ec81ec053271721351868a"
3968 "4c2e50c689d7cef94e31ff23658af5843366e2b289c5bf81d72756a7b93487dd8770d69c"
3969 "1f4e089d6d89f302818100d8a58a727c4e209132afd9933b98c89aca862a01cc0be74133"
3970 "bee517909e5c379e526895ac4af11780c1fe91194c777c9670b6423f0f5a32fd7691a622"
3971 "113eef4bed2ef863363a335fd55b0e75088c582437237d7f3ed3f0a643950237bc6e6277"
3972 "ccd0d0a1b4170aa1047aa7ffa7c8c54be10e8c7327ae2e0885663963817f6f02818100e5"
3973 "aed9ba4d71b7502e6748a1ce247ecb7bd10c352d6d9256031cdf3c11a65e44b0b7ca2945"
3974 "134671195af84c6b3bb3d10ebf65ae916f38bd5dbc59a0ad1c69b8beaf57cb3a8335f19b"
3975 "c7117b576987b48331cd9fd3d1a293436b7bb5e1a35c6560de4b5688ea834367cb0997eb"
3976 "b578f59ed4cb724c47dba94d3b484c1876dcd70281807f15bc7d2406007cac2b138a96af"
3977 "2d1e00276b84da593132c253fcb73212732dfd25824c2a615bc3d9b7f2c8d2fa542d3562"
3978 "b0c7738e61eeff580a6056239fb367ea9e5efe73d4f846033602e90c36a78db6fa8ea792"
3979 "0769675ec58e237bd994d189c8045a96f5dd3a4f12547257ce224e3c9af830a4da3c0eab"
3980 "9227a0035ae9028180067caea877e0b23090fc689322b71fbcce63d6596e66ab5fcdbaa0"
3981 "0d49e93aba8effb4518c2da637f209028401a68f344865b4956b032c69acde51d29177ca"
3982 "3db99fdbf5e74848ed4fa7bdfc2ebb60e2aaa5354770a763e1399ab7a2099762d525fea0"
3983 "37f3e1972c45a477e66db95c9609bb27f862700ef93379930786cf751b";
3984 blink::WebCryptoAlgorithm import_algorithm = CreateRsaHashedImportAlgorithm(
3985 blink::WebCryptoAlgorithmIdRsaOaep, blink::WebCryptoAlgorithmIdSha1);
3986 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
3987 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
3989 ASSERT_NO_FATAL_FAILURE(ImportRsaKeyPair(
3990 HexStringToBytes(kPublicKey2048SpkiDerHex),
3991 HexStringToBytes(kPrivateKey2048Pkcs8DerHex),
3992 import_algorithm,
3993 false,
3994 blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageWrapKey,
3995 blink::WebCryptoKeyUsageDecrypt | blink::WebCryptoKeyUsageUnwrapKey,
3996 &public_key,
3997 &private_key));
3999 std::vector<uint8_t> label;
4000 blink::WebCryptoAlgorithm wrapping_algorithm = CreateRsaOaepAlgorithm(label);
4002 const std::string key_hex = "000102030405060708090a0b0c0d0e0f";
4003 const blink::WebCryptoAlgorithm key_algorithm =
4004 webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
4006 blink::WebCryptoKey key =
4007 ImportSecretKeyFromRaw(HexStringToBytes(key_hex),
4008 key_algorithm,
4009 blink::WebCryptoKeyUsageEncrypt);
4010 ASSERT_FALSE(key.isNull());
4012 std::vector<uint8_t> wrapped_key;
4013 ASSERT_EQ(Status::Success(),
4014 WrapKey(blink::WebCryptoKeyFormatJwk,
4015 key,
4016 public_key,
4017 wrapping_algorithm,
4018 &wrapped_key));
4020 // Verify that |wrapped_key| can be decrypted and yields a valid JWK object.
4021 // Because |private_key| supports both decrypt and unwrap, this is valid.
4022 std::vector<uint8_t> decrypted_jwk;
4023 ASSERT_EQ(Status::Success(),
4024 Decrypt(wrapping_algorithm,
4025 private_key,
4026 CryptoData(wrapped_key),
4027 &decrypted_jwk));
4028 EXPECT_TRUE(VerifySecretJwk(
4029 decrypted_jwk, "A128CBC", key_hex, blink::WebCryptoKeyUsageEncrypt));
4031 // Now attempt to unwrap the key, which should also decrypt the data.
4032 blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
4033 ASSERT_EQ(Status::Success(),
4034 UnwrapKey(blink::WebCryptoKeyFormatJwk,
4035 CryptoData(wrapped_key),
4036 private_key,
4037 wrapping_algorithm,
4038 key_algorithm,
4039 true,
4040 blink::WebCryptoKeyUsageEncrypt,
4041 &unwrapped_key));
4042 ASSERT_FALSE(unwrapped_key.isNull());
4044 std::vector<uint8_t> raw_key;
4045 ASSERT_EQ(Status::Success(),
4046 ExportKey(blink::WebCryptoKeyFormatRaw, unwrapped_key, &raw_key));
4047 EXPECT_BYTES_EQ_HEX(key_hex, raw_key);
4050 // Try importing an RSA-SSA public key with unsupported key usages using SPKI
4051 // format. RSA-SSA public keys only support the 'verify' usage.
4052 TEST_F(SharedCryptoTest, ImportRsaSsaPublicKeyBadUsage_SPKI) {
4053 const blink::WebCryptoAlgorithm algorithm =
4054 CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
4055 blink::WebCryptoAlgorithmIdSha256);
4057 blink::WebCryptoKeyUsageMask bad_usages[] = {
4058 blink::WebCryptoKeyUsageSign,
4059 blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
4060 blink::WebCryptoKeyUsageEncrypt,
4061 blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt,
4064 for (size_t i = 0; i < arraysize(bad_usages); ++i) {
4065 SCOPED_TRACE(i);
4067 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
4068 ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
4069 ImportKey(blink::WebCryptoKeyFormatSpki,
4070 CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
4071 algorithm,
4072 false,
4073 bad_usages[i],
4074 &public_key));
4078 // Try importing an RSA-SSA public key with unsupported key usages using JWK
4079 // format. RSA-SSA public keys only support the 'verify' usage.
4080 TEST_F(SharedCryptoTest, ImportRsaSsaPublicKeyBadUsage_JWK) {
4081 const blink::WebCryptoAlgorithm algorithm =
4082 CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
4083 blink::WebCryptoAlgorithmIdSha256);
4085 blink::WebCryptoKeyUsageMask bad_usages[] = {
4086 blink::WebCryptoKeyUsageSign,
4087 blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
4088 blink::WebCryptoKeyUsageEncrypt,
4089 blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt,
4092 base::DictionaryValue dict;
4093 RestoreJwkRsaDictionary(&dict);
4094 dict.Remove("use", NULL);
4095 dict.SetString("alg", "RS256");
4097 for (size_t i = 0; i < arraysize(bad_usages); ++i) {
4098 SCOPED_TRACE(i);
4100 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
4101 ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
4102 ImportKeyJwkFromDict(
4103 dict, algorithm, false, bad_usages[i], &public_key));
4107 // Try importing an AES-CBC key with unsupported key usages using raw
4108 // format. AES-CBC keys support the following usages:
4109 // 'encrypt', 'decrypt', 'wrapKey', 'unwrapKey'
4110 TEST_F(SharedCryptoTest, ImportAesCbcKeyBadUsage_Raw) {
4111 const blink::WebCryptoAlgorithm algorithm =
4112 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
4114 blink::WebCryptoKeyUsageMask bad_usages[] = {
4115 blink::WebCryptoKeyUsageSign,
4116 blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageDecrypt,
4117 blink::WebCryptoKeyUsageDeriveBits,
4118 blink::WebCryptoKeyUsageUnwrapKey | blink::WebCryptoKeyUsageVerify,
4121 std::vector<uint8_t> key_bytes(16);
4123 for (size_t i = 0; i < arraysize(bad_usages); ++i) {
4124 SCOPED_TRACE(i);
4126 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
4127 ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
4128 ImportKey(blink::WebCryptoKeyFormatRaw,
4129 CryptoData(key_bytes),
4130 algorithm,
4131 true,
4132 bad_usages[i],
4133 &key));
4137 // Try importing an AES-KW key with unsupported key usages using raw
4138 // format. AES-KW keys support the following usages:
4139 // 'wrapKey', 'unwrapKey'
4140 TEST_F(SharedCryptoTest, ImportAesKwKeyBadUsage_Raw) {
4141 const blink::WebCryptoAlgorithm algorithm =
4142 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
4144 blink::WebCryptoKeyUsageMask bad_usages[] = {
4145 blink::WebCryptoKeyUsageEncrypt,
4146 blink::WebCryptoKeyUsageDecrypt,
4147 blink::WebCryptoKeyUsageSign,
4148 blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageUnwrapKey,
4149 blink::WebCryptoKeyUsageDeriveBits,
4150 blink::WebCryptoKeyUsageUnwrapKey | blink::WebCryptoKeyUsageVerify,
4153 std::vector<uint8_t> key_bytes(16);
4155 for (size_t i = 0; i < arraysize(bad_usages); ++i) {
4156 SCOPED_TRACE(i);
4158 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
4159 ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
4160 ImportKey(blink::WebCryptoKeyFormatRaw,
4161 CryptoData(key_bytes),
4162 algorithm,
4163 true,
4164 bad_usages[i],
4165 &key));
4169 // Try unwrapping an HMAC key with unsupported usages using JWK format and
4170 // AES-KW. HMAC keys support the following usages:
4171 // 'sign', 'verify'
4172 TEST_F(SharedCryptoTest, UnwrapHmacKeyBadUsage_JWK) {
4173 const blink::WebCryptoAlgorithm unwrap_algorithm =
4174 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
4176 blink::WebCryptoKeyUsageMask bad_usages[] = {
4177 blink::WebCryptoKeyUsageEncrypt,
4178 blink::WebCryptoKeyUsageDecrypt,
4179 blink::WebCryptoKeyUsageWrapKey,
4180 blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageWrapKey,
4181 blink::WebCryptoKeyUsageVerify | blink::WebCryptoKeyUsageDeriveKey,
4184 // Import the wrapping key.
4185 blink::WebCryptoKey wrapping_key = blink::WebCryptoKey::createNull();
4186 ASSERT_EQ(Status::Success(),
4187 ImportKey(blink::WebCryptoKeyFormatRaw,
4188 CryptoData(std::vector<uint8_t>(16)),
4189 unwrap_algorithm,
4190 true,
4191 blink::WebCryptoKeyUsageUnwrapKey,
4192 &wrapping_key));
4194 // The JWK plain text is:
4195 // { "kty": "oct","alg": "HS256","k": "GADWrMRHwQfoNaXU5fZvTg=="}
4196 const char* kWrappedJwk =
4197 "0AA245F17064FFB2A7A094436A39BEBFC962C627303D1327EA750CE9F917688C2782A943"
4198 "7AE7586547AC490E8AE7D5B02D63868D5C3BB57D36C4C8C5BF3962ACEC6F42E767E5706"
4199 "4";
4201 for (size_t i = 0; i < arraysize(bad_usages); ++i) {
4202 SCOPED_TRACE(i);
4204 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
4206 ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
4207 UnwrapKey(blink::WebCryptoKeyFormatJwk,
4208 CryptoData(HexStringToBytes(kWrappedJwk)),
4209 wrapping_key,
4210 unwrap_algorithm,
4211 webcrypto::CreateHmacImportAlgorithm(
4212 blink::WebCryptoAlgorithmIdSha256),
4213 true,
4214 bad_usages[i],
4215 &key));
4219 // Try unwrapping an RSA-SSA public key with unsupported usages using JWK format
4220 // and AES-KW. RSA-SSA public keys support the following usages:
4221 // 'verify'
4222 TEST_F(SharedCryptoTest, UnwrapRsaSsaPublicKeyBadUsage_JWK) {
4223 const blink::WebCryptoAlgorithm unwrap_algorithm =
4224 CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
4226 blink::WebCryptoKeyUsageMask bad_usages[] = {
4227 blink::WebCryptoKeyUsageEncrypt,
4228 blink::WebCryptoKeyUsageSign,
4229 blink::WebCryptoKeyUsageDecrypt,
4230 blink::WebCryptoKeyUsageWrapKey,
4231 blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageWrapKey,
4234 // Import the wrapping key.
4235 blink::WebCryptoKey wrapping_key = blink::WebCryptoKey::createNull();
4236 ASSERT_EQ(Status::Success(),
4237 ImportKey(blink::WebCryptoKeyFormatRaw,
4238 CryptoData(std::vector<uint8_t>(16)),
4239 unwrap_algorithm,
4240 true,
4241 blink::WebCryptoKeyUsageUnwrapKey,
4242 &wrapping_key));
4244 // The JWK plaintext is:
4245 // { "kty": "RSA","alg": "RS256","n": "...","e": "AQAB"}
4247 const char* kWrappedJwk =
4248 "CE8DAEF99E977EE58958B8C4494755C846E883B2ECA575C5366622839AF71AB30875F152"
4249 "E8E33E15A7817A3A2874EB53EFE05C774D98BC936BA9BA29BEB8BB3F3C3CE2323CB3359D"
4250 "E3F426605CF95CCF0E01E870ABD7E35F62E030B5FB6E520A5885514D1D850FB64B57806D"
4251 "1ADA57C6E27DF345D8292D80F6B074F1BE51C4CF3D76ECC8886218551308681B44FAC60B"
4252 "8CF6EA439BC63239103D0AE81ADB96F908680586C6169284E32EB7DD09D31103EBDAC0C2"
4253 "40C72DCF0AEA454113CC47457B13305B25507CBEAB9BDC8D8E0F867F9167F9DCEF0D9F9B"
4254 "30F2EE83CEDFD51136852C8A5939B768";
4256 for (size_t i = 0; i < arraysize(bad_usages); ++i) {
4257 SCOPED_TRACE(i);
4259 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
4261 ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
4262 UnwrapKey(blink::WebCryptoKeyFormatJwk,
4263 CryptoData(HexStringToBytes(kWrappedJwk)),
4264 wrapping_key,
4265 unwrap_algorithm,
4266 webcrypto::CreateRsaHashedImportAlgorithm(
4267 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
4268 blink::WebCryptoAlgorithmIdSha256),
4269 true,
4270 bad_usages[i],
4271 &key));
4275 // Generate an AES-CBC key with invalid usages. AES-CBC supports:
4276 // 'encrypt', 'decrypt', 'wrapKey', 'unwrapKey'
4277 TEST_F(SharedCryptoTest, GenerateAesKeyBadUsages) {
4278 blink::WebCryptoKeyUsageMask bad_usages[] = {
4279 blink::WebCryptoKeyUsageSign, blink::WebCryptoKeyUsageVerify,
4280 blink::WebCryptoKeyUsageDecrypt | blink::WebCryptoKeyUsageVerify,
4283 for (size_t i = 0; i < arraysize(bad_usages); ++i) {
4284 SCOPED_TRACE(i);
4286 blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
4288 ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
4289 GenerateSecretKey(
4290 CreateAesCbcKeyGenAlgorithm(128), true, bad_usages[i], &key));
4294 // Generate an RSA-SSA key pair with invalid usages. RSA-SSA supports:
4295 // 'sign', 'verify'
4296 TEST_F(SharedCryptoTest, GenerateRsaSsaBadUsages) {
4297 blink::WebCryptoKeyUsageMask bad_usages[] = {
4298 blink::WebCryptoKeyUsageDecrypt,
4299 blink::WebCryptoKeyUsageVerify | blink::WebCryptoKeyUsageDecrypt,
4300 blink::WebCryptoKeyUsageWrapKey,
4303 const unsigned int modulus_length = 256;
4304 const std::vector<uint8_t> public_exponent = HexStringToBytes("010001");
4306 for (size_t i = 0; i < arraysize(bad_usages); ++i) {
4307 SCOPED_TRACE(i);
4309 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
4310 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
4312 ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
4313 GenerateKeyPair(CreateRsaHashedKeyGenAlgorithm(
4314 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
4315 blink::WebCryptoAlgorithmIdSha256,
4316 modulus_length,
4317 public_exponent),
4318 true,
4319 bad_usages[i],
4320 &public_key,
4321 &private_key));
4325 // Generate an RSA-SSA key pair. The public and private keys should select the
4326 // key usages which are applicable, and not have the exact same usages as was
4327 // specified to GenerateKey
4328 TEST_F(SharedCryptoTest, GenerateRsaSsaKeyPairIntersectUsages) {
4329 const unsigned int modulus_length = 256;
4330 const std::vector<uint8_t> public_exponent = HexStringToBytes("010001");
4332 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
4333 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
4335 ASSERT_EQ(Status::Success(),
4336 GenerateKeyPair(
4337 CreateRsaHashedKeyGenAlgorithm(
4338 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
4339 blink::WebCryptoAlgorithmIdSha256,
4340 modulus_length,
4341 public_exponent),
4342 true,
4343 blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
4344 &public_key,
4345 &private_key));
4347 EXPECT_EQ(blink::WebCryptoKeyUsageVerify, public_key.usages());
4348 EXPECT_EQ(blink::WebCryptoKeyUsageSign, private_key.usages());
4350 // Try again but this time without the Verify usages.
4351 ASSERT_EQ(Status::Success(),
4352 GenerateKeyPair(CreateRsaHashedKeyGenAlgorithm(
4353 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
4354 blink::WebCryptoAlgorithmIdSha256,
4355 modulus_length,
4356 public_exponent),
4357 true,
4358 blink::WebCryptoKeyUsageSign,
4359 &public_key,
4360 &private_key));
4362 EXPECT_EQ(0, public_key.usages());
4363 EXPECT_EQ(blink::WebCryptoKeyUsageSign, private_key.usages());
4366 // Generate an AES-CBC key and an RSA key pair. Use the AES-CBC key to wrap the
4367 // key pair (using SPKI format for public key, PKCS8 format for private key).
4368 // Then unwrap the wrapped key pair and verify that the key data is the same.
4369 TEST_F(SharedCryptoTest, WrapUnwrapRoundtripSpkiPkcs8UsingAesCbc) {
4370 if (!SupportsRsaKeyImport())
4371 return;
4373 // Generate the wrapping key.
4374 blink::WebCryptoKey wrapping_key = blink::WebCryptoKey::createNull();
4375 ASSERT_EQ(Status::Success(),
4376 GenerateSecretKey(CreateAesCbcKeyGenAlgorithm(128),
4377 true,
4378 blink::WebCryptoKeyUsageWrapKey |
4379 blink::WebCryptoKeyUsageUnwrapKey,
4380 &wrapping_key));
4382 // Generate an RSA key pair to be wrapped.
4383 const unsigned int modulus_length = 256;
4384 const std::vector<uint8_t> public_exponent = HexStringToBytes("010001");
4386 blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
4387 blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
4388 ASSERT_EQ(Status::Success(),
4389 GenerateKeyPair(CreateRsaHashedKeyGenAlgorithm(
4390 blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
4391 blink::WebCryptoAlgorithmIdSha256,
4392 modulus_length,
4393 public_exponent),
4394 true,
4396 &public_key,
4397 &private_key));
4399 // Export key pair as SPKI + PKCS8
4400 std::vector<uint8_t> public_key_spki;
4401 ASSERT_EQ(
4402 Status::Success(),
4403 ExportKey(blink::WebCryptoKeyFormatSpki, public_key, &public_key_spki));
4405 std::vector<uint8_t> private_key_pkcs8;
4406 ASSERT_EQ(
4407 Status::Success(),
4408 ExportKey(
4409 blink::WebCryptoKeyFormatPkcs8, private_key, &private_key_pkcs8));
4411 // Wrap the key pair.
4412 blink::WebCryptoAlgorithm wrap_algorithm =
4413 CreateAesCbcAlgorithm(std::vector<uint8_t>(16, 0));
4415 std::vector<uint8_t> wrapped_public_key;
4416 ASSERT_EQ(Status::Success(),
4417 WrapKey(blink::WebCryptoKeyFormatSpki,
4418 public_key,
4419 wrapping_key,
4420 wrap_algorithm,
4421 &wrapped_public_key));
4423 std::vector<uint8_t> wrapped_private_key;
4424 ASSERT_EQ(Status::Success(),
4425 WrapKey(blink::WebCryptoKeyFormatPkcs8,
4426 private_key,
4427 wrapping_key,
4428 wrap_algorithm,
4429 &wrapped_private_key));
4431 // Unwrap the key pair.
4432 blink::WebCryptoAlgorithm rsa_import_algorithm =
4433 CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
4434 blink::WebCryptoAlgorithmIdSha256);
4436 blink::WebCryptoKey unwrapped_public_key = blink::WebCryptoKey::createNull();
4438 ASSERT_EQ(Status::Success(),
4439 UnwrapKey(blink::WebCryptoKeyFormatSpki,
4440 CryptoData(wrapped_public_key),
4441 wrapping_key,
4442 wrap_algorithm,
4443 rsa_import_algorithm,
4444 true,
4446 &unwrapped_public_key));
4448 blink::WebCryptoKey unwrapped_private_key = blink::WebCryptoKey::createNull();
4450 ASSERT_EQ(Status::Success(),
4451 UnwrapKey(blink::WebCryptoKeyFormatPkcs8,
4452 CryptoData(wrapped_private_key),
4453 wrapping_key,
4454 wrap_algorithm,
4455 rsa_import_algorithm,
4456 true,
4458 &unwrapped_private_key));
4460 // Export unwrapped key pair as SPKI + PKCS8
4461 std::vector<uint8_t> unwrapped_public_key_spki;
4462 ASSERT_EQ(Status::Success(),
4463 ExportKey(blink::WebCryptoKeyFormatSpki,
4464 unwrapped_public_key,
4465 &unwrapped_public_key_spki));
4467 std::vector<uint8_t> unwrapped_private_key_pkcs8;
4468 ASSERT_EQ(Status::Success(),
4469 ExportKey(blink::WebCryptoKeyFormatPkcs8,
4470 unwrapped_private_key,
4471 &unwrapped_private_key_pkcs8));
4473 EXPECT_EQ(public_key_spki, unwrapped_public_key_spki);
4474 EXPECT_EQ(private_key_pkcs8, unwrapped_private_key_pkcs8);
4476 EXPECT_NE(public_key_spki, wrapped_public_key);
4477 EXPECT_NE(private_key_pkcs8, wrapped_private_key);
4480 } // namespace webcrypto
4482 } // namespace content