Mojo C++ bindings: better log message for serialization warnings.
[chromium-blink-merge.git] / net / dns / host_resolver_impl.cc
blob136941d75c697ebb96ae250ea8a37630e45ae56b
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/dns/host_resolver_impl.h"
7 #if defined(OS_WIN)
8 #include <Winsock2.h>
9 #elif defined(OS_POSIX)
10 #include <netdb.h>
11 #endif
13 #include <cmath>
14 #include <utility>
15 #include <vector>
17 #include "base/basictypes.h"
18 #include "base/bind.h"
19 #include "base/bind_helpers.h"
20 #include "base/callback.h"
21 #include "base/compiler_specific.h"
22 #include "base/debug/debugger.h"
23 #include "base/debug/stack_trace.h"
24 #include "base/message_loop/message_loop_proxy.h"
25 #include "base/metrics/field_trial.h"
26 #include "base/metrics/histogram.h"
27 #include "base/stl_util.h"
28 #include "base/strings/string_util.h"
29 #include "base/strings/utf_string_conversions.h"
30 #include "base/threading/worker_pool.h"
31 #include "base/time/time.h"
32 #include "base/values.h"
33 #include "net/base/address_family.h"
34 #include "net/base/address_list.h"
35 #include "net/base/dns_reloader.h"
36 #include "net/base/dns_util.h"
37 #include "net/base/host_port_pair.h"
38 #include "net/base/ip_endpoint.h"
39 #include "net/base/net_errors.h"
40 #include "net/base/net_log.h"
41 #include "net/base/net_util.h"
42 #include "net/dns/address_sorter.h"
43 #include "net/dns/dns_client.h"
44 #include "net/dns/dns_config_service.h"
45 #include "net/dns/dns_protocol.h"
46 #include "net/dns/dns_response.h"
47 #include "net/dns/dns_transaction.h"
48 #include "net/dns/host_resolver_proc.h"
49 #include "net/socket/client_socket_factory.h"
50 #include "net/udp/datagram_client_socket.h"
52 #if defined(OS_WIN)
53 #include "net/base/winsock_init.h"
54 #endif
56 namespace net {
58 namespace {
60 // Limit the size of hostnames that will be resolved to combat issues in
61 // some platform's resolvers.
62 const size_t kMaxHostLength = 4096;
64 // Default TTL for successful resolutions with ProcTask.
65 const unsigned kCacheEntryTTLSeconds = 60;
67 // Default TTL for unsuccessful resolutions with ProcTask.
68 const unsigned kNegativeCacheEntryTTLSeconds = 0;
70 // Minimum TTL for successful resolutions with DnsTask.
71 const unsigned kMinimumTTLSeconds = kCacheEntryTTLSeconds;
73 // We use a separate histogram name for each platform to facilitate the
74 // display of error codes by their symbolic name (since each platform has
75 // different mappings).
76 const char kOSErrorsForGetAddrinfoHistogramName[] =
77 #if defined(OS_WIN)
78 "Net.OSErrorsForGetAddrinfo_Win";
79 #elif defined(OS_MACOSX)
80 "Net.OSErrorsForGetAddrinfo_Mac";
81 #elif defined(OS_LINUX)
82 "Net.OSErrorsForGetAddrinfo_Linux";
83 #else
84 "Net.OSErrorsForGetAddrinfo";
85 #endif
87 // Gets a list of the likely error codes that getaddrinfo() can return
88 // (non-exhaustive). These are the error codes that we will track via
89 // a histogram.
90 std::vector<int> GetAllGetAddrinfoOSErrors() {
91 int os_errors[] = {
92 #if defined(OS_POSIX)
93 #if !defined(OS_FREEBSD)
94 #if !defined(OS_ANDROID)
95 // EAI_ADDRFAMILY has been declared obsolete in Android's and
96 // FreeBSD's netdb.h.
97 EAI_ADDRFAMILY,
98 #endif
99 // EAI_NODATA has been declared obsolete in FreeBSD's netdb.h.
100 EAI_NODATA,
101 #endif
102 EAI_AGAIN,
103 EAI_BADFLAGS,
104 EAI_FAIL,
105 EAI_FAMILY,
106 EAI_MEMORY,
107 EAI_NONAME,
108 EAI_SERVICE,
109 EAI_SOCKTYPE,
110 EAI_SYSTEM,
111 #elif defined(OS_WIN)
112 // See: http://msdn.microsoft.com/en-us/library/ms738520(VS.85).aspx
113 WSA_NOT_ENOUGH_MEMORY,
114 WSAEAFNOSUPPORT,
115 WSAEINVAL,
116 WSAESOCKTNOSUPPORT,
117 WSAHOST_NOT_FOUND,
118 WSANO_DATA,
119 WSANO_RECOVERY,
120 WSANOTINITIALISED,
121 WSATRY_AGAIN,
122 WSATYPE_NOT_FOUND,
123 // The following are not in doc, but might be to appearing in results :-(.
124 WSA_INVALID_HANDLE,
125 #endif
128 // Ensure all errors are positive, as histogram only tracks positive values.
129 for (size_t i = 0; i < arraysize(os_errors); ++i) {
130 os_errors[i] = std::abs(os_errors[i]);
133 return base::CustomHistogram::ArrayToCustomRanges(os_errors,
134 arraysize(os_errors));
137 enum DnsResolveStatus {
138 RESOLVE_STATUS_DNS_SUCCESS = 0,
139 RESOLVE_STATUS_PROC_SUCCESS,
140 RESOLVE_STATUS_FAIL,
141 RESOLVE_STATUS_SUSPECT_NETBIOS,
142 RESOLVE_STATUS_MAX
145 void UmaAsyncDnsResolveStatus(DnsResolveStatus result) {
146 UMA_HISTOGRAM_ENUMERATION("AsyncDNS.ResolveStatus",
147 result,
148 RESOLVE_STATUS_MAX);
151 bool ResemblesNetBIOSName(const std::string& hostname) {
152 return (hostname.size() < 16) && (hostname.find('.') == std::string::npos);
155 // True if |hostname| ends with either ".local" or ".local.".
156 bool ResemblesMulticastDNSName(const std::string& hostname) {
157 DCHECK(!hostname.empty());
158 const char kSuffix[] = ".local.";
159 const size_t kSuffixLen = sizeof(kSuffix) - 1;
160 const size_t kSuffixLenTrimmed = kSuffixLen - 1;
161 if (hostname[hostname.size() - 1] == '.') {
162 return hostname.size() > kSuffixLen &&
163 !hostname.compare(hostname.size() - kSuffixLen, kSuffixLen, kSuffix);
165 return hostname.size() > kSuffixLenTrimmed &&
166 !hostname.compare(hostname.size() - kSuffixLenTrimmed, kSuffixLenTrimmed,
167 kSuffix, kSuffixLenTrimmed);
170 // Attempts to connect a UDP socket to |dest|:53.
171 bool IsGloballyReachable(const IPAddressNumber& dest,
172 const BoundNetLog& net_log) {
173 scoped_ptr<DatagramClientSocket> socket(
174 ClientSocketFactory::GetDefaultFactory()->CreateDatagramClientSocket(
175 DatagramSocket::DEFAULT_BIND,
176 RandIntCallback(),
177 net_log.net_log(),
178 net_log.source()));
179 int rv = socket->Connect(IPEndPoint(dest, 53));
180 if (rv != OK)
181 return false;
182 IPEndPoint endpoint;
183 rv = socket->GetLocalAddress(&endpoint);
184 if (rv != OK)
185 return false;
186 DCHECK_EQ(ADDRESS_FAMILY_IPV6, endpoint.GetFamily());
187 const IPAddressNumber& address = endpoint.address();
188 bool is_link_local = (address[0] == 0xFE) && ((address[1] & 0xC0) == 0x80);
189 if (is_link_local)
190 return false;
191 const uint8 kTeredoPrefix[] = { 0x20, 0x01, 0, 0 };
192 bool is_teredo = std::equal(kTeredoPrefix,
193 kTeredoPrefix + arraysize(kTeredoPrefix),
194 address.begin());
195 if (is_teredo)
196 return false;
197 return true;
200 // Provide a common macro to simplify code and readability. We must use a
201 // macro as the underlying HISTOGRAM macro creates static variables.
202 #define DNS_HISTOGRAM(name, time) UMA_HISTOGRAM_CUSTOM_TIMES(name, time, \
203 base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromHours(1), 100)
205 // A macro to simplify code and readability.
206 #define DNS_HISTOGRAM_BY_PRIORITY(basename, priority, time) \
207 do { \
208 switch (priority) { \
209 case HIGHEST: DNS_HISTOGRAM(basename "_HIGHEST", time); break; \
210 case MEDIUM: DNS_HISTOGRAM(basename "_MEDIUM", time); break; \
211 case LOW: DNS_HISTOGRAM(basename "_LOW", time); break; \
212 case LOWEST: DNS_HISTOGRAM(basename "_LOWEST", time); break; \
213 case IDLE: DNS_HISTOGRAM(basename "_IDLE", time); break; \
214 default: NOTREACHED(); break; \
216 DNS_HISTOGRAM(basename, time); \
217 } while (0)
219 // Record time from Request creation until a valid DNS response.
220 void RecordTotalTime(bool had_dns_config,
221 bool speculative,
222 base::TimeDelta duration) {
223 if (had_dns_config) {
224 if (speculative) {
225 DNS_HISTOGRAM("AsyncDNS.TotalTime_speculative", duration);
226 } else {
227 DNS_HISTOGRAM("AsyncDNS.TotalTime", duration);
229 } else {
230 if (speculative) {
231 DNS_HISTOGRAM("DNS.TotalTime_speculative", duration);
232 } else {
233 DNS_HISTOGRAM("DNS.TotalTime", duration);
238 void RecordTTL(base::TimeDelta ttl) {
239 UMA_HISTOGRAM_CUSTOM_TIMES("AsyncDNS.TTL", ttl,
240 base::TimeDelta::FromSeconds(1),
241 base::TimeDelta::FromDays(1), 100);
244 bool ConfigureAsyncDnsNoFallbackFieldTrial() {
245 const bool kDefault = false;
247 // Configure the AsyncDns field trial as follows:
248 // groups AsyncDnsNoFallbackA and AsyncDnsNoFallbackB: return true,
249 // groups AsyncDnsA and AsyncDnsB: return false,
250 // groups SystemDnsA and SystemDnsB: return false,
251 // otherwise (trial absent): return default.
252 std::string group_name = base::FieldTrialList::FindFullName("AsyncDns");
253 if (!group_name.empty())
254 return StartsWithASCII(group_name, "AsyncDnsNoFallback", false);
255 return kDefault;
258 //-----------------------------------------------------------------------------
260 AddressList EnsurePortOnAddressList(const AddressList& list, uint16 port) {
261 if (list.empty() || list.front().port() == port)
262 return list;
263 return AddressList::CopyWithPort(list, port);
266 // Returns true if |addresses| contains only IPv4 loopback addresses.
267 bool IsAllIPv4Loopback(const AddressList& addresses) {
268 for (unsigned i = 0; i < addresses.size(); ++i) {
269 const IPAddressNumber& address = addresses[i].address();
270 switch (addresses[i].GetFamily()) {
271 case ADDRESS_FAMILY_IPV4:
272 if (address[0] != 127)
273 return false;
274 break;
275 case ADDRESS_FAMILY_IPV6:
276 return false;
277 default:
278 NOTREACHED();
279 return false;
282 return true;
285 // Creates NetLog parameters when the resolve failed.
286 base::Value* NetLogProcTaskFailedCallback(uint32 attempt_number,
287 int net_error,
288 int os_error,
289 NetLog::LogLevel /* log_level */) {
290 base::DictionaryValue* dict = new base::DictionaryValue();
291 if (attempt_number)
292 dict->SetInteger("attempt_number", attempt_number);
294 dict->SetInteger("net_error", net_error);
296 if (os_error) {
297 dict->SetInteger("os_error", os_error);
298 #if defined(OS_POSIX)
299 dict->SetString("os_error_string", gai_strerror(os_error));
300 #elif defined(OS_WIN)
301 // Map the error code to a human-readable string.
302 LPWSTR error_string = NULL;
303 int size = FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
304 FORMAT_MESSAGE_FROM_SYSTEM,
305 0, // Use the internal message table.
306 os_error,
307 0, // Use default language.
308 (LPWSTR)&error_string,
309 0, // Buffer size.
310 0); // Arguments (unused).
311 dict->SetString("os_error_string", base::WideToUTF8(error_string));
312 LocalFree(error_string);
313 #endif
316 return dict;
319 // Creates NetLog parameters when the DnsTask failed.
320 base::Value* NetLogDnsTaskFailedCallback(int net_error,
321 int dns_error,
322 NetLog::LogLevel /* log_level */) {
323 base::DictionaryValue* dict = new base::DictionaryValue();
324 dict->SetInteger("net_error", net_error);
325 if (dns_error)
326 dict->SetInteger("dns_error", dns_error);
327 return dict;
330 // Creates NetLog parameters containing the information in a RequestInfo object,
331 // along with the associated NetLog::Source.
332 base::Value* NetLogRequestInfoCallback(const NetLog::Source& source,
333 const HostResolver::RequestInfo* info,
334 NetLog::LogLevel /* log_level */) {
335 base::DictionaryValue* dict = new base::DictionaryValue();
336 source.AddToEventParameters(dict);
338 dict->SetString("host", info->host_port_pair().ToString());
339 dict->SetInteger("address_family",
340 static_cast<int>(info->address_family()));
341 dict->SetBoolean("allow_cached_response", info->allow_cached_response());
342 dict->SetBoolean("is_speculative", info->is_speculative());
343 return dict;
346 // Creates NetLog parameters for the creation of a HostResolverImpl::Job.
347 base::Value* NetLogJobCreationCallback(const NetLog::Source& source,
348 const std::string* host,
349 NetLog::LogLevel /* log_level */) {
350 base::DictionaryValue* dict = new base::DictionaryValue();
351 source.AddToEventParameters(dict);
352 dict->SetString("host", *host);
353 return dict;
356 // Creates NetLog parameters for HOST_RESOLVER_IMPL_JOB_ATTACH/DETACH events.
357 base::Value* NetLogJobAttachCallback(const NetLog::Source& source,
358 RequestPriority priority,
359 NetLog::LogLevel /* log_level */) {
360 base::DictionaryValue* dict = new base::DictionaryValue();
361 source.AddToEventParameters(dict);
362 dict->SetString("priority", RequestPriorityToString(priority));
363 return dict;
366 // Creates NetLog parameters for the DNS_CONFIG_CHANGED event.
367 base::Value* NetLogDnsConfigCallback(const DnsConfig* config,
368 NetLog::LogLevel /* log_level */) {
369 return config->ToValue();
372 // The logging routines are defined here because some requests are resolved
373 // without a Request object.
375 // Logs when a request has just been started.
376 void LogStartRequest(const BoundNetLog& source_net_log,
377 const BoundNetLog& request_net_log,
378 const HostResolver::RequestInfo& info) {
379 source_net_log.BeginEvent(
380 NetLog::TYPE_HOST_RESOLVER_IMPL,
381 request_net_log.source().ToEventParametersCallback());
383 request_net_log.BeginEvent(
384 NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST,
385 base::Bind(&NetLogRequestInfoCallback, source_net_log.source(), &info));
388 // Logs when a request has just completed (before its callback is run).
389 void LogFinishRequest(const BoundNetLog& source_net_log,
390 const BoundNetLog& request_net_log,
391 const HostResolver::RequestInfo& info,
392 int net_error) {
393 request_net_log.EndEventWithNetErrorCode(
394 NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST, net_error);
395 source_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL);
398 // Logs when a request has been cancelled.
399 void LogCancelRequest(const BoundNetLog& source_net_log,
400 const BoundNetLog& request_net_log,
401 const HostResolverImpl::RequestInfo& info) {
402 request_net_log.AddEvent(NetLog::TYPE_CANCELLED);
403 request_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST);
404 source_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL);
407 //-----------------------------------------------------------------------------
409 // Keeps track of the highest priority.
410 class PriorityTracker {
411 public:
412 explicit PriorityTracker(RequestPriority initial_priority)
413 : highest_priority_(initial_priority), total_count_(0) {
414 memset(counts_, 0, sizeof(counts_));
417 RequestPriority highest_priority() const {
418 return highest_priority_;
421 size_t total_count() const {
422 return total_count_;
425 void Add(RequestPriority req_priority) {
426 ++total_count_;
427 ++counts_[req_priority];
428 if (highest_priority_ < req_priority)
429 highest_priority_ = req_priority;
432 void Remove(RequestPriority req_priority) {
433 DCHECK_GT(total_count_, 0u);
434 DCHECK_GT(counts_[req_priority], 0u);
435 --total_count_;
436 --counts_[req_priority];
437 size_t i;
438 for (i = highest_priority_; i > MINIMUM_PRIORITY && !counts_[i]; --i);
439 highest_priority_ = static_cast<RequestPriority>(i);
441 // In absence of requests, default to MINIMUM_PRIORITY.
442 if (total_count_ == 0)
443 DCHECK_EQ(MINIMUM_PRIORITY, highest_priority_);
446 private:
447 RequestPriority highest_priority_;
448 size_t total_count_;
449 size_t counts_[NUM_PRIORITIES];
452 } // namespace
454 //-----------------------------------------------------------------------------
456 const unsigned HostResolverImpl::kMaximumDnsFailures = 16;
458 // Holds the data for a request that could not be completed synchronously.
459 // It is owned by a Job. Canceled Requests are only marked as canceled rather
460 // than removed from the Job's |requests_| list.
461 class HostResolverImpl::Request {
462 public:
463 Request(const BoundNetLog& source_net_log,
464 const BoundNetLog& request_net_log,
465 const RequestInfo& info,
466 RequestPriority priority,
467 const CompletionCallback& callback,
468 AddressList* addresses)
469 : source_net_log_(source_net_log),
470 request_net_log_(request_net_log),
471 info_(info),
472 priority_(priority),
473 job_(NULL),
474 callback_(callback),
475 addresses_(addresses),
476 request_time_(base::TimeTicks::Now()) {}
478 // Mark the request as canceled.
479 void MarkAsCanceled() {
480 job_ = NULL;
481 addresses_ = NULL;
482 callback_.Reset();
485 bool was_canceled() const {
486 return callback_.is_null();
489 void set_job(Job* job) {
490 DCHECK(job);
491 // Identify which job the request is waiting on.
492 job_ = job;
495 // Prepare final AddressList and call completion callback.
496 void OnComplete(int error, const AddressList& addr_list) {
497 DCHECK(!was_canceled());
498 if (error == OK)
499 *addresses_ = EnsurePortOnAddressList(addr_list, info_.port());
500 CompletionCallback callback = callback_;
501 MarkAsCanceled();
502 callback.Run(error);
505 Job* job() const {
506 return job_;
509 // NetLog for the source, passed in HostResolver::Resolve.
510 const BoundNetLog& source_net_log() {
511 return source_net_log_;
514 // NetLog for this request.
515 const BoundNetLog& request_net_log() {
516 return request_net_log_;
519 const RequestInfo& info() const {
520 return info_;
523 RequestPriority priority() const { return priority_; }
525 base::TimeTicks request_time() const { return request_time_; }
527 private:
528 BoundNetLog source_net_log_;
529 BoundNetLog request_net_log_;
531 // The request info that started the request.
532 const RequestInfo info_;
534 // TODO(akalin): Support reprioritization.
535 const RequestPriority priority_;
537 // The resolve job that this request is dependent on.
538 Job* job_;
540 // The user's callback to invoke when the request completes.
541 CompletionCallback callback_;
543 // The address list to save result into.
544 AddressList* addresses_;
546 const base::TimeTicks request_time_;
548 DISALLOW_COPY_AND_ASSIGN(Request);
551 //------------------------------------------------------------------------------
553 // Calls HostResolverProc on the WorkerPool. Performs retries if necessary.
555 // Whenever we try to resolve the host, we post a delayed task to check if host
556 // resolution (OnLookupComplete) is completed or not. If the original attempt
557 // hasn't completed, then we start another attempt for host resolution. We take
558 // the results from the first attempt that finishes and ignore the results from
559 // all other attempts.
561 // TODO(szym): Move to separate source file for testing and mocking.
563 class HostResolverImpl::ProcTask
564 : public base::RefCountedThreadSafe<HostResolverImpl::ProcTask> {
565 public:
566 typedef base::Callback<void(int net_error,
567 const AddressList& addr_list)> Callback;
569 ProcTask(const Key& key,
570 const ProcTaskParams& params,
571 const Callback& callback,
572 const BoundNetLog& job_net_log)
573 : key_(key),
574 params_(params),
575 callback_(callback),
576 origin_loop_(base::MessageLoopProxy::current()),
577 attempt_number_(0),
578 completed_attempt_number_(0),
579 completed_attempt_error_(ERR_UNEXPECTED),
580 had_non_speculative_request_(false),
581 net_log_(job_net_log) {
582 if (!params_.resolver_proc.get())
583 params_.resolver_proc = HostResolverProc::GetDefault();
584 // If default is unset, use the system proc.
585 if (!params_.resolver_proc.get())
586 params_.resolver_proc = new SystemHostResolverProc();
589 void Start() {
590 DCHECK(origin_loop_->BelongsToCurrentThread());
591 net_log_.BeginEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_PROC_TASK);
592 StartLookupAttempt();
595 // Cancels this ProcTask. It will be orphaned. Any outstanding resolve
596 // attempts running on worker threads will continue running. Only once all the
597 // attempts complete will the final reference to this ProcTask be released.
598 void Cancel() {
599 DCHECK(origin_loop_->BelongsToCurrentThread());
601 if (was_canceled() || was_completed())
602 return;
604 callback_.Reset();
605 net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_PROC_TASK);
608 void set_had_non_speculative_request() {
609 DCHECK(origin_loop_->BelongsToCurrentThread());
610 had_non_speculative_request_ = true;
613 bool was_canceled() const {
614 DCHECK(origin_loop_->BelongsToCurrentThread());
615 return callback_.is_null();
618 bool was_completed() const {
619 DCHECK(origin_loop_->BelongsToCurrentThread());
620 return completed_attempt_number_ > 0;
623 private:
624 friend class base::RefCountedThreadSafe<ProcTask>;
625 ~ProcTask() {}
627 void StartLookupAttempt() {
628 DCHECK(origin_loop_->BelongsToCurrentThread());
629 base::TimeTicks start_time = base::TimeTicks::Now();
630 ++attempt_number_;
631 // Dispatch the lookup attempt to a worker thread.
632 if (!base::WorkerPool::PostTask(
633 FROM_HERE,
634 base::Bind(&ProcTask::DoLookup, this, start_time, attempt_number_),
635 true)) {
636 NOTREACHED();
638 // Since we could be running within Resolve() right now, we can't just
639 // call OnLookupComplete(). Instead we must wait until Resolve() has
640 // returned (IO_PENDING).
641 origin_loop_->PostTask(
642 FROM_HERE,
643 base::Bind(&ProcTask::OnLookupComplete, this, AddressList(),
644 start_time, attempt_number_, ERR_UNEXPECTED, 0));
645 return;
648 net_log_.AddEvent(
649 NetLog::TYPE_HOST_RESOLVER_IMPL_ATTEMPT_STARTED,
650 NetLog::IntegerCallback("attempt_number", attempt_number_));
652 // If we don't get the results within a given time, RetryIfNotComplete
653 // will start a new attempt on a different worker thread if none of our
654 // outstanding attempts have completed yet.
655 if (attempt_number_ <= params_.max_retry_attempts) {
656 origin_loop_->PostDelayedTask(
657 FROM_HERE,
658 base::Bind(&ProcTask::RetryIfNotComplete, this),
659 params_.unresponsive_delay);
663 // WARNING: This code runs inside a worker pool. The shutdown code cannot
664 // wait for it to finish, so we must be very careful here about using other
665 // objects (like MessageLoops, Singletons, etc). During shutdown these objects
666 // may no longer exist. Multiple DoLookups() could be running in parallel, so
667 // any state inside of |this| must not mutate .
668 void DoLookup(const base::TimeTicks& start_time,
669 const uint32 attempt_number) {
670 AddressList results;
671 int os_error = 0;
672 // Running on the worker thread
673 int error = params_.resolver_proc->Resolve(key_.hostname,
674 key_.address_family,
675 key_.host_resolver_flags,
676 &results,
677 &os_error);
679 origin_loop_->PostTask(
680 FROM_HERE,
681 base::Bind(&ProcTask::OnLookupComplete, this, results, start_time,
682 attempt_number, error, os_error));
685 // Makes next attempt if DoLookup() has not finished (runs on origin thread).
686 void RetryIfNotComplete() {
687 DCHECK(origin_loop_->BelongsToCurrentThread());
689 if (was_completed() || was_canceled())
690 return;
692 params_.unresponsive_delay *= params_.retry_factor;
693 StartLookupAttempt();
696 // Callback for when DoLookup() completes (runs on origin thread).
697 void OnLookupComplete(const AddressList& results,
698 const base::TimeTicks& start_time,
699 const uint32 attempt_number,
700 int error,
701 const int os_error) {
702 DCHECK(origin_loop_->BelongsToCurrentThread());
703 // If results are empty, we should return an error.
704 bool empty_list_on_ok = (error == OK && results.empty());
705 UMA_HISTOGRAM_BOOLEAN("DNS.EmptyAddressListAndNoError", empty_list_on_ok);
706 if (empty_list_on_ok)
707 error = ERR_NAME_NOT_RESOLVED;
709 bool was_retry_attempt = attempt_number > 1;
711 // Ideally the following code would be part of host_resolver_proc.cc,
712 // however it isn't safe to call NetworkChangeNotifier from worker threads.
713 // So we do it here on the IO thread instead.
714 if (error != OK && NetworkChangeNotifier::IsOffline())
715 error = ERR_INTERNET_DISCONNECTED;
717 // If this is the first attempt that is finishing later, then record data
718 // for the first attempt. Won't contaminate with retry attempt's data.
719 if (!was_retry_attempt)
720 RecordPerformanceHistograms(start_time, error, os_error);
722 RecordAttemptHistograms(start_time, attempt_number, error, os_error);
724 if (was_canceled())
725 return;
727 NetLog::ParametersCallback net_log_callback;
728 if (error != OK) {
729 net_log_callback = base::Bind(&NetLogProcTaskFailedCallback,
730 attempt_number,
731 error,
732 os_error);
733 } else {
734 net_log_callback = NetLog::IntegerCallback("attempt_number",
735 attempt_number);
737 net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_ATTEMPT_FINISHED,
738 net_log_callback);
740 if (was_completed())
741 return;
743 // Copy the results from the first worker thread that resolves the host.
744 results_ = results;
745 completed_attempt_number_ = attempt_number;
746 completed_attempt_error_ = error;
748 if (was_retry_attempt) {
749 // If retry attempt finishes before 1st attempt, then get stats on how
750 // much time is saved by having spawned an extra attempt.
751 retry_attempt_finished_time_ = base::TimeTicks::Now();
754 if (error != OK) {
755 net_log_callback = base::Bind(&NetLogProcTaskFailedCallback,
756 0, error, os_error);
757 } else {
758 net_log_callback = results_.CreateNetLogCallback();
760 net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_PROC_TASK,
761 net_log_callback);
763 callback_.Run(error, results_);
766 void RecordPerformanceHistograms(const base::TimeTicks& start_time,
767 const int error,
768 const int os_error) const {
769 DCHECK(origin_loop_->BelongsToCurrentThread());
770 enum Category { // Used in HISTOGRAM_ENUMERATION.
771 RESOLVE_SUCCESS,
772 RESOLVE_FAIL,
773 RESOLVE_SPECULATIVE_SUCCESS,
774 RESOLVE_SPECULATIVE_FAIL,
775 RESOLVE_MAX, // Bounding value.
777 int category = RESOLVE_MAX; // Illegal value for later DCHECK only.
779 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
780 if (error == OK) {
781 if (had_non_speculative_request_) {
782 category = RESOLVE_SUCCESS;
783 DNS_HISTOGRAM("DNS.ResolveSuccess", duration);
784 } else {
785 category = RESOLVE_SPECULATIVE_SUCCESS;
786 DNS_HISTOGRAM("DNS.ResolveSpeculativeSuccess", duration);
789 // Log DNS lookups based on |address_family|. This will help us determine
790 // if IPv4 or IPv4/6 lookups are faster or slower.
791 switch(key_.address_family) {
792 case ADDRESS_FAMILY_IPV4:
793 DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_IPV4", duration);
794 break;
795 case ADDRESS_FAMILY_IPV6:
796 DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_IPV6", duration);
797 break;
798 case ADDRESS_FAMILY_UNSPECIFIED:
799 DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_UNSPEC", duration);
800 break;
802 } else {
803 if (had_non_speculative_request_) {
804 category = RESOLVE_FAIL;
805 DNS_HISTOGRAM("DNS.ResolveFail", duration);
806 } else {
807 category = RESOLVE_SPECULATIVE_FAIL;
808 DNS_HISTOGRAM("DNS.ResolveSpeculativeFail", duration);
810 // Log DNS lookups based on |address_family|. This will help us determine
811 // if IPv4 or IPv4/6 lookups are faster or slower.
812 switch(key_.address_family) {
813 case ADDRESS_FAMILY_IPV4:
814 DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_IPV4", duration);
815 break;
816 case ADDRESS_FAMILY_IPV6:
817 DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_IPV6", duration);
818 break;
819 case ADDRESS_FAMILY_UNSPECIFIED:
820 DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_UNSPEC", duration);
821 break;
823 UMA_HISTOGRAM_CUSTOM_ENUMERATION(kOSErrorsForGetAddrinfoHistogramName,
824 std::abs(os_error),
825 GetAllGetAddrinfoOSErrors());
827 DCHECK_LT(category, static_cast<int>(RESOLVE_MAX)); // Be sure it was set.
829 UMA_HISTOGRAM_ENUMERATION("DNS.ResolveCategory", category, RESOLVE_MAX);
832 void RecordAttemptHistograms(const base::TimeTicks& start_time,
833 const uint32 attempt_number,
834 const int error,
835 const int os_error) const {
836 DCHECK(origin_loop_->BelongsToCurrentThread());
837 bool first_attempt_to_complete =
838 completed_attempt_number_ == attempt_number;
839 bool is_first_attempt = (attempt_number == 1);
841 if (first_attempt_to_complete) {
842 // If this was first attempt to complete, then record the resolution
843 // status of the attempt.
844 if (completed_attempt_error_ == OK) {
845 UMA_HISTOGRAM_ENUMERATION(
846 "DNS.AttemptFirstSuccess", attempt_number, 100);
847 } else {
848 UMA_HISTOGRAM_ENUMERATION(
849 "DNS.AttemptFirstFailure", attempt_number, 100);
853 if (error == OK)
854 UMA_HISTOGRAM_ENUMERATION("DNS.AttemptSuccess", attempt_number, 100);
855 else
856 UMA_HISTOGRAM_ENUMERATION("DNS.AttemptFailure", attempt_number, 100);
858 // If first attempt didn't finish before retry attempt, then calculate stats
859 // on how much time is saved by having spawned an extra attempt.
860 if (!first_attempt_to_complete && is_first_attempt && !was_canceled()) {
861 DNS_HISTOGRAM("DNS.AttemptTimeSavedByRetry",
862 base::TimeTicks::Now() - retry_attempt_finished_time_);
865 if (was_canceled() || !first_attempt_to_complete) {
866 // Count those attempts which completed after the job was already canceled
867 // OR after the job was already completed by an earlier attempt (so in
868 // effect).
869 UMA_HISTOGRAM_ENUMERATION("DNS.AttemptDiscarded", attempt_number, 100);
871 // Record if job is canceled.
872 if (was_canceled())
873 UMA_HISTOGRAM_ENUMERATION("DNS.AttemptCancelled", attempt_number, 100);
876 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
877 if (error == OK)
878 DNS_HISTOGRAM("DNS.AttemptSuccessDuration", duration);
879 else
880 DNS_HISTOGRAM("DNS.AttemptFailDuration", duration);
883 // Set on the origin thread, read on the worker thread.
884 Key key_;
886 // Holds an owning reference to the HostResolverProc that we are going to use.
887 // This may not be the current resolver procedure by the time we call
888 // ResolveAddrInfo, but that's OK... we'll use it anyways, and the owning
889 // reference ensures that it remains valid until we are done.
890 ProcTaskParams params_;
892 // The listener to the results of this ProcTask.
893 Callback callback_;
895 // Used to post ourselves onto the origin thread.
896 scoped_refptr<base::MessageLoopProxy> origin_loop_;
898 // Keeps track of the number of attempts we have made so far to resolve the
899 // host. Whenever we start an attempt to resolve the host, we increase this
900 // number.
901 uint32 attempt_number_;
903 // The index of the attempt which finished first (or 0 if the job is still in
904 // progress).
905 uint32 completed_attempt_number_;
907 // The result (a net error code) from the first attempt to complete.
908 int completed_attempt_error_;
910 // The time when retry attempt was finished.
911 base::TimeTicks retry_attempt_finished_time_;
913 // True if a non-speculative request was ever attached to this job
914 // (regardless of whether or not it was later canceled.
915 // This boolean is used for histogramming the duration of jobs used to
916 // service non-speculative requests.
917 bool had_non_speculative_request_;
919 AddressList results_;
921 BoundNetLog net_log_;
923 DISALLOW_COPY_AND_ASSIGN(ProcTask);
926 //-----------------------------------------------------------------------------
928 // Wraps a call to HaveOnlyLoopbackAddresses to be executed on the WorkerPool as
929 // it takes 40-100ms and should not block initialization.
930 class HostResolverImpl::LoopbackProbeJob {
931 public:
932 explicit LoopbackProbeJob(const base::WeakPtr<HostResolverImpl>& resolver)
933 : resolver_(resolver),
934 result_(false) {
935 DCHECK(resolver.get());
936 const bool kIsSlow = true;
937 base::WorkerPool::PostTaskAndReply(
938 FROM_HERE,
939 base::Bind(&LoopbackProbeJob::DoProbe, base::Unretained(this)),
940 base::Bind(&LoopbackProbeJob::OnProbeComplete, base::Owned(this)),
941 kIsSlow);
944 virtual ~LoopbackProbeJob() {}
946 private:
947 // Runs on worker thread.
948 void DoProbe() {
949 result_ = HaveOnlyLoopbackAddresses();
952 void OnProbeComplete() {
953 if (!resolver_.get())
954 return;
955 resolver_->SetHaveOnlyLoopbackAddresses(result_);
958 // Used/set only on origin thread.
959 base::WeakPtr<HostResolverImpl> resolver_;
961 bool result_;
963 DISALLOW_COPY_AND_ASSIGN(LoopbackProbeJob);
966 //-----------------------------------------------------------------------------
968 // Resolves the hostname using DnsTransaction.
969 // TODO(szym): This could be moved to separate source file as well.
970 class HostResolverImpl::DnsTask : public base::SupportsWeakPtr<DnsTask> {
971 public:
972 class Delegate {
973 public:
974 virtual void OnDnsTaskComplete(base::TimeTicks start_time,
975 int net_error,
976 const AddressList& addr_list,
977 base::TimeDelta ttl) = 0;
979 // Called when the first of two jobs succeeds. If the first completed
980 // transaction fails, this is not called. Also not called when the DnsTask
981 // only needs to run one transaction.
982 virtual void OnFirstDnsTransactionComplete() = 0;
984 protected:
985 Delegate() {}
986 virtual ~Delegate() {}
989 DnsTask(DnsClient* client,
990 const Key& key,
991 Delegate* delegate,
992 const BoundNetLog& job_net_log)
993 : client_(client),
994 key_(key),
995 delegate_(delegate),
996 net_log_(job_net_log),
997 num_completed_transactions_(0),
998 task_start_time_(base::TimeTicks::Now()) {
999 DCHECK(client);
1000 DCHECK(delegate_);
1003 bool needs_two_transactions() const {
1004 return key_.address_family == ADDRESS_FAMILY_UNSPECIFIED;
1007 bool needs_another_transaction() const {
1008 return needs_two_transactions() && !transaction_aaaa_;
1011 void StartFirstTransaction() {
1012 DCHECK_EQ(0u, num_completed_transactions_);
1013 net_log_.BeginEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_DNS_TASK);
1014 if (key_.address_family == ADDRESS_FAMILY_IPV6) {
1015 StartAAAA();
1016 } else {
1017 StartA();
1021 void StartSecondTransaction() {
1022 DCHECK(needs_two_transactions());
1023 StartAAAA();
1026 private:
1027 void StartA() {
1028 DCHECK(!transaction_a_);
1029 DCHECK_NE(ADDRESS_FAMILY_IPV6, key_.address_family);
1030 transaction_a_ = CreateTransaction(ADDRESS_FAMILY_IPV4);
1031 transaction_a_->Start();
1034 void StartAAAA() {
1035 DCHECK(!transaction_aaaa_);
1036 DCHECK_NE(ADDRESS_FAMILY_IPV4, key_.address_family);
1037 transaction_aaaa_ = CreateTransaction(ADDRESS_FAMILY_IPV6);
1038 transaction_aaaa_->Start();
1041 scoped_ptr<DnsTransaction> CreateTransaction(AddressFamily family) {
1042 DCHECK_NE(ADDRESS_FAMILY_UNSPECIFIED, family);
1043 return client_->GetTransactionFactory()->CreateTransaction(
1044 key_.hostname,
1045 family == ADDRESS_FAMILY_IPV6 ? dns_protocol::kTypeAAAA :
1046 dns_protocol::kTypeA,
1047 base::Bind(&DnsTask::OnTransactionComplete, base::Unretained(this),
1048 base::TimeTicks::Now()),
1049 net_log_);
1052 void OnTransactionComplete(const base::TimeTicks& start_time,
1053 DnsTransaction* transaction,
1054 int net_error,
1055 const DnsResponse* response) {
1056 DCHECK(transaction);
1057 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
1058 if (net_error != OK) {
1059 DNS_HISTOGRAM("AsyncDNS.TransactionFailure", duration);
1060 OnFailure(net_error, DnsResponse::DNS_PARSE_OK);
1061 return;
1064 DNS_HISTOGRAM("AsyncDNS.TransactionSuccess", duration);
1065 switch (transaction->GetType()) {
1066 case dns_protocol::kTypeA:
1067 DNS_HISTOGRAM("AsyncDNS.TransactionSuccess_A", duration);
1068 break;
1069 case dns_protocol::kTypeAAAA:
1070 DNS_HISTOGRAM("AsyncDNS.TransactionSuccess_AAAA", duration);
1071 break;
1074 AddressList addr_list;
1075 base::TimeDelta ttl;
1076 DnsResponse::Result result = response->ParseToAddressList(&addr_list, &ttl);
1077 UMA_HISTOGRAM_ENUMERATION("AsyncDNS.ParseToAddressList",
1078 result,
1079 DnsResponse::DNS_PARSE_RESULT_MAX);
1080 if (result != DnsResponse::DNS_PARSE_OK) {
1081 // Fail even if the other query succeeds.
1082 OnFailure(ERR_DNS_MALFORMED_RESPONSE, result);
1083 return;
1086 ++num_completed_transactions_;
1087 if (num_completed_transactions_ == 1) {
1088 ttl_ = ttl;
1089 } else {
1090 ttl_ = std::min(ttl_, ttl);
1093 if (transaction->GetType() == dns_protocol::kTypeA) {
1094 DCHECK_EQ(transaction_a_.get(), transaction);
1095 // Place IPv4 addresses after IPv6.
1096 addr_list_.insert(addr_list_.end(), addr_list.begin(), addr_list.end());
1097 } else {
1098 DCHECK_EQ(transaction_aaaa_.get(), transaction);
1099 // Place IPv6 addresses before IPv4.
1100 addr_list_.insert(addr_list_.begin(), addr_list.begin(), addr_list.end());
1103 if (needs_two_transactions() && num_completed_transactions_ == 1) {
1104 // No need to repeat the suffix search.
1105 key_.hostname = transaction->GetHostname();
1106 delegate_->OnFirstDnsTransactionComplete();
1107 return;
1110 if (addr_list_.empty()) {
1111 // TODO(szym): Don't fallback to ProcTask in this case.
1112 OnFailure(ERR_NAME_NOT_RESOLVED, DnsResponse::DNS_PARSE_OK);
1113 return;
1116 // If there are multiple addresses, and at least one is IPv6, need to sort
1117 // them. Note that IPv6 addresses are always put before IPv4 ones, so it's
1118 // sufficient to just check the family of the first address.
1119 if (addr_list_.size() > 1 &&
1120 addr_list_[0].GetFamily() == ADDRESS_FAMILY_IPV6) {
1121 // Sort addresses if needed. Sort could complete synchronously.
1122 client_->GetAddressSorter()->Sort(
1123 addr_list_,
1124 base::Bind(&DnsTask::OnSortComplete,
1125 AsWeakPtr(),
1126 base::TimeTicks::Now()));
1127 } else {
1128 OnSuccess(addr_list_);
1132 void OnSortComplete(base::TimeTicks start_time,
1133 bool success,
1134 const AddressList& addr_list) {
1135 if (!success) {
1136 DNS_HISTOGRAM("AsyncDNS.SortFailure",
1137 base::TimeTicks::Now() - start_time);
1138 OnFailure(ERR_DNS_SORT_ERROR, DnsResponse::DNS_PARSE_OK);
1139 return;
1142 DNS_HISTOGRAM("AsyncDNS.SortSuccess",
1143 base::TimeTicks::Now() - start_time);
1145 // AddressSorter prunes unusable destinations.
1146 if (addr_list.empty()) {
1147 LOG(WARNING) << "Address list empty after RFC3484 sort";
1148 OnFailure(ERR_NAME_NOT_RESOLVED, DnsResponse::DNS_PARSE_OK);
1149 return;
1152 OnSuccess(addr_list);
1155 void OnFailure(int net_error, DnsResponse::Result result) {
1156 DCHECK_NE(OK, net_error);
1157 net_log_.EndEvent(
1158 NetLog::TYPE_HOST_RESOLVER_IMPL_DNS_TASK,
1159 base::Bind(&NetLogDnsTaskFailedCallback, net_error, result));
1160 delegate_->OnDnsTaskComplete(task_start_time_, net_error, AddressList(),
1161 base::TimeDelta());
1164 void OnSuccess(const AddressList& addr_list) {
1165 net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_DNS_TASK,
1166 addr_list.CreateNetLogCallback());
1167 delegate_->OnDnsTaskComplete(task_start_time_, OK, addr_list, ttl_);
1170 DnsClient* client_;
1171 Key key_;
1173 // The listener to the results of this DnsTask.
1174 Delegate* delegate_;
1175 const BoundNetLog net_log_;
1177 scoped_ptr<DnsTransaction> transaction_a_;
1178 scoped_ptr<DnsTransaction> transaction_aaaa_;
1180 unsigned num_completed_transactions_;
1182 // These are updated as each transaction completes.
1183 base::TimeDelta ttl_;
1184 // IPv6 addresses must appear first in the list.
1185 AddressList addr_list_;
1187 base::TimeTicks task_start_time_;
1189 DISALLOW_COPY_AND_ASSIGN(DnsTask);
1192 //-----------------------------------------------------------------------------
1194 // Aggregates all Requests for the same Key. Dispatched via PriorityDispatch.
1195 class HostResolverImpl::Job : public PrioritizedDispatcher::Job,
1196 public HostResolverImpl::DnsTask::Delegate {
1197 public:
1198 // Creates new job for |key| where |request_net_log| is bound to the
1199 // request that spawned it.
1200 Job(const base::WeakPtr<HostResolverImpl>& resolver,
1201 const Key& key,
1202 RequestPriority priority,
1203 const BoundNetLog& request_net_log)
1204 : resolver_(resolver),
1205 key_(key),
1206 priority_tracker_(priority),
1207 had_non_speculative_request_(false),
1208 had_dns_config_(false),
1209 num_occupied_job_slots_(0),
1210 dns_task_error_(OK),
1211 creation_time_(base::TimeTicks::Now()),
1212 priority_change_time_(creation_time_),
1213 net_log_(BoundNetLog::Make(request_net_log.net_log(),
1214 NetLog::SOURCE_HOST_RESOLVER_IMPL_JOB)) {
1215 request_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_CREATE_JOB);
1217 net_log_.BeginEvent(
1218 NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1219 base::Bind(&NetLogJobCreationCallback,
1220 request_net_log.source(),
1221 &key_.hostname));
1224 virtual ~Job() {
1225 if (is_running()) {
1226 // |resolver_| was destroyed with this Job still in flight.
1227 // Clean-up, record in the log, but don't run any callbacks.
1228 if (is_proc_running()) {
1229 proc_task_->Cancel();
1230 proc_task_ = NULL;
1232 // Clean up now for nice NetLog.
1233 KillDnsTask();
1234 net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1235 ERR_ABORTED);
1236 } else if (is_queued()) {
1237 // |resolver_| was destroyed without running this Job.
1238 // TODO(szym): is there any benefit in having this distinction?
1239 net_log_.AddEvent(NetLog::TYPE_CANCELLED);
1240 net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB);
1242 // else CompleteRequests logged EndEvent.
1244 // Log any remaining Requests as cancelled.
1245 for (RequestsList::const_iterator it = requests_.begin();
1246 it != requests_.end(); ++it) {
1247 Request* req = *it;
1248 if (req->was_canceled())
1249 continue;
1250 DCHECK_EQ(this, req->job());
1251 LogCancelRequest(req->source_net_log(), req->request_net_log(),
1252 req->info());
1256 // Add this job to the dispatcher. If "at_head" is true, adds at the front
1257 // of the queue.
1258 void Schedule(bool at_head) {
1259 DCHECK(!is_queued());
1260 PrioritizedDispatcher::Handle handle;
1261 if (!at_head) {
1262 handle = resolver_->dispatcher_->Add(this, priority());
1263 } else {
1264 handle = resolver_->dispatcher_->AddAtHead(this, priority());
1266 // The dispatcher could have started |this| in the above call to Add, which
1267 // could have called Schedule again. In that case |handle| will be null,
1268 // but |handle_| may have been set by the other nested call to Schedule.
1269 if (!handle.is_null()) {
1270 DCHECK(handle_.is_null());
1271 handle_ = handle;
1275 void AddRequest(scoped_ptr<Request> req) {
1276 DCHECK_EQ(key_.hostname, req->info().hostname());
1278 req->set_job(this);
1279 priority_tracker_.Add(req->priority());
1281 req->request_net_log().AddEvent(
1282 NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_ATTACH,
1283 net_log_.source().ToEventParametersCallback());
1285 net_log_.AddEvent(
1286 NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_REQUEST_ATTACH,
1287 base::Bind(&NetLogJobAttachCallback,
1288 req->request_net_log().source(),
1289 priority()));
1291 // TODO(szym): Check if this is still needed.
1292 if (!req->info().is_speculative()) {
1293 had_non_speculative_request_ = true;
1294 if (proc_task_.get())
1295 proc_task_->set_had_non_speculative_request();
1298 requests_.push_back(req.release());
1300 UpdatePriority();
1303 // Marks |req| as cancelled. If it was the last active Request, also finishes
1304 // this Job, marking it as cancelled, and deletes it.
1305 void CancelRequest(Request* req) {
1306 DCHECK_EQ(key_.hostname, req->info().hostname());
1307 DCHECK(!req->was_canceled());
1309 // Don't remove it from |requests_| just mark it canceled.
1310 req->MarkAsCanceled();
1311 LogCancelRequest(req->source_net_log(), req->request_net_log(),
1312 req->info());
1314 priority_tracker_.Remove(req->priority());
1315 net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_REQUEST_DETACH,
1316 base::Bind(&NetLogJobAttachCallback,
1317 req->request_net_log().source(),
1318 priority()));
1320 if (num_active_requests() > 0) {
1321 UpdatePriority();
1322 } else {
1323 // If we were called from a Request's callback within CompleteRequests,
1324 // that Request could not have been cancelled, so num_active_requests()
1325 // could not be 0. Therefore, we are not in CompleteRequests().
1326 CompleteRequestsWithError(OK /* cancelled */);
1330 // Called from AbortAllInProgressJobs. Completes all requests and destroys
1331 // the job. This currently assumes the abort is due to a network change.
1332 void Abort() {
1333 DCHECK(is_running());
1334 CompleteRequestsWithError(ERR_NETWORK_CHANGED);
1337 // If DnsTask present, abort it and fall back to ProcTask.
1338 void AbortDnsTask() {
1339 if (dns_task_) {
1340 KillDnsTask();
1341 dns_task_error_ = OK;
1342 StartProcTask();
1346 // Called by HostResolverImpl when this job is evicted due to queue overflow.
1347 // Completes all requests and destroys the job.
1348 void OnEvicted() {
1349 DCHECK(!is_running());
1350 DCHECK(is_queued());
1351 handle_.Reset();
1353 net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_EVICTED);
1355 // This signals to CompleteRequests that this job never ran.
1356 CompleteRequestsWithError(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE);
1359 // Attempts to serve the job from HOSTS. Returns true if succeeded and
1360 // this Job was destroyed.
1361 bool ServeFromHosts() {
1362 DCHECK_GT(num_active_requests(), 0u);
1363 AddressList addr_list;
1364 if (resolver_->ServeFromHosts(key(),
1365 requests_.front()->info(),
1366 &addr_list)) {
1367 // This will destroy the Job.
1368 CompleteRequests(
1369 HostCache::Entry(OK, MakeAddressListForRequest(addr_list)),
1370 base::TimeDelta());
1371 return true;
1373 return false;
1376 const Key key() const {
1377 return key_;
1380 bool is_queued() const {
1381 return !handle_.is_null();
1384 bool is_running() const {
1385 return is_dns_running() || is_proc_running();
1388 private:
1389 void KillDnsTask() {
1390 if (dns_task_) {
1391 ReduceToOneJobSlot();
1392 dns_task_.reset();
1396 // Reduce the number of job slots occupied and queued in the dispatcher
1397 // to one. If the second Job slot is queued in the dispatcher, cancels the
1398 // queued job. Otherwise, the second Job has been started by the
1399 // PrioritizedDispatcher, so signals it is complete.
1400 void ReduceToOneJobSlot() {
1401 DCHECK_GE(num_occupied_job_slots_, 1u);
1402 if (is_queued()) {
1403 resolver_->dispatcher_->Cancel(handle_);
1404 handle_.Reset();
1405 } else if (num_occupied_job_slots_ > 1) {
1406 resolver_->dispatcher_->OnJobFinished();
1407 --num_occupied_job_slots_;
1409 DCHECK_EQ(1u, num_occupied_job_slots_);
1412 void UpdatePriority() {
1413 if (is_queued()) {
1414 if (priority() != static_cast<RequestPriority>(handle_.priority()))
1415 priority_change_time_ = base::TimeTicks::Now();
1416 handle_ = resolver_->dispatcher_->ChangePriority(handle_, priority());
1420 AddressList MakeAddressListForRequest(const AddressList& list) const {
1421 if (requests_.empty())
1422 return list;
1423 return AddressList::CopyWithPort(list, requests_.front()->info().port());
1426 // PriorityDispatch::Job:
1427 virtual void Start() OVERRIDE {
1428 DCHECK_LE(num_occupied_job_slots_, 1u);
1430 handle_.Reset();
1431 ++num_occupied_job_slots_;
1433 if (num_occupied_job_slots_ == 2) {
1434 StartSecondDnsTransaction();
1435 return;
1438 DCHECK(!is_running());
1440 net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_STARTED);
1442 had_dns_config_ = resolver_->HaveDnsConfig();
1444 base::TimeTicks now = base::TimeTicks::Now();
1445 base::TimeDelta queue_time = now - creation_time_;
1446 base::TimeDelta queue_time_after_change = now - priority_change_time_;
1448 if (had_dns_config_) {
1449 DNS_HISTOGRAM_BY_PRIORITY("AsyncDNS.JobQueueTime", priority(),
1450 queue_time);
1451 DNS_HISTOGRAM_BY_PRIORITY("AsyncDNS.JobQueueTimeAfterChange", priority(),
1452 queue_time_after_change);
1453 } else {
1454 DNS_HISTOGRAM_BY_PRIORITY("DNS.JobQueueTime", priority(), queue_time);
1455 DNS_HISTOGRAM_BY_PRIORITY("DNS.JobQueueTimeAfterChange", priority(),
1456 queue_time_after_change);
1459 bool system_only =
1460 (key_.host_resolver_flags & HOST_RESOLVER_SYSTEM_ONLY) != 0;
1462 // Caution: Job::Start must not complete synchronously.
1463 if (!system_only && had_dns_config_ &&
1464 !ResemblesMulticastDNSName(key_.hostname)) {
1465 StartDnsTask();
1466 } else {
1467 StartProcTask();
1471 // TODO(szym): Since DnsTransaction does not consume threads, we can increase
1472 // the limits on |dispatcher_|. But in order to keep the number of WorkerPool
1473 // threads low, we will need to use an "inner" PrioritizedDispatcher with
1474 // tighter limits.
1475 void StartProcTask() {
1476 DCHECK(!is_dns_running());
1477 proc_task_ = new ProcTask(
1478 key_,
1479 resolver_->proc_params_,
1480 base::Bind(&Job::OnProcTaskComplete, base::Unretained(this),
1481 base::TimeTicks::Now()),
1482 net_log_);
1484 if (had_non_speculative_request_)
1485 proc_task_->set_had_non_speculative_request();
1486 // Start() could be called from within Resolve(), hence it must NOT directly
1487 // call OnProcTaskComplete, for example, on synchronous failure.
1488 proc_task_->Start();
1491 // Called by ProcTask when it completes.
1492 void OnProcTaskComplete(base::TimeTicks start_time,
1493 int net_error,
1494 const AddressList& addr_list) {
1495 DCHECK(is_proc_running());
1497 if (!resolver_->resolved_known_ipv6_hostname_ &&
1498 net_error == OK &&
1499 key_.address_family == ADDRESS_FAMILY_UNSPECIFIED) {
1500 if (key_.hostname == "www.google.com") {
1501 resolver_->resolved_known_ipv6_hostname_ = true;
1502 bool got_ipv6_address = false;
1503 for (size_t i = 0; i < addr_list.size(); ++i) {
1504 if (addr_list[i].GetFamily() == ADDRESS_FAMILY_IPV6) {
1505 got_ipv6_address = true;
1506 break;
1509 UMA_HISTOGRAM_BOOLEAN("Net.UnspecResolvedIPv6", got_ipv6_address);
1513 if (dns_task_error_ != OK) {
1514 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
1515 if (net_error == OK) {
1516 DNS_HISTOGRAM("AsyncDNS.FallbackSuccess", duration);
1517 if ((dns_task_error_ == ERR_NAME_NOT_RESOLVED) &&
1518 ResemblesNetBIOSName(key_.hostname)) {
1519 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_SUSPECT_NETBIOS);
1520 } else {
1521 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_PROC_SUCCESS);
1523 UMA_HISTOGRAM_CUSTOM_ENUMERATION("AsyncDNS.ResolveError",
1524 std::abs(dns_task_error_),
1525 GetAllErrorCodesForUma());
1526 resolver_->OnDnsTaskResolve(dns_task_error_);
1527 } else {
1528 DNS_HISTOGRAM("AsyncDNS.FallbackFail", duration);
1529 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_FAIL);
1533 base::TimeDelta ttl =
1534 base::TimeDelta::FromSeconds(kNegativeCacheEntryTTLSeconds);
1535 if (net_error == OK)
1536 ttl = base::TimeDelta::FromSeconds(kCacheEntryTTLSeconds);
1538 // Don't store the |ttl| in cache since it's not obtained from the server.
1539 CompleteRequests(
1540 HostCache::Entry(net_error, MakeAddressListForRequest(addr_list)),
1541 ttl);
1544 void StartDnsTask() {
1545 DCHECK(resolver_->HaveDnsConfig());
1546 dns_task_.reset(new DnsTask(resolver_->dns_client_.get(), key_, this,
1547 net_log_));
1549 dns_task_->StartFirstTransaction();
1550 // Schedule a second transaction, if needed.
1551 if (dns_task_->needs_two_transactions())
1552 Schedule(true);
1555 void StartSecondDnsTransaction() {
1556 DCHECK(dns_task_->needs_two_transactions());
1557 dns_task_->StartSecondTransaction();
1560 // Called if DnsTask fails. It is posted from StartDnsTask, so Job may be
1561 // deleted before this callback. In this case dns_task is deleted as well,
1562 // so we use it as indicator whether Job is still valid.
1563 void OnDnsTaskFailure(const base::WeakPtr<DnsTask>& dns_task,
1564 base::TimeDelta duration,
1565 int net_error) {
1566 DNS_HISTOGRAM("AsyncDNS.ResolveFail", duration);
1568 if (dns_task == NULL)
1569 return;
1571 dns_task_error_ = net_error;
1573 // TODO(szym): Run ServeFromHosts now if nsswitch.conf says so.
1574 // http://crbug.com/117655
1576 // TODO(szym): Some net errors indicate lack of connectivity. Starting
1577 // ProcTask in that case is a waste of time.
1578 if (resolver_->fallback_to_proctask_) {
1579 KillDnsTask();
1580 StartProcTask();
1581 } else {
1582 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_FAIL);
1583 CompleteRequestsWithError(net_error);
1588 // HostResolverImpl::DnsTask::Delegate implementation:
1590 virtual void OnDnsTaskComplete(base::TimeTicks start_time,
1591 int net_error,
1592 const AddressList& addr_list,
1593 base::TimeDelta ttl) OVERRIDE {
1594 DCHECK(is_dns_running());
1596 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
1597 if (net_error != OK) {
1598 OnDnsTaskFailure(dns_task_->AsWeakPtr(), duration, net_error);
1599 return;
1601 DNS_HISTOGRAM("AsyncDNS.ResolveSuccess", duration);
1602 // Log DNS lookups based on |address_family|.
1603 switch(key_.address_family) {
1604 case ADDRESS_FAMILY_IPV4:
1605 DNS_HISTOGRAM("AsyncDNS.ResolveSuccess_FAMILY_IPV4", duration);
1606 break;
1607 case ADDRESS_FAMILY_IPV6:
1608 DNS_HISTOGRAM("AsyncDNS.ResolveSuccess_FAMILY_IPV6", duration);
1609 break;
1610 case ADDRESS_FAMILY_UNSPECIFIED:
1611 DNS_HISTOGRAM("AsyncDNS.ResolveSuccess_FAMILY_UNSPEC", duration);
1612 break;
1615 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_DNS_SUCCESS);
1616 RecordTTL(ttl);
1618 resolver_->OnDnsTaskResolve(OK);
1620 base::TimeDelta bounded_ttl =
1621 std::max(ttl, base::TimeDelta::FromSeconds(kMinimumTTLSeconds));
1623 CompleteRequests(
1624 HostCache::Entry(net_error, MakeAddressListForRequest(addr_list), ttl),
1625 bounded_ttl);
1628 virtual void OnFirstDnsTransactionComplete() OVERRIDE {
1629 DCHECK(dns_task_->needs_two_transactions());
1630 DCHECK_EQ(dns_task_->needs_another_transaction(), is_queued());
1631 // No longer need to occupy two dispatcher slots.
1632 ReduceToOneJobSlot();
1634 // We already have a job slot at the dispatcher, so if the second
1635 // transaction hasn't started, reuse it now instead of waiting in the queue
1636 // for the second slot.
1637 if (dns_task_->needs_another_transaction())
1638 dns_task_->StartSecondTransaction();
1641 // Performs Job's last rites. Completes all Requests. Deletes this.
1642 void CompleteRequests(const HostCache::Entry& entry,
1643 base::TimeDelta ttl) {
1644 CHECK(resolver_.get());
1646 // This job must be removed from resolver's |jobs_| now to make room for a
1647 // new job with the same key in case one of the OnComplete callbacks decides
1648 // to spawn one. Consequently, the job deletes itself when CompleteRequests
1649 // is done.
1650 scoped_ptr<Job> self_deleter(this);
1652 resolver_->RemoveJob(this);
1654 if (is_running()) {
1655 if (is_proc_running()) {
1656 DCHECK(!is_queued());
1657 proc_task_->Cancel();
1658 proc_task_ = NULL;
1660 KillDnsTask();
1662 // Signal dispatcher that a slot has opened.
1663 resolver_->dispatcher_->OnJobFinished();
1664 } else if (is_queued()) {
1665 resolver_->dispatcher_->Cancel(handle_);
1666 handle_.Reset();
1669 if (num_active_requests() == 0) {
1670 net_log_.AddEvent(NetLog::TYPE_CANCELLED);
1671 net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1672 OK);
1673 return;
1676 net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1677 entry.error);
1679 DCHECK(!requests_.empty());
1681 if (entry.error == OK) {
1682 // Record this histogram here, when we know the system has a valid DNS
1683 // configuration.
1684 UMA_HISTOGRAM_BOOLEAN("AsyncDNS.HaveDnsConfig",
1685 resolver_->received_dns_config_);
1688 bool did_complete = (entry.error != ERR_NETWORK_CHANGED) &&
1689 (entry.error != ERR_HOST_RESOLVER_QUEUE_TOO_LARGE);
1690 if (did_complete)
1691 resolver_->CacheResult(key_, entry, ttl);
1693 // Complete all of the requests that were attached to the job.
1694 for (RequestsList::const_iterator it = requests_.begin();
1695 it != requests_.end(); ++it) {
1696 Request* req = *it;
1698 if (req->was_canceled())
1699 continue;
1701 DCHECK_EQ(this, req->job());
1702 // Update the net log and notify registered observers.
1703 LogFinishRequest(req->source_net_log(), req->request_net_log(),
1704 req->info(), entry.error);
1705 if (did_complete) {
1706 // Record effective total time from creation to completion.
1707 RecordTotalTime(had_dns_config_, req->info().is_speculative(),
1708 base::TimeTicks::Now() - req->request_time());
1710 req->OnComplete(entry.error, entry.addrlist);
1712 // Check if the resolver was destroyed as a result of running the
1713 // callback. If it was, we could continue, but we choose to bail.
1714 if (!resolver_.get())
1715 return;
1719 // Convenience wrapper for CompleteRequests in case of failure.
1720 void CompleteRequestsWithError(int net_error) {
1721 CompleteRequests(HostCache::Entry(net_error, AddressList()),
1722 base::TimeDelta());
1725 RequestPriority priority() const {
1726 return priority_tracker_.highest_priority();
1729 // Number of non-canceled requests in |requests_|.
1730 size_t num_active_requests() const {
1731 return priority_tracker_.total_count();
1734 bool is_dns_running() const {
1735 return dns_task_.get() != NULL;
1738 bool is_proc_running() const {
1739 return proc_task_.get() != NULL;
1742 base::WeakPtr<HostResolverImpl> resolver_;
1744 Key key_;
1746 // Tracks the highest priority across |requests_|.
1747 PriorityTracker priority_tracker_;
1749 bool had_non_speculative_request_;
1751 // Distinguishes measurements taken while DnsClient was fully configured.
1752 bool had_dns_config_;
1754 // Number of slots occupied by this Job in resolver's PrioritizedDispatcher.
1755 unsigned num_occupied_job_slots_;
1757 // Result of DnsTask.
1758 int dns_task_error_;
1760 const base::TimeTicks creation_time_;
1761 base::TimeTicks priority_change_time_;
1763 BoundNetLog net_log_;
1765 // Resolves the host using a HostResolverProc.
1766 scoped_refptr<ProcTask> proc_task_;
1768 // Resolves the host using a DnsTransaction.
1769 scoped_ptr<DnsTask> dns_task_;
1771 // All Requests waiting for the result of this Job. Some can be canceled.
1772 RequestsList requests_;
1774 // A handle used in |HostResolverImpl::dispatcher_|.
1775 PrioritizedDispatcher::Handle handle_;
1778 //-----------------------------------------------------------------------------
1780 HostResolverImpl::ProcTaskParams::ProcTaskParams(
1781 HostResolverProc* resolver_proc,
1782 size_t max_retry_attempts)
1783 : resolver_proc(resolver_proc),
1784 max_retry_attempts(max_retry_attempts),
1785 unresponsive_delay(base::TimeDelta::FromMilliseconds(6000)),
1786 retry_factor(2) {
1787 // Maximum of 4 retry attempts for host resolution.
1788 static const size_t kDefaultMaxRetryAttempts = 4u;
1789 if (max_retry_attempts == HostResolver::kDefaultRetryAttempts)
1790 max_retry_attempts = kDefaultMaxRetryAttempts;
1793 HostResolverImpl::ProcTaskParams::~ProcTaskParams() {}
1795 HostResolverImpl::HostResolverImpl(const Options& options, NetLog* net_log)
1796 : max_queued_jobs_(0),
1797 proc_params_(NULL, options.max_retry_attempts),
1798 net_log_(net_log),
1799 default_address_family_(ADDRESS_FAMILY_UNSPECIFIED),
1800 received_dns_config_(false),
1801 num_dns_failures_(0),
1802 probe_ipv6_support_(true),
1803 use_local_ipv6_(false),
1804 resolved_known_ipv6_hostname_(false),
1805 additional_resolver_flags_(0),
1806 fallback_to_proctask_(true),
1807 weak_ptr_factory_(this),
1808 probe_weak_ptr_factory_(this) {
1809 if (options.enable_caching)
1810 cache_ = HostCache::CreateDefaultCache();
1812 PrioritizedDispatcher::Limits job_limits = options.GetDispatcherLimits();
1813 dispatcher_.reset(new PrioritizedDispatcher(job_limits));
1814 max_queued_jobs_ = job_limits.total_jobs * 100u;
1816 DCHECK_GE(dispatcher_->num_priorities(), static_cast<size_t>(NUM_PRIORITIES));
1818 #if defined(OS_WIN)
1819 EnsureWinsockInit();
1820 #endif
1821 #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_ANDROID)
1822 new LoopbackProbeJob(weak_ptr_factory_.GetWeakPtr());
1823 #endif
1824 NetworkChangeNotifier::AddIPAddressObserver(this);
1825 NetworkChangeNotifier::AddDNSObserver(this);
1826 #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_OPENBSD) && \
1827 !defined(OS_ANDROID)
1828 EnsureDnsReloaderInit();
1829 #endif
1832 DnsConfig dns_config;
1833 NetworkChangeNotifier::GetDnsConfig(&dns_config);
1834 received_dns_config_ = dns_config.IsValid();
1835 // Conservatively assume local IPv6 is needed when DnsConfig is not valid.
1836 use_local_ipv6_ = !dns_config.IsValid() || dns_config.use_local_ipv6;
1839 fallback_to_proctask_ = !ConfigureAsyncDnsNoFallbackFieldTrial();
1842 HostResolverImpl::~HostResolverImpl() {
1843 // Prevent the dispatcher from starting new jobs.
1844 dispatcher_->SetLimitsToZero();
1845 // It's now safe for Jobs to call KillDsnTask on destruction, because
1846 // OnJobComplete will not start any new jobs.
1847 STLDeleteValues(&jobs_);
1849 NetworkChangeNotifier::RemoveIPAddressObserver(this);
1850 NetworkChangeNotifier::RemoveDNSObserver(this);
1853 void HostResolverImpl::SetMaxQueuedJobs(size_t value) {
1854 DCHECK_EQ(0u, dispatcher_->num_queued_jobs());
1855 DCHECK_GT(value, 0u);
1856 max_queued_jobs_ = value;
1859 int HostResolverImpl::Resolve(const RequestInfo& info,
1860 RequestPriority priority,
1861 AddressList* addresses,
1862 const CompletionCallback& callback,
1863 RequestHandle* out_req,
1864 const BoundNetLog& source_net_log) {
1865 DCHECK(addresses);
1866 DCHECK(CalledOnValidThread());
1867 DCHECK_EQ(false, callback.is_null());
1869 // Check that the caller supplied a valid hostname to resolve.
1870 std::string labeled_hostname;
1871 if (!DNSDomainFromDot(info.hostname(), &labeled_hostname))
1872 return ERR_NAME_NOT_RESOLVED;
1874 // Make a log item for the request.
1875 BoundNetLog request_net_log = BoundNetLog::Make(net_log_,
1876 NetLog::SOURCE_HOST_RESOLVER_IMPL_REQUEST);
1878 LogStartRequest(source_net_log, request_net_log, info);
1880 // Build a key that identifies the request in the cache and in the
1881 // outstanding jobs map.
1882 Key key = GetEffectiveKeyForRequest(info, request_net_log);
1884 int rv = ResolveHelper(key, info, addresses, request_net_log);
1885 if (rv != ERR_DNS_CACHE_MISS) {
1886 LogFinishRequest(source_net_log, request_net_log, info, rv);
1887 RecordTotalTime(HaveDnsConfig(), info.is_speculative(), base::TimeDelta());
1888 return rv;
1891 // Next we need to attach our request to a "job". This job is responsible for
1892 // calling "getaddrinfo(hostname)" on a worker thread.
1894 JobMap::iterator jobit = jobs_.find(key);
1895 Job* job;
1896 if (jobit == jobs_.end()) {
1897 job =
1898 new Job(weak_ptr_factory_.GetWeakPtr(), key, priority, request_net_log);
1899 job->Schedule(false);
1901 // Check for queue overflow.
1902 if (dispatcher_->num_queued_jobs() > max_queued_jobs_) {
1903 Job* evicted = static_cast<Job*>(dispatcher_->EvictOldestLowest());
1904 DCHECK(evicted);
1905 evicted->OnEvicted(); // Deletes |evicted|.
1906 if (evicted == job) {
1907 rv = ERR_HOST_RESOLVER_QUEUE_TOO_LARGE;
1908 LogFinishRequest(source_net_log, request_net_log, info, rv);
1909 return rv;
1912 jobs_.insert(jobit, std::make_pair(key, job));
1913 } else {
1914 job = jobit->second;
1917 // Can't complete synchronously. Create and attach request.
1918 scoped_ptr<Request> req(new Request(
1919 source_net_log, request_net_log, info, priority, callback, addresses));
1920 if (out_req)
1921 *out_req = reinterpret_cast<RequestHandle>(req.get());
1923 job->AddRequest(req.Pass());
1924 // Completion happens during Job::CompleteRequests().
1925 return ERR_IO_PENDING;
1928 int HostResolverImpl::ResolveHelper(const Key& key,
1929 const RequestInfo& info,
1930 AddressList* addresses,
1931 const BoundNetLog& request_net_log) {
1932 // The result of |getaddrinfo| for empty hosts is inconsistent across systems.
1933 // On Windows it gives the default interface's address, whereas on Linux it
1934 // gives an error. We will make it fail on all platforms for consistency.
1935 if (info.hostname().empty() || info.hostname().size() > kMaxHostLength)
1936 return ERR_NAME_NOT_RESOLVED;
1938 int net_error = ERR_UNEXPECTED;
1939 if (ResolveAsIP(key, info, &net_error, addresses))
1940 return net_error;
1941 if (ServeFromCache(key, info, &net_error, addresses)) {
1942 request_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_CACHE_HIT);
1943 return net_error;
1945 // TODO(szym): Do not do this if nsswitch.conf instructs not to.
1946 // http://crbug.com/117655
1947 if (ServeFromHosts(key, info, addresses)) {
1948 request_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_HOSTS_HIT);
1949 return OK;
1951 return ERR_DNS_CACHE_MISS;
1954 int HostResolverImpl::ResolveFromCache(const RequestInfo& info,
1955 AddressList* addresses,
1956 const BoundNetLog& source_net_log) {
1957 DCHECK(CalledOnValidThread());
1958 DCHECK(addresses);
1960 // Make a log item for the request.
1961 BoundNetLog request_net_log = BoundNetLog::Make(net_log_,
1962 NetLog::SOURCE_HOST_RESOLVER_IMPL_REQUEST);
1964 // Update the net log and notify registered observers.
1965 LogStartRequest(source_net_log, request_net_log, info);
1967 Key key = GetEffectiveKeyForRequest(info, request_net_log);
1969 int rv = ResolveHelper(key, info, addresses, request_net_log);
1970 LogFinishRequest(source_net_log, request_net_log, info, rv);
1971 return rv;
1974 void HostResolverImpl::CancelRequest(RequestHandle req_handle) {
1975 DCHECK(CalledOnValidThread());
1976 Request* req = reinterpret_cast<Request*>(req_handle);
1977 DCHECK(req);
1978 Job* job = req->job();
1979 DCHECK(job);
1980 job->CancelRequest(req);
1983 void HostResolverImpl::SetDefaultAddressFamily(AddressFamily address_family) {
1984 DCHECK(CalledOnValidThread());
1985 default_address_family_ = address_family;
1986 probe_ipv6_support_ = false;
1989 AddressFamily HostResolverImpl::GetDefaultAddressFamily() const {
1990 return default_address_family_;
1993 void HostResolverImpl::SetDnsClientEnabled(bool enabled) {
1994 DCHECK(CalledOnValidThread());
1995 #if defined(ENABLE_BUILT_IN_DNS)
1996 if (enabled && !dns_client_) {
1997 SetDnsClient(DnsClient::CreateClient(net_log_));
1998 } else if (!enabled && dns_client_) {
1999 SetDnsClient(scoped_ptr<DnsClient>());
2001 #endif
2004 HostCache* HostResolverImpl::GetHostCache() {
2005 return cache_.get();
2008 base::Value* HostResolverImpl::GetDnsConfigAsValue() const {
2009 // Check if async DNS is disabled.
2010 if (!dns_client_.get())
2011 return NULL;
2013 // Check if async DNS is enabled, but we currently have no configuration
2014 // for it.
2015 const DnsConfig* dns_config = dns_client_->GetConfig();
2016 if (dns_config == NULL)
2017 return new base::DictionaryValue();
2019 return dns_config->ToValue();
2022 bool HostResolverImpl::ResolveAsIP(const Key& key,
2023 const RequestInfo& info,
2024 int* net_error,
2025 AddressList* addresses) {
2026 DCHECK(addresses);
2027 DCHECK(net_error);
2028 IPAddressNumber ip_number;
2029 if (!ParseIPLiteralToNumber(key.hostname, &ip_number))
2030 return false;
2032 DCHECK_EQ(key.host_resolver_flags &
2033 ~(HOST_RESOLVER_CANONNAME | HOST_RESOLVER_LOOPBACK_ONLY |
2034 HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6),
2035 0) << " Unhandled flag";
2037 *net_error = OK;
2038 AddressFamily family = GetAddressFamily(ip_number);
2039 if (family == ADDRESS_FAMILY_IPV6 &&
2040 !probe_ipv6_support_ &&
2041 default_address_family_ == ADDRESS_FAMILY_IPV4) {
2042 // Don't return IPv6 addresses if default address family is set to IPv4,
2043 // and probes are disabled.
2044 *net_error = ERR_NAME_NOT_RESOLVED;
2045 } else if (key.address_family != ADDRESS_FAMILY_UNSPECIFIED &&
2046 key.address_family != family) {
2047 // Don't return IPv6 addresses for IPv4 queries, and vice versa.
2048 *net_error = ERR_NAME_NOT_RESOLVED;
2049 } else {
2050 *addresses = AddressList::CreateFromIPAddress(ip_number, info.port());
2051 if (key.host_resolver_flags & HOST_RESOLVER_CANONNAME)
2052 addresses->SetDefaultCanonicalName();
2054 return true;
2057 bool HostResolverImpl::ServeFromCache(const Key& key,
2058 const RequestInfo& info,
2059 int* net_error,
2060 AddressList* addresses) {
2061 DCHECK(addresses);
2062 DCHECK(net_error);
2063 if (!info.allow_cached_response() || !cache_.get())
2064 return false;
2066 const HostCache::Entry* cache_entry = cache_->Lookup(
2067 key, base::TimeTicks::Now());
2068 if (!cache_entry)
2069 return false;
2071 *net_error = cache_entry->error;
2072 if (*net_error == OK) {
2073 if (cache_entry->has_ttl())
2074 RecordTTL(cache_entry->ttl);
2075 *addresses = EnsurePortOnAddressList(cache_entry->addrlist, info.port());
2077 return true;
2080 bool HostResolverImpl::ServeFromHosts(const Key& key,
2081 const RequestInfo& info,
2082 AddressList* addresses) {
2083 DCHECK(addresses);
2084 if (!HaveDnsConfig())
2085 return false;
2086 addresses->clear();
2088 // HOSTS lookups are case-insensitive.
2089 std::string hostname = base::StringToLowerASCII(key.hostname);
2091 const DnsHosts& hosts = dns_client_->GetConfig()->hosts;
2093 // If |address_family| is ADDRESS_FAMILY_UNSPECIFIED other implementations
2094 // (glibc and c-ares) return the first matching line. We have more
2095 // flexibility, but lose implicit ordering.
2096 // We prefer IPv6 because "happy eyeballs" will fall back to IPv4 if
2097 // necessary.
2098 if (key.address_family == ADDRESS_FAMILY_IPV6 ||
2099 key.address_family == ADDRESS_FAMILY_UNSPECIFIED) {
2100 DnsHosts::const_iterator it = hosts.find(
2101 DnsHostsKey(hostname, ADDRESS_FAMILY_IPV6));
2102 if (it != hosts.end())
2103 addresses->push_back(IPEndPoint(it->second, info.port()));
2106 if (key.address_family == ADDRESS_FAMILY_IPV4 ||
2107 key.address_family == ADDRESS_FAMILY_UNSPECIFIED) {
2108 DnsHosts::const_iterator it = hosts.find(
2109 DnsHostsKey(hostname, ADDRESS_FAMILY_IPV4));
2110 if (it != hosts.end())
2111 addresses->push_back(IPEndPoint(it->second, info.port()));
2114 // If got only loopback addresses and the family was restricted, resolve
2115 // again, without restrictions. See SystemHostResolverCall for rationale.
2116 if ((key.host_resolver_flags &
2117 HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6) &&
2118 IsAllIPv4Loopback(*addresses)) {
2119 Key new_key(key);
2120 new_key.address_family = ADDRESS_FAMILY_UNSPECIFIED;
2121 new_key.host_resolver_flags &=
2122 ~HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6;
2123 return ServeFromHosts(new_key, info, addresses);
2125 return !addresses->empty();
2128 void HostResolverImpl::CacheResult(const Key& key,
2129 const HostCache::Entry& entry,
2130 base::TimeDelta ttl) {
2131 if (cache_.get())
2132 cache_->Set(key, entry, base::TimeTicks::Now(), ttl);
2135 void HostResolverImpl::RemoveJob(Job* job) {
2136 DCHECK(job);
2137 JobMap::iterator it = jobs_.find(job->key());
2138 if (it != jobs_.end() && it->second == job)
2139 jobs_.erase(it);
2142 void HostResolverImpl::SetHaveOnlyLoopbackAddresses(bool result) {
2143 if (result) {
2144 additional_resolver_flags_ |= HOST_RESOLVER_LOOPBACK_ONLY;
2145 } else {
2146 additional_resolver_flags_ &= ~HOST_RESOLVER_LOOPBACK_ONLY;
2150 HostResolverImpl::Key HostResolverImpl::GetEffectiveKeyForRequest(
2151 const RequestInfo& info, const BoundNetLog& net_log) const {
2152 HostResolverFlags effective_flags =
2153 info.host_resolver_flags() | additional_resolver_flags_;
2154 AddressFamily effective_address_family = info.address_family();
2156 if (info.address_family() == ADDRESS_FAMILY_UNSPECIFIED) {
2157 if (probe_ipv6_support_ && !use_local_ipv6_) {
2158 base::TimeTicks start_time = base::TimeTicks::Now();
2159 // Google DNS address.
2160 const uint8 kIPv6Address[] =
2161 { 0x20, 0x01, 0x48, 0x60, 0x48, 0x60, 0x00, 0x00,
2162 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x88, 0x88 };
2163 IPAddressNumber address(kIPv6Address,
2164 kIPv6Address + arraysize(kIPv6Address));
2165 BoundNetLog probe_net_log = BoundNetLog::Make(
2166 net_log.net_log(), NetLog::SOURCE_IPV6_REACHABILITY_CHECK);
2167 probe_net_log.BeginEvent(NetLog::TYPE_IPV6_REACHABILITY_CHECK,
2168 net_log.source().ToEventParametersCallback());
2169 bool rv6 = IsGloballyReachable(address, probe_net_log);
2170 probe_net_log.EndEvent(NetLog::TYPE_IPV6_REACHABILITY_CHECK);
2171 if (rv6)
2172 net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_IPV6_SUPPORTED);
2174 UMA_HISTOGRAM_TIMES("Net.IPv6ConnectDuration",
2175 base::TimeTicks::Now() - start_time);
2176 if (rv6) {
2177 UMA_HISTOGRAM_BOOLEAN("Net.IPv6ConnectSuccessMatch",
2178 default_address_family_ == ADDRESS_FAMILY_UNSPECIFIED);
2179 } else {
2180 UMA_HISTOGRAM_BOOLEAN("Net.IPv6ConnectFailureMatch",
2181 default_address_family_ != ADDRESS_FAMILY_UNSPECIFIED);
2183 effective_address_family = ADDRESS_FAMILY_IPV4;
2184 effective_flags |= HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6;
2186 } else {
2187 effective_address_family = default_address_family_;
2191 return Key(info.hostname(), effective_address_family, effective_flags);
2194 void HostResolverImpl::AbortAllInProgressJobs() {
2195 // In Abort, a Request callback could spawn new Jobs with matching keys, so
2196 // first collect and remove all running jobs from |jobs_|.
2197 ScopedVector<Job> jobs_to_abort;
2198 for (JobMap::iterator it = jobs_.begin(); it != jobs_.end(); ) {
2199 Job* job = it->second;
2200 if (job->is_running()) {
2201 jobs_to_abort.push_back(job);
2202 jobs_.erase(it++);
2203 } else {
2204 DCHECK(job->is_queued());
2205 ++it;
2209 // Pause the dispatcher so it won't start any new dispatcher jobs while
2210 // aborting the old ones. This is needed so that it won't start the second
2211 // DnsTransaction for a job in |jobs_to_abort| if the DnsConfig just became
2212 // invalid.
2213 PrioritizedDispatcher::Limits limits = dispatcher_->GetLimits();
2214 dispatcher_->SetLimits(
2215 PrioritizedDispatcher::Limits(limits.reserved_slots.size(), 0));
2217 // Life check to bail once |this| is deleted.
2218 base::WeakPtr<HostResolverImpl> self = weak_ptr_factory_.GetWeakPtr();
2220 // Then Abort them.
2221 for (size_t i = 0; self.get() && i < jobs_to_abort.size(); ++i) {
2222 jobs_to_abort[i]->Abort();
2223 jobs_to_abort[i] = NULL;
2226 if (self)
2227 dispatcher_->SetLimits(limits);
2230 void HostResolverImpl::AbortDnsTasks() {
2231 // Pause the dispatcher so it won't start any new dispatcher jobs while
2232 // aborting the old ones. This is needed so that it won't start the second
2233 // DnsTransaction for a job if the DnsConfig just changed.
2234 PrioritizedDispatcher::Limits limits = dispatcher_->GetLimits();
2235 dispatcher_->SetLimits(
2236 PrioritizedDispatcher::Limits(limits.reserved_slots.size(), 0));
2238 for (JobMap::iterator it = jobs_.begin(); it != jobs_.end(); ++it)
2239 it->second->AbortDnsTask();
2240 dispatcher_->SetLimits(limits);
2243 void HostResolverImpl::TryServingAllJobsFromHosts() {
2244 if (!HaveDnsConfig())
2245 return;
2247 // TODO(szym): Do not do this if nsswitch.conf instructs not to.
2248 // http://crbug.com/117655
2250 // Life check to bail once |this| is deleted.
2251 base::WeakPtr<HostResolverImpl> self = weak_ptr_factory_.GetWeakPtr();
2253 for (JobMap::iterator it = jobs_.begin(); self.get() && it != jobs_.end();) {
2254 Job* job = it->second;
2255 ++it;
2256 // This could remove |job| from |jobs_|, but iterator will remain valid.
2257 job->ServeFromHosts();
2261 void HostResolverImpl::OnIPAddressChanged() {
2262 resolved_known_ipv6_hostname_ = false;
2263 // Abandon all ProbeJobs.
2264 probe_weak_ptr_factory_.InvalidateWeakPtrs();
2265 if (cache_.get())
2266 cache_->clear();
2267 #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_ANDROID)
2268 new LoopbackProbeJob(probe_weak_ptr_factory_.GetWeakPtr());
2269 #endif
2270 AbortAllInProgressJobs();
2271 // |this| may be deleted inside AbortAllInProgressJobs().
2274 void HostResolverImpl::OnDNSChanged() {
2275 DnsConfig dns_config;
2276 NetworkChangeNotifier::GetDnsConfig(&dns_config);
2278 if (net_log_) {
2279 net_log_->AddGlobalEntry(
2280 NetLog::TYPE_DNS_CONFIG_CHANGED,
2281 base::Bind(&NetLogDnsConfigCallback, &dns_config));
2284 // TODO(szym): Remove once http://crbug.com/137914 is resolved.
2285 received_dns_config_ = dns_config.IsValid();
2286 // Conservatively assume local IPv6 is needed when DnsConfig is not valid.
2287 use_local_ipv6_ = !dns_config.IsValid() || dns_config.use_local_ipv6;
2289 num_dns_failures_ = 0;
2291 // We want a new DnsSession in place, before we Abort running Jobs, so that
2292 // the newly started jobs use the new config.
2293 if (dns_client_.get()) {
2294 dns_client_->SetConfig(dns_config);
2295 if (dns_client_->GetConfig())
2296 UMA_HISTOGRAM_BOOLEAN("AsyncDNS.DnsClientEnabled", true);
2299 // If the DNS server has changed, existing cached info could be wrong so we
2300 // have to drop our internal cache :( Note that OS level DNS caches, such
2301 // as NSCD's cache should be dropped automatically by the OS when
2302 // resolv.conf changes so we don't need to do anything to clear that cache.
2303 if (cache_.get())
2304 cache_->clear();
2306 // Life check to bail once |this| is deleted.
2307 base::WeakPtr<HostResolverImpl> self = weak_ptr_factory_.GetWeakPtr();
2309 // Existing jobs will have been sent to the original server so they need to
2310 // be aborted.
2311 AbortAllInProgressJobs();
2313 // |this| may be deleted inside AbortAllInProgressJobs().
2314 if (self.get())
2315 TryServingAllJobsFromHosts();
2318 bool HostResolverImpl::HaveDnsConfig() const {
2319 // Use DnsClient only if it's fully configured and there is no override by
2320 // ScopedDefaultHostResolverProc.
2321 // The alternative is to use NetworkChangeNotifier to override DnsConfig,
2322 // but that would introduce construction order requirements for NCN and SDHRP.
2323 return (dns_client_.get() != NULL) && (dns_client_->GetConfig() != NULL) &&
2324 !(proc_params_.resolver_proc.get() == NULL &&
2325 HostResolverProc::GetDefault() != NULL);
2328 void HostResolverImpl::OnDnsTaskResolve(int net_error) {
2329 DCHECK(dns_client_);
2330 if (net_error == OK) {
2331 num_dns_failures_ = 0;
2332 return;
2334 ++num_dns_failures_;
2335 if (num_dns_failures_ < kMaximumDnsFailures)
2336 return;
2338 // Disable DnsClient until the next DNS change. Must be done before aborting
2339 // DnsTasks, since doing so may start new jobs.
2340 dns_client_->SetConfig(DnsConfig());
2342 // Switch jobs with active DnsTasks over to using ProcTasks.
2343 AbortDnsTasks();
2345 UMA_HISTOGRAM_BOOLEAN("AsyncDNS.DnsClientEnabled", false);
2346 UMA_HISTOGRAM_CUSTOM_ENUMERATION("AsyncDNS.DnsClientDisabledReason",
2347 std::abs(net_error),
2348 GetAllErrorCodesForUma());
2351 void HostResolverImpl::SetDnsClient(scoped_ptr<DnsClient> dns_client) {
2352 // DnsClient and config must be updated before aborting DnsTasks, since doing
2353 // so may start new jobs.
2354 dns_client_ = dns_client.Pass();
2355 if (dns_client_ && !dns_client_->GetConfig() &&
2356 num_dns_failures_ < kMaximumDnsFailures) {
2357 DnsConfig dns_config;
2358 NetworkChangeNotifier::GetDnsConfig(&dns_config);
2359 dns_client_->SetConfig(dns_config);
2360 num_dns_failures_ = 0;
2361 if (dns_client_->GetConfig())
2362 UMA_HISTOGRAM_BOOLEAN("AsyncDNS.DnsClientEnabled", true);
2365 AbortDnsTasks();
2368 } // namespace net