Enable Tab Dragging Tests with Linux and Ash
[chromium-blink-merge.git] / third_party / libwebp / enc / analysis.c
blob7d4cfdc190fa5723a9b42ec05986b01aaae1dbcf
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Macroblock analysis
12 // Author: Skal (pascal.massimino@gmail.com)
14 #include <stdlib.h>
15 #include <string.h>
16 #include <assert.h>
18 #include "./vp8enci.h"
19 #include "./cost.h"
20 #include "../utils/utils.h"
22 #define MAX_ITERS_K_MEANS 6
24 //------------------------------------------------------------------------------
25 // Smooth the segment map by replacing isolated block by the majority of its
26 // neighbours.
28 static void SmoothSegmentMap(VP8Encoder* const enc) {
29 int n, x, y;
30 const int w = enc->mb_w_;
31 const int h = enc->mb_h_;
32 const int majority_cnt_3_x_3_grid = 5;
33 uint8_t* const tmp = (uint8_t*)WebPSafeMalloc((uint64_t)w * h, sizeof(*tmp));
34 assert((uint64_t)(w * h) == (uint64_t)w * h); // no overflow, as per spec
36 if (tmp == NULL) return;
37 for (y = 1; y < h - 1; ++y) {
38 for (x = 1; x < w - 1; ++x) {
39 int cnt[NUM_MB_SEGMENTS] = { 0 };
40 const VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
41 int majority_seg = mb->segment_;
42 // Check the 8 neighbouring segment values.
43 cnt[mb[-w - 1].segment_]++; // top-left
44 cnt[mb[-w + 0].segment_]++; // top
45 cnt[mb[-w + 1].segment_]++; // top-right
46 cnt[mb[ - 1].segment_]++; // left
47 cnt[mb[ + 1].segment_]++; // right
48 cnt[mb[ w - 1].segment_]++; // bottom-left
49 cnt[mb[ w + 0].segment_]++; // bottom
50 cnt[mb[ w + 1].segment_]++; // bottom-right
51 for (n = 0; n < NUM_MB_SEGMENTS; ++n) {
52 if (cnt[n] >= majority_cnt_3_x_3_grid) {
53 majority_seg = n;
54 break;
57 tmp[x + y * w] = majority_seg;
60 for (y = 1; y < h - 1; ++y) {
61 for (x = 1; x < w - 1; ++x) {
62 VP8MBInfo* const mb = &enc->mb_info_[x + w * y];
63 mb->segment_ = tmp[x + y * w];
66 free(tmp);
69 //------------------------------------------------------------------------------
70 // set segment susceptibility alpha_ / beta_
72 static WEBP_INLINE int clip(int v, int m, int M) {
73 return (v < m) ? m : (v > M) ? M : v;
76 static void SetSegmentAlphas(VP8Encoder* const enc,
77 const int centers[NUM_MB_SEGMENTS],
78 int mid) {
79 const int nb = enc->segment_hdr_.num_segments_;
80 int min = centers[0], max = centers[0];
81 int n;
83 if (nb > 1) {
84 for (n = 0; n < nb; ++n) {
85 if (min > centers[n]) min = centers[n];
86 if (max < centers[n]) max = centers[n];
89 if (max == min) max = min + 1;
90 assert(mid <= max && mid >= min);
91 for (n = 0; n < nb; ++n) {
92 const int alpha = 255 * (centers[n] - mid) / (max - min);
93 const int beta = 255 * (centers[n] - min) / (max - min);
94 enc->dqm_[n].alpha_ = clip(alpha, -127, 127);
95 enc->dqm_[n].beta_ = clip(beta, 0, 255);
99 //------------------------------------------------------------------------------
100 // Compute susceptibility based on DCT-coeff histograms:
101 // the higher, the "easier" the macroblock is to compress.
103 #define MAX_ALPHA 255 // 8b of precision for susceptibilities.
104 #define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha.
105 #define DEFAULT_ALPHA (-1)
106 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
108 static int FinalAlphaValue(int alpha) {
109 alpha = MAX_ALPHA - alpha;
110 return clip(alpha, 0, MAX_ALPHA);
113 static int GetAlpha(const VP8Histogram* const histo) {
114 int max_value = 0, last_non_zero = 1;
115 int k;
116 int alpha;
117 for (k = 0; k <= MAX_COEFF_THRESH; ++k) {
118 const int value = histo->distribution[k];
119 if (value > 0) {
120 if (value > max_value) max_value = value;
121 last_non_zero = k;
124 // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
125 // values which happen to be mostly noise. This leaves the maximum precision
126 // for handling the useful small values which contribute most.
127 alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0;
128 return alpha;
131 static void MergeHistograms(const VP8Histogram* const in,
132 VP8Histogram* const out) {
133 int i;
134 for (i = 0; i <= MAX_COEFF_THRESH; ++i) {
135 out->distribution[i] += in->distribution[i];
139 //------------------------------------------------------------------------------
140 // Simplified k-Means, to assign Nb segments based on alpha-histogram
142 static void AssignSegments(VP8Encoder* const enc,
143 const int alphas[MAX_ALPHA + 1]) {
144 const int nb = enc->segment_hdr_.num_segments_;
145 int centers[NUM_MB_SEGMENTS];
146 int weighted_average = 0;
147 int map[MAX_ALPHA + 1];
148 int a, n, k;
149 int min_a = 0, max_a = MAX_ALPHA, range_a;
150 // 'int' type is ok for histo, and won't overflow
151 int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS];
153 assert(nb >= 1);
155 // bracket the input
156 for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {}
157 min_a = n;
158 for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {}
159 max_a = n;
160 range_a = max_a - min_a;
162 // Spread initial centers evenly
163 for (k = 0, n = 1; k < nb; ++k, n += 2) {
164 assert(n < 2 * nb);
165 centers[k] = min_a + (n * range_a) / (2 * nb);
168 for (k = 0; k < MAX_ITERS_K_MEANS; ++k) { // few iters are enough
169 int total_weight;
170 int displaced;
171 // Reset stats
172 for (n = 0; n < nb; ++n) {
173 accum[n] = 0;
174 dist_accum[n] = 0;
176 // Assign nearest center for each 'a'
177 n = 0; // track the nearest center for current 'a'
178 for (a = min_a; a <= max_a; ++a) {
179 if (alphas[a]) {
180 while (n + 1 < nb && abs(a - centers[n + 1]) < abs(a - centers[n])) {
181 n++;
183 map[a] = n;
184 // accumulate contribution into best centroid
185 dist_accum[n] += a * alphas[a];
186 accum[n] += alphas[a];
189 // All point are classified. Move the centroids to the
190 // center of their respective cloud.
191 displaced = 0;
192 weighted_average = 0;
193 total_weight = 0;
194 for (n = 0; n < nb; ++n) {
195 if (accum[n]) {
196 const int new_center = (dist_accum[n] + accum[n] / 2) / accum[n];
197 displaced += abs(centers[n] - new_center);
198 centers[n] = new_center;
199 weighted_average += new_center * accum[n];
200 total_weight += accum[n];
203 weighted_average = (weighted_average + total_weight / 2) / total_weight;
204 if (displaced < 5) break; // no need to keep on looping...
207 // Map each original value to the closest centroid
208 for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
209 VP8MBInfo* const mb = &enc->mb_info_[n];
210 const int alpha = mb->alpha_;
211 mb->segment_ = map[alpha];
212 mb->alpha_ = centers[map[alpha]]; // for the record.
215 if (nb > 1) {
216 const int smooth = (enc->config_->preprocessing & 1);
217 if (smooth) SmoothSegmentMap(enc);
220 SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas.
223 //------------------------------------------------------------------------------
224 // Macroblock analysis: collect histogram for each mode, deduce the maximal
225 // susceptibility and set best modes for this macroblock.
226 // Segment assignment is done later.
228 // Number of modes to inspect for alpha_ evaluation. For high-quality settings
229 // (method >= FAST_ANALYSIS_METHOD) we don't need to test all the possible modes
230 // during the analysis phase.
231 #define FAST_ANALYSIS_METHOD 4 // method above which we do partial analysis
232 #define MAX_INTRA16_MODE 2
233 #define MAX_INTRA4_MODE 2
234 #define MAX_UV_MODE 2
236 static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) {
237 const int max_mode =
238 (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA16_MODE
239 : NUM_PRED_MODES;
240 int mode;
241 int best_alpha = DEFAULT_ALPHA;
242 int best_mode = 0;
244 VP8MakeLuma16Preds(it);
245 for (mode = 0; mode < max_mode; ++mode) {
246 VP8Histogram histo = { { 0 } };
247 int alpha;
249 VP8CollectHistogram(it->yuv_in_ + Y_OFF,
250 it->yuv_p_ + VP8I16ModeOffsets[mode],
251 0, 16, &histo);
252 alpha = GetAlpha(&histo);
253 if (IS_BETTER_ALPHA(alpha, best_alpha)) {
254 best_alpha = alpha;
255 best_mode = mode;
258 VP8SetIntra16Mode(it, best_mode);
259 return best_alpha;
262 static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it,
263 int best_alpha) {
264 uint8_t modes[16];
265 const int max_mode =
266 (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA4_MODE
267 : NUM_BMODES;
268 int i4_alpha;
269 VP8Histogram total_histo = { { 0 } };
270 int cur_histo = 0;
272 VP8IteratorStartI4(it);
273 do {
274 int mode;
275 int best_mode_alpha = DEFAULT_ALPHA;
276 VP8Histogram histos[2];
277 const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
279 VP8MakeIntra4Preds(it);
280 for (mode = 0; mode < max_mode; ++mode) {
281 int alpha;
283 memset(&histos[cur_histo], 0, sizeof(histos[cur_histo]));
284 VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode],
285 0, 1, &histos[cur_histo]);
286 alpha = GetAlpha(&histos[cur_histo]);
287 if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) {
288 best_mode_alpha = alpha;
289 modes[it->i4_] = mode;
290 cur_histo ^= 1; // keep track of best histo so far.
293 // accumulate best histogram
294 MergeHistograms(&histos[cur_histo ^ 1], &total_histo);
295 // Note: we reuse the original samples for predictors
296 } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
298 i4_alpha = GetAlpha(&total_histo);
299 if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) {
300 VP8SetIntra4Mode(it, modes);
301 best_alpha = i4_alpha;
303 return best_alpha;
306 static int MBAnalyzeBestUVMode(VP8EncIterator* const it) {
307 int best_alpha = DEFAULT_ALPHA;
308 int best_mode = 0;
309 const int max_mode =
310 (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_UV_MODE
311 : NUM_PRED_MODES;
312 int mode;
313 VP8MakeChroma8Preds(it);
314 for (mode = 0; mode < max_mode; ++mode) {
315 VP8Histogram histo = { { 0 } };
316 int alpha;
317 VP8CollectHistogram(it->yuv_in_ + U_OFF,
318 it->yuv_p_ + VP8UVModeOffsets[mode],
319 16, 16 + 4 + 4, &histo);
320 alpha = GetAlpha(&histo);
321 if (IS_BETTER_ALPHA(alpha, best_alpha)) {
322 best_alpha = alpha;
323 best_mode = mode;
326 VP8SetIntraUVMode(it, best_mode);
327 return best_alpha;
330 static void MBAnalyze(VP8EncIterator* const it,
331 int alphas[MAX_ALPHA + 1],
332 int* const alpha, int* const uv_alpha) {
333 const VP8Encoder* const enc = it->enc_;
334 int best_alpha, best_uv_alpha;
336 VP8SetIntra16Mode(it, 0); // default: Intra16, DC_PRED
337 VP8SetSkip(it, 0); // not skipped
338 VP8SetSegment(it, 0); // default segment, spec-wise.
340 best_alpha = MBAnalyzeBestIntra16Mode(it);
341 if (enc->method_ >= 5) {
342 // We go and make a fast decision for intra4/intra16.
343 // It's usually not a good and definitive pick, but helps seeding the stats
344 // about level bit-cost.
345 // TODO(skal): improve criterion.
346 best_alpha = MBAnalyzeBestIntra4Mode(it, best_alpha);
348 best_uv_alpha = MBAnalyzeBestUVMode(it);
350 // Final susceptibility mix
351 best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2;
352 best_alpha = FinalAlphaValue(best_alpha);
353 alphas[best_alpha]++;
354 it->mb_->alpha_ = best_alpha; // for later remapping.
356 // Accumulate for later complexity analysis.
357 *alpha += best_alpha; // mixed susceptibility (not just luma)
358 *uv_alpha += best_uv_alpha;
361 static void DefaultMBInfo(VP8MBInfo* const mb) {
362 mb->type_ = 1; // I16x16
363 mb->uv_mode_ = 0;
364 mb->skip_ = 0; // not skipped
365 mb->segment_ = 0; // default segment
366 mb->alpha_ = 0;
369 //------------------------------------------------------------------------------
370 // Main analysis loop:
371 // Collect all susceptibilities for each macroblock and record their
372 // distribution in alphas[]. Segments is assigned a-posteriori, based on
373 // this histogram.
374 // We also pick an intra16 prediction mode, which shouldn't be considered
375 // final except for fast-encode settings. We can also pick some intra4 modes
376 // and decide intra4/intra16, but that's usually almost always a bad choice at
377 // this stage.
379 static void ResetAllMBInfo(VP8Encoder* const enc) {
380 int n;
381 for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) {
382 DefaultMBInfo(&enc->mb_info_[n]);
384 // Default susceptibilities.
385 enc->dqm_[0].alpha_ = 0;
386 enc->dqm_[0].beta_ = 0;
387 // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
388 enc->alpha_ = 0;
389 enc->uv_alpha_ = 0;
390 WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_);
393 // struct used to collect job result
394 typedef struct {
395 WebPWorker worker;
396 int alphas[MAX_ALPHA + 1];
397 int alpha, uv_alpha;
398 VP8EncIterator it;
399 int delta_progress;
400 } SegmentJob;
402 // main work call
403 static int DoSegmentsJob(SegmentJob* const job, VP8EncIterator* const it) {
404 int ok = 1;
405 if (!VP8IteratorIsDone(it)) {
406 uint8_t tmp[32 + ALIGN_CST];
407 uint8_t* const scratch = (uint8_t*)DO_ALIGN(tmp);
408 do {
409 // Let's pretend we have perfect lossless reconstruction.
410 VP8IteratorImport(it, scratch);
411 MBAnalyze(it, job->alphas, &job->alpha, &job->uv_alpha);
412 ok = VP8IteratorProgress(it, job->delta_progress);
413 } while (ok && VP8IteratorNext(it));
415 return ok;
418 static void MergeJobs(const SegmentJob* const src, SegmentJob* const dst) {
419 int i;
420 for (i = 0; i <= MAX_ALPHA; ++i) dst->alphas[i] += src->alphas[i];
421 dst->alpha += src->alpha;
422 dst->uv_alpha += src->uv_alpha;
425 // initialize the job struct with some TODOs
426 static void InitSegmentJob(VP8Encoder* const enc, SegmentJob* const job,
427 int start_row, int end_row) {
428 WebPWorkerInit(&job->worker);
429 job->worker.data1 = job;
430 job->worker.data2 = &job->it;
431 job->worker.hook = (WebPWorkerHook)DoSegmentsJob;
432 VP8IteratorInit(enc, &job->it);
433 VP8IteratorSetRow(&job->it, start_row);
434 VP8IteratorSetCountDown(&job->it, (end_row - start_row) * enc->mb_w_);
435 memset(job->alphas, 0, sizeof(job->alphas));
436 job->alpha = 0;
437 job->uv_alpha = 0;
438 // only one of both jobs can record the progress, since we don't
439 // expect the user's hook to be multi-thread safe
440 job->delta_progress = (start_row == 0) ? 20 : 0;
443 // main entry point
444 int VP8EncAnalyze(VP8Encoder* const enc) {
445 int ok = 1;
446 const int do_segments =
447 enc->config_->emulate_jpeg_size || // We need the complexity evaluation.
448 (enc->segment_hdr_.num_segments_ > 1) ||
449 (enc->method_ == 0); // for method 0, we need preds_[] to be filled.
450 if (do_segments) {
451 const int last_row = enc->mb_h_;
452 // We give a little more than a half work to the main thread.
453 const int split_row = (9 * last_row + 15) >> 4;
454 const int total_mb = last_row * enc->mb_w_;
455 #ifdef WEBP_USE_THREAD
456 const int kMinSplitRow = 2; // minimal rows needed for mt to be worth it
457 const int do_mt = (enc->thread_level_ > 0) && (split_row >= kMinSplitRow);
458 #else
459 const int do_mt = 0;
460 #endif
461 SegmentJob main_job;
462 if (do_mt) {
463 SegmentJob side_job;
464 // Note the use of '&' instead of '&&' because we must call the functions
465 // no matter what.
466 InitSegmentJob(enc, &main_job, 0, split_row);
467 InitSegmentJob(enc, &side_job, split_row, last_row);
468 // we don't need to call Reset() on main_job.worker, since we're calling
469 // WebPWorkerExecute() on it
470 ok &= WebPWorkerReset(&side_job.worker);
471 // launch the two jobs in parallel
472 if (ok) {
473 WebPWorkerLaunch(&side_job.worker);
474 WebPWorkerExecute(&main_job.worker);
475 ok &= WebPWorkerSync(&side_job.worker);
476 ok &= WebPWorkerSync(&main_job.worker);
478 WebPWorkerEnd(&side_job.worker);
479 if (ok) MergeJobs(&side_job, &main_job); // merge results together
480 } else {
481 // Even for single-thread case, we use the generic Worker tools.
482 InitSegmentJob(enc, &main_job, 0, last_row);
483 WebPWorkerExecute(&main_job.worker);
484 ok &= WebPWorkerSync(&main_job.worker);
486 WebPWorkerEnd(&main_job.worker);
487 if (ok) {
488 enc->alpha_ = main_job.alpha / total_mb;
489 enc->uv_alpha_ = main_job.uv_alpha / total_mb;
490 AssignSegments(enc, main_job.alphas);
492 } else { // Use only one default segment.
493 ResetAllMBInfo(enc);
495 return ok;