1 // Copyright 2011 Google Inc. All Rights Reserved.
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
10 // Macroblock analysis
12 // Author: Skal (pascal.massimino@gmail.com)
18 #include "./vp8enci.h"
20 #include "../utils/utils.h"
22 #define MAX_ITERS_K_MEANS 6
24 //------------------------------------------------------------------------------
25 // Smooth the segment map by replacing isolated block by the majority of its
28 static void SmoothSegmentMap(VP8Encoder
* const enc
) {
30 const int w
= enc
->mb_w_
;
31 const int h
= enc
->mb_h_
;
32 const int majority_cnt_3_x_3_grid
= 5;
33 uint8_t* const tmp
= (uint8_t*)WebPSafeMalloc((uint64_t)w
* h
, sizeof(*tmp
));
34 assert((uint64_t)(w
* h
) == (uint64_t)w
* h
); // no overflow, as per spec
36 if (tmp
== NULL
) return;
37 for (y
= 1; y
< h
- 1; ++y
) {
38 for (x
= 1; x
< w
- 1; ++x
) {
39 int cnt
[NUM_MB_SEGMENTS
] = { 0 };
40 const VP8MBInfo
* const mb
= &enc
->mb_info_
[x
+ w
* y
];
41 int majority_seg
= mb
->segment_
;
42 // Check the 8 neighbouring segment values.
43 cnt
[mb
[-w
- 1].segment_
]++; // top-left
44 cnt
[mb
[-w
+ 0].segment_
]++; // top
45 cnt
[mb
[-w
+ 1].segment_
]++; // top-right
46 cnt
[mb
[ - 1].segment_
]++; // left
47 cnt
[mb
[ + 1].segment_
]++; // right
48 cnt
[mb
[ w
- 1].segment_
]++; // bottom-left
49 cnt
[mb
[ w
+ 0].segment_
]++; // bottom
50 cnt
[mb
[ w
+ 1].segment_
]++; // bottom-right
51 for (n
= 0; n
< NUM_MB_SEGMENTS
; ++n
) {
52 if (cnt
[n
] >= majority_cnt_3_x_3_grid
) {
57 tmp
[x
+ y
* w
] = majority_seg
;
60 for (y
= 1; y
< h
- 1; ++y
) {
61 for (x
= 1; x
< w
- 1; ++x
) {
62 VP8MBInfo
* const mb
= &enc
->mb_info_
[x
+ w
* y
];
63 mb
->segment_
= tmp
[x
+ y
* w
];
69 //------------------------------------------------------------------------------
70 // set segment susceptibility alpha_ / beta_
72 static WEBP_INLINE
int clip(int v
, int m
, int M
) {
73 return (v
< m
) ? m
: (v
> M
) ? M
: v
;
76 static void SetSegmentAlphas(VP8Encoder
* const enc
,
77 const int centers
[NUM_MB_SEGMENTS
],
79 const int nb
= enc
->segment_hdr_
.num_segments_
;
80 int min
= centers
[0], max
= centers
[0];
84 for (n
= 0; n
< nb
; ++n
) {
85 if (min
> centers
[n
]) min
= centers
[n
];
86 if (max
< centers
[n
]) max
= centers
[n
];
89 if (max
== min
) max
= min
+ 1;
90 assert(mid
<= max
&& mid
>= min
);
91 for (n
= 0; n
< nb
; ++n
) {
92 const int alpha
= 255 * (centers
[n
] - mid
) / (max
- min
);
93 const int beta
= 255 * (centers
[n
] - min
) / (max
- min
);
94 enc
->dqm_
[n
].alpha_
= clip(alpha
, -127, 127);
95 enc
->dqm_
[n
].beta_
= clip(beta
, 0, 255);
99 //------------------------------------------------------------------------------
100 // Compute susceptibility based on DCT-coeff histograms:
101 // the higher, the "easier" the macroblock is to compress.
103 #define MAX_ALPHA 255 // 8b of precision for susceptibilities.
104 #define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha.
105 #define DEFAULT_ALPHA (-1)
106 #define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha))
108 static int FinalAlphaValue(int alpha
) {
109 alpha
= MAX_ALPHA
- alpha
;
110 return clip(alpha
, 0, MAX_ALPHA
);
113 static int GetAlpha(const VP8Histogram
* const histo
) {
114 int max_value
= 0, last_non_zero
= 1;
117 for (k
= 0; k
<= MAX_COEFF_THRESH
; ++k
) {
118 const int value
= histo
->distribution
[k
];
120 if (value
> max_value
) max_value
= value
;
124 // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer
125 // values which happen to be mostly noise. This leaves the maximum precision
126 // for handling the useful small values which contribute most.
127 alpha
= (max_value
> 1) ? ALPHA_SCALE
* last_non_zero
/ max_value
: 0;
131 static void MergeHistograms(const VP8Histogram
* const in
,
132 VP8Histogram
* const out
) {
134 for (i
= 0; i
<= MAX_COEFF_THRESH
; ++i
) {
135 out
->distribution
[i
] += in
->distribution
[i
];
139 //------------------------------------------------------------------------------
140 // Simplified k-Means, to assign Nb segments based on alpha-histogram
142 static void AssignSegments(VP8Encoder
* const enc
,
143 const int alphas
[MAX_ALPHA
+ 1]) {
144 const int nb
= enc
->segment_hdr_
.num_segments_
;
145 int centers
[NUM_MB_SEGMENTS
];
146 int weighted_average
= 0;
147 int map
[MAX_ALPHA
+ 1];
149 int min_a
= 0, max_a
= MAX_ALPHA
, range_a
;
150 // 'int' type is ok for histo, and won't overflow
151 int accum
[NUM_MB_SEGMENTS
], dist_accum
[NUM_MB_SEGMENTS
];
156 for (n
= 0; n
<= MAX_ALPHA
&& alphas
[n
] == 0; ++n
) {}
158 for (n
= MAX_ALPHA
; n
> min_a
&& alphas
[n
] == 0; --n
) {}
160 range_a
= max_a
- min_a
;
162 // Spread initial centers evenly
163 for (k
= 0, n
= 1; k
< nb
; ++k
, n
+= 2) {
165 centers
[k
] = min_a
+ (n
* range_a
) / (2 * nb
);
168 for (k
= 0; k
< MAX_ITERS_K_MEANS
; ++k
) { // few iters are enough
172 for (n
= 0; n
< nb
; ++n
) {
176 // Assign nearest center for each 'a'
177 n
= 0; // track the nearest center for current 'a'
178 for (a
= min_a
; a
<= max_a
; ++a
) {
180 while (n
+ 1 < nb
&& abs(a
- centers
[n
+ 1]) < abs(a
- centers
[n
])) {
184 // accumulate contribution into best centroid
185 dist_accum
[n
] += a
* alphas
[a
];
186 accum
[n
] += alphas
[a
];
189 // All point are classified. Move the centroids to the
190 // center of their respective cloud.
192 weighted_average
= 0;
194 for (n
= 0; n
< nb
; ++n
) {
196 const int new_center
= (dist_accum
[n
] + accum
[n
] / 2) / accum
[n
];
197 displaced
+= abs(centers
[n
] - new_center
);
198 centers
[n
] = new_center
;
199 weighted_average
+= new_center
* accum
[n
];
200 total_weight
+= accum
[n
];
203 weighted_average
= (weighted_average
+ total_weight
/ 2) / total_weight
;
204 if (displaced
< 5) break; // no need to keep on looping...
207 // Map each original value to the closest centroid
208 for (n
= 0; n
< enc
->mb_w_
* enc
->mb_h_
; ++n
) {
209 VP8MBInfo
* const mb
= &enc
->mb_info_
[n
];
210 const int alpha
= mb
->alpha_
;
211 mb
->segment_
= map
[alpha
];
212 mb
->alpha_
= centers
[map
[alpha
]]; // for the record.
216 const int smooth
= (enc
->config_
->preprocessing
& 1);
217 if (smooth
) SmoothSegmentMap(enc
);
220 SetSegmentAlphas(enc
, centers
, weighted_average
); // pick some alphas.
223 //------------------------------------------------------------------------------
224 // Macroblock analysis: collect histogram for each mode, deduce the maximal
225 // susceptibility and set best modes for this macroblock.
226 // Segment assignment is done later.
228 // Number of modes to inspect for alpha_ evaluation. For high-quality settings
229 // (method >= FAST_ANALYSIS_METHOD) we don't need to test all the possible modes
230 // during the analysis phase.
231 #define FAST_ANALYSIS_METHOD 4 // method above which we do partial analysis
232 #define MAX_INTRA16_MODE 2
233 #define MAX_INTRA4_MODE 2
234 #define MAX_UV_MODE 2
236 static int MBAnalyzeBestIntra16Mode(VP8EncIterator
* const it
) {
238 (it
->enc_
->method_
>= FAST_ANALYSIS_METHOD
) ? MAX_INTRA16_MODE
241 int best_alpha
= DEFAULT_ALPHA
;
244 VP8MakeLuma16Preds(it
);
245 for (mode
= 0; mode
< max_mode
; ++mode
) {
246 VP8Histogram histo
= { { 0 } };
249 VP8CollectHistogram(it
->yuv_in_
+ Y_OFF
,
250 it
->yuv_p_
+ VP8I16ModeOffsets
[mode
],
252 alpha
= GetAlpha(&histo
);
253 if (IS_BETTER_ALPHA(alpha
, best_alpha
)) {
258 VP8SetIntra16Mode(it
, best_mode
);
262 static int MBAnalyzeBestIntra4Mode(VP8EncIterator
* const it
,
266 (it
->enc_
->method_
>= FAST_ANALYSIS_METHOD
) ? MAX_INTRA4_MODE
269 VP8Histogram total_histo
= { { 0 } };
272 VP8IteratorStartI4(it
);
275 int best_mode_alpha
= DEFAULT_ALPHA
;
276 VP8Histogram histos
[2];
277 const uint8_t* const src
= it
->yuv_in_
+ Y_OFF
+ VP8Scan
[it
->i4_
];
279 VP8MakeIntra4Preds(it
);
280 for (mode
= 0; mode
< max_mode
; ++mode
) {
283 memset(&histos
[cur_histo
], 0, sizeof(histos
[cur_histo
]));
284 VP8CollectHistogram(src
, it
->yuv_p_
+ VP8I4ModeOffsets
[mode
],
285 0, 1, &histos
[cur_histo
]);
286 alpha
= GetAlpha(&histos
[cur_histo
]);
287 if (IS_BETTER_ALPHA(alpha
, best_mode_alpha
)) {
288 best_mode_alpha
= alpha
;
289 modes
[it
->i4_
] = mode
;
290 cur_histo
^= 1; // keep track of best histo so far.
293 // accumulate best histogram
294 MergeHistograms(&histos
[cur_histo
^ 1], &total_histo
);
295 // Note: we reuse the original samples for predictors
296 } while (VP8IteratorRotateI4(it
, it
->yuv_in_
+ Y_OFF
));
298 i4_alpha
= GetAlpha(&total_histo
);
299 if (IS_BETTER_ALPHA(i4_alpha
, best_alpha
)) {
300 VP8SetIntra4Mode(it
, modes
);
301 best_alpha
= i4_alpha
;
306 static int MBAnalyzeBestUVMode(VP8EncIterator
* const it
) {
307 int best_alpha
= DEFAULT_ALPHA
;
310 (it
->enc_
->method_
>= FAST_ANALYSIS_METHOD
) ? MAX_UV_MODE
313 VP8MakeChroma8Preds(it
);
314 for (mode
= 0; mode
< max_mode
; ++mode
) {
315 VP8Histogram histo
= { { 0 } };
317 VP8CollectHistogram(it
->yuv_in_
+ U_OFF
,
318 it
->yuv_p_
+ VP8UVModeOffsets
[mode
],
319 16, 16 + 4 + 4, &histo
);
320 alpha
= GetAlpha(&histo
);
321 if (IS_BETTER_ALPHA(alpha
, best_alpha
)) {
326 VP8SetIntraUVMode(it
, best_mode
);
330 static void MBAnalyze(VP8EncIterator
* const it
,
331 int alphas
[MAX_ALPHA
+ 1],
332 int* const alpha
, int* const uv_alpha
) {
333 const VP8Encoder
* const enc
= it
->enc_
;
334 int best_alpha
, best_uv_alpha
;
336 VP8SetIntra16Mode(it
, 0); // default: Intra16, DC_PRED
337 VP8SetSkip(it
, 0); // not skipped
338 VP8SetSegment(it
, 0); // default segment, spec-wise.
340 best_alpha
= MBAnalyzeBestIntra16Mode(it
);
341 if (enc
->method_
>= 5) {
342 // We go and make a fast decision for intra4/intra16.
343 // It's usually not a good and definitive pick, but helps seeding the stats
344 // about level bit-cost.
345 // TODO(skal): improve criterion.
346 best_alpha
= MBAnalyzeBestIntra4Mode(it
, best_alpha
);
348 best_uv_alpha
= MBAnalyzeBestUVMode(it
);
350 // Final susceptibility mix
351 best_alpha
= (3 * best_alpha
+ best_uv_alpha
+ 2) >> 2;
352 best_alpha
= FinalAlphaValue(best_alpha
);
353 alphas
[best_alpha
]++;
354 it
->mb_
->alpha_
= best_alpha
; // for later remapping.
356 // Accumulate for later complexity analysis.
357 *alpha
+= best_alpha
; // mixed susceptibility (not just luma)
358 *uv_alpha
+= best_uv_alpha
;
361 static void DefaultMBInfo(VP8MBInfo
* const mb
) {
362 mb
->type_
= 1; // I16x16
364 mb
->skip_
= 0; // not skipped
365 mb
->segment_
= 0; // default segment
369 //------------------------------------------------------------------------------
370 // Main analysis loop:
371 // Collect all susceptibilities for each macroblock and record their
372 // distribution in alphas[]. Segments is assigned a-posteriori, based on
374 // We also pick an intra16 prediction mode, which shouldn't be considered
375 // final except for fast-encode settings. We can also pick some intra4 modes
376 // and decide intra4/intra16, but that's usually almost always a bad choice at
379 static void ResetAllMBInfo(VP8Encoder
* const enc
) {
381 for (n
= 0; n
< enc
->mb_w_
* enc
->mb_h_
; ++n
) {
382 DefaultMBInfo(&enc
->mb_info_
[n
]);
384 // Default susceptibilities.
385 enc
->dqm_
[0].alpha_
= 0;
386 enc
->dqm_
[0].beta_
= 0;
387 // Note: we can't compute this alpha_ / uv_alpha_ -> set to default value.
390 WebPReportProgress(enc
->pic_
, enc
->percent_
+ 20, &enc
->percent_
);
393 // struct used to collect job result
396 int alphas
[MAX_ALPHA
+ 1];
403 static int DoSegmentsJob(SegmentJob
* const job
, VP8EncIterator
* const it
) {
405 if (!VP8IteratorIsDone(it
)) {
406 uint8_t tmp
[32 + ALIGN_CST
];
407 uint8_t* const scratch
= (uint8_t*)DO_ALIGN(tmp
);
409 // Let's pretend we have perfect lossless reconstruction.
410 VP8IteratorImport(it
, scratch
);
411 MBAnalyze(it
, job
->alphas
, &job
->alpha
, &job
->uv_alpha
);
412 ok
= VP8IteratorProgress(it
, job
->delta_progress
);
413 } while (ok
&& VP8IteratorNext(it
));
418 static void MergeJobs(const SegmentJob
* const src
, SegmentJob
* const dst
) {
420 for (i
= 0; i
<= MAX_ALPHA
; ++i
) dst
->alphas
[i
] += src
->alphas
[i
];
421 dst
->alpha
+= src
->alpha
;
422 dst
->uv_alpha
+= src
->uv_alpha
;
425 // initialize the job struct with some TODOs
426 static void InitSegmentJob(VP8Encoder
* const enc
, SegmentJob
* const job
,
427 int start_row
, int end_row
) {
428 WebPWorkerInit(&job
->worker
);
429 job
->worker
.data1
= job
;
430 job
->worker
.data2
= &job
->it
;
431 job
->worker
.hook
= (WebPWorkerHook
)DoSegmentsJob
;
432 VP8IteratorInit(enc
, &job
->it
);
433 VP8IteratorSetRow(&job
->it
, start_row
);
434 VP8IteratorSetCountDown(&job
->it
, (end_row
- start_row
) * enc
->mb_w_
);
435 memset(job
->alphas
, 0, sizeof(job
->alphas
));
438 // only one of both jobs can record the progress, since we don't
439 // expect the user's hook to be multi-thread safe
440 job
->delta_progress
= (start_row
== 0) ? 20 : 0;
444 int VP8EncAnalyze(VP8Encoder
* const enc
) {
446 const int do_segments
=
447 enc
->config_
->emulate_jpeg_size
|| // We need the complexity evaluation.
448 (enc
->segment_hdr_
.num_segments_
> 1) ||
449 (enc
->method_
== 0); // for method 0, we need preds_[] to be filled.
451 const int last_row
= enc
->mb_h_
;
452 // We give a little more than a half work to the main thread.
453 const int split_row
= (9 * last_row
+ 15) >> 4;
454 const int total_mb
= last_row
* enc
->mb_w_
;
455 #ifdef WEBP_USE_THREAD
456 const int kMinSplitRow
= 2; // minimal rows needed for mt to be worth it
457 const int do_mt
= (enc
->thread_level_
> 0) && (split_row
>= kMinSplitRow
);
464 // Note the use of '&' instead of '&&' because we must call the functions
466 InitSegmentJob(enc
, &main_job
, 0, split_row
);
467 InitSegmentJob(enc
, &side_job
, split_row
, last_row
);
468 // we don't need to call Reset() on main_job.worker, since we're calling
469 // WebPWorkerExecute() on it
470 ok
&= WebPWorkerReset(&side_job
.worker
);
471 // launch the two jobs in parallel
473 WebPWorkerLaunch(&side_job
.worker
);
474 WebPWorkerExecute(&main_job
.worker
);
475 ok
&= WebPWorkerSync(&side_job
.worker
);
476 ok
&= WebPWorkerSync(&main_job
.worker
);
478 WebPWorkerEnd(&side_job
.worker
);
479 if (ok
) MergeJobs(&side_job
, &main_job
); // merge results together
481 // Even for single-thread case, we use the generic Worker tools.
482 InitSegmentJob(enc
, &main_job
, 0, last_row
);
483 WebPWorkerExecute(&main_job
.worker
);
484 ok
&= WebPWorkerSync(&main_job
.worker
);
486 WebPWorkerEnd(&main_job
.worker
);
488 enc
->alpha_
= main_job
.alpha
/ total_mb
;
489 enc
->uv_alpha_
= main_job
.uv_alpha
/ total_mb
;
490 AssignSegments(enc
, main_job
.alphas
);
492 } else { // Use only one default segment.