1 // Copyright 2013 Google Inc. All Rights Reserved.
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
10 // Implement gradient smoothing: we replace a current alpha value by its
11 // surrounding average if it's close enough (that is: the change will be less
12 // than the minimum distance between two quantized level).
13 // We use sliding window for computing the 2d moving average.
15 // Author: Skal (pascal.massimino@gmail.com)
17 #include "./quant_levels_dec.h"
19 #include <string.h> // for memset
23 // #define USE_DITHERING // uncomment to enable ordered dithering (not vital)
25 #define FIX 16 // fix-point precision for averaging
26 #define LFIX 2 // extra precision for look-up table
27 #define LUT_SIZE ((1 << (8 + LFIX)) - 1) // look-up table size
29 #if defined(USE_DITHERING)
31 #define DFIX 4 // extra precision for ordered dithering
32 #define DSIZE 4 // dithering size (must be a power of two)
33 // cf. http://en.wikipedia.org/wiki/Ordered_dithering
34 static const uint8_t kOrderedDither
[DSIZE
][DSIZE
] = {
35 { 0, 8, 2, 10 }, // coefficients are in DFIX fixed-point precision
46 int width_
, height_
; // dimension
47 int row_
; // current input row being processed
48 uint8_t* src_
; // input pointer
49 uint8_t* dst_
; // output pointer
51 int radius_
; // filter radius (=delay)
52 int scale_
; // normalization factor, in FIX bits precision
54 void* mem_
; // all memory
56 // various scratch buffers
63 // input levels distribution
64 int num_levels_
; // number of quantized levels
65 int min_
, max_
; // min and max level values
66 int min_level_dist_
; // smallest distance between two consecutive levels
68 int16_t* correction_
; // size = 1 + 2*LUT_SIZE -> ~4k memory
71 //------------------------------------------------------------------------------
73 #define CLIP_MASK (int)(~0U << (8 + DFIX))
74 static WEBP_INLINE
uint8_t clip_8b(int v
) {
75 return (!(v
& CLIP_MASK
)) ? (uint8_t)(v
>> DFIX
) : (v
< 0) ? 0u : 255u;
78 // vertical accumulation
79 static void VFilter(SmoothParams
* const p
) {
80 const uint8_t* src
= p
->src_
;
81 const int w
= p
->width_
;
82 uint16_t* const cur
= p
->cur_
;
83 const uint16_t* const top
= p
->top_
;
84 uint16_t* const out
= p
->end_
;
85 uint16_t sum
= 0; // all arithmetic is modulo 16bit
88 for (x
= 0; x
< w
; ++x
) {
91 new_value
= top
[x
] + sum
;
92 out
[x
] = new_value
- cur
[x
]; // vertical sum of 'r' pixels.
95 // move input pointers one row down
98 if (p
->cur_
== p
->end_
) p
->cur_
= p
->start_
; // roll-over
99 // We replicate edges, as it's somewhat easier as a boundary condition.
100 // That's why we don't update the 'src' pointer on top/bottom area:
101 if (p
->row_
>= 0 && p
->row_
< p
->height_
- 1) {
102 p
->src_
+= p
->width_
;
106 // horizontal accumulation. We use mirror replication of missing pixels, as it's
107 // a little easier to implement (surprisingly).
108 static void HFilter(SmoothParams
* const p
) {
109 const uint16_t* const in
= p
->end_
;
110 uint16_t* const out
= p
->average_
;
111 const uint32_t scale
= p
->scale_
;
112 const int w
= p
->width_
;
113 const int r
= p
->radius_
;
116 for (x
= 0; x
<= r
; ++x
) { // left mirroring
117 const uint16_t delta
= in
[x
+ r
- 1] + in
[r
- x
];
118 out
[x
] = (delta
* scale
) >> FIX
;
120 for (; x
< w
- r
; ++x
) { // bulk middle run
121 const uint16_t delta
= in
[x
+ r
] - in
[x
- r
- 1];
122 out
[x
] = (delta
* scale
) >> FIX
;
124 for (; x
< w
; ++x
) { // right mirroring
125 const uint16_t delta
=
126 2 * in
[w
- 1] - in
[2 * w
- 2 - r
- x
] - in
[x
- r
- 1];
127 out
[x
] = (delta
* scale
) >> FIX
;
131 // emit one filtered output row
132 static void ApplyFilter(SmoothParams
* const p
) {
133 const uint16_t* const average
= p
->average_
;
134 const int w
= p
->width_
;
135 const int16_t* const correction
= p
->correction_
;
136 #if defined(USE_DITHERING)
137 const uint8_t* const dither
= kOrderedDither
[p
->row_
% DSIZE
];
139 uint8_t* const dst
= p
->dst_
;
141 for (x
= 0; x
< w
; ++x
) {
142 const int v
= dst
[x
];
143 if (v
< p
->max_
&& v
> p
->min_
) {
144 const int c
= (v
<< DFIX
) + correction
[average
[x
] - (v
<< LFIX
)];
145 #if defined(USE_DITHERING)
146 dst
[x
] = clip_8b(c
+ dither
[x
% DSIZE
]);
152 p
->dst_
+= w
; // advance output pointer
155 //------------------------------------------------------------------------------
156 // Initialize correction table
158 static void InitCorrectionLUT(int16_t* const lut
, int min_dist
) {
159 // The correction curve is:
160 // f(x) = x for x <= threshold2
161 // f(x) = 0 for x >= threshold1
162 // and a linear interpolation for range x=[threshold2, threshold1]
163 // (along with f(-x) = -f(x) symmetry).
164 // Note that: threshold2 = 3/4 * threshold1
165 const int threshold1
= min_dist
<< LFIX
;
166 const int threshold2
= (3 * threshold1
) >> 2;
167 const int max_threshold
= threshold2
<< DFIX
;
168 const int delta
= threshold1
- threshold2
;
170 for (i
= 1; i
<= LUT_SIZE
; ++i
) {
171 int c
= (i
<= threshold2
) ? (i
<< DFIX
)
172 : (i
< threshold1
) ? max_threshold
* (threshold1
- i
) / delta
181 static void CountLevels(const uint8_t* const data
, int size
,
182 SmoothParams
* const p
) {
184 uint8_t used_levels
[256] = { 0 };
187 for (i
= 0; i
< size
; ++i
) {
188 const int v
= data
[i
];
189 if (v
< p
->min_
) p
->min_
= v
;
190 if (v
> p
->max_
) p
->max_
= v
;
193 // Compute the mininum distance between two non-zero levels.
194 p
->min_level_dist_
= p
->max_
- p
->min_
;
196 for (i
= 0; i
< 256; ++i
) {
197 if (used_levels
[i
]) {
199 if (last_level
>= 0) {
200 const int level_dist
= i
- last_level
;
201 if (level_dist
< p
->min_level_dist_
) {
202 p
->min_level_dist_
= level_dist
;
210 // Initialize all params.
211 static int InitParams(uint8_t* const data
, int width
, int height
,
212 int radius
, SmoothParams
* const p
) {
213 const int R
= 2 * radius
+ 1; // total size of the kernel
215 const size_t size_scratch_m
= (R
+ 1) * width
* sizeof(*p
->start_
);
216 const size_t size_m
= width
* sizeof(*p
->average_
);
217 const size_t size_lut
= (1 + 2 * LUT_SIZE
) * sizeof(*p
->correction_
);
218 const size_t total_size
= size_scratch_m
+ size_m
+ size_lut
;
219 uint8_t* mem
= (uint8_t*)WebPSafeMalloc(1U, total_size
);
221 if (mem
== NULL
) return 0;
222 p
->mem_
= (void*)mem
;
224 p
->start_
= (uint16_t*)mem
;
226 p
->end_
= p
->start_
+ R
* width
;
227 p
->top_
= p
->end_
- width
;
228 memset(p
->top_
, 0, width
* sizeof(*p
->top_
));
229 mem
+= size_scratch_m
;
231 p
->average_
= (uint16_t*)mem
;
239 p
->scale_
= (1 << (FIX
+ LFIX
)) / (R
* R
); // normalization constant
242 // analyze the input distribution so we can best-fit the threshold
243 CountLevels(data
, width
* height
, p
);
246 p
->correction_
= ((int16_t*)mem
) + LUT_SIZE
;
247 InitCorrectionLUT(p
->correction_
, p
->min_level_dist_
);
252 static void CleanupParams(SmoothParams
* const p
) {
253 WebPSafeFree(p
->mem_
);
256 int WebPDequantizeLevels(uint8_t* const data
, int width
, int height
,
258 const int radius
= 4 * strength
/ 100;
259 if (strength
< 0 || strength
> 100) return 0;
260 if (data
== NULL
|| width
<= 0 || height
<= 0) return 0; // bad params
263 memset(&p
, 0, sizeof(p
));
264 if (!InitParams(data
, width
, height
, radius
, &p
)) return 0;
265 if (p
.num_levels_
> 2) {
266 for (; p
.row_
< p
.height_
; ++p
.row_
) {
267 VFilter(&p
); // accumulate average of input
268 // Need to wait few rows in order to prime the filter,
269 // before emitting some output.
270 if (p
.row_
>= p
.radius_
) {