Remove APIPermission::kFileSystemWriteDirectory
[chromium-blink-merge.git] / base / message_loop / message_pump_win.cc
blob10e308aa9dc3406ad5d1f02c5edca8e6a83573c9
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/message_loop/message_pump_win.h"
7 #include <limits>
8 #include <math.h>
10 #include "base/message_loop/message_loop.h"
11 #include "base/metrics/histogram.h"
12 #include "base/process/memory.h"
13 #include "base/profiler/scoped_tracker.h"
14 #include "base/strings/stringprintf.h"
15 #include "base/trace_event/trace_event.h"
16 #include "base/win/wrapped_window_proc.h"
18 namespace base {
20 namespace {
22 enum MessageLoopProblems {
23 MESSAGE_POST_ERROR,
24 COMPLETION_POST_ERROR,
25 SET_TIMER_ERROR,
26 MESSAGE_LOOP_PROBLEM_MAX,
29 } // namespace
31 static const wchar_t kWndClassFormat[] = L"Chrome_MessagePumpWindow_%p";
33 // Message sent to get an additional time slice for pumping (processing) another
34 // task (a series of such messages creates a continuous task pump).
35 static const int kMsgHaveWork = WM_USER + 1;
37 //-----------------------------------------------------------------------------
38 // MessagePumpWin public:
40 void MessagePumpWin::RunWithDispatcher(
41 Delegate* delegate, MessagePumpDispatcher* dispatcher) {
42 RunState s;
43 s.delegate = delegate;
44 s.dispatcher = dispatcher;
45 s.should_quit = false;
46 s.run_depth = state_ ? state_->run_depth + 1 : 1;
48 RunState* previous_state = state_;
49 state_ = &s;
51 DoRunLoop();
53 state_ = previous_state;
56 void MessagePumpWin::Run(Delegate* delegate) {
57 RunWithDispatcher(delegate, NULL);
60 void MessagePumpWin::Quit() {
61 DCHECK(state_);
62 state_->should_quit = true;
65 //-----------------------------------------------------------------------------
66 // MessagePumpWin protected:
68 int MessagePumpWin::GetCurrentDelay() const {
69 if (delayed_work_time_.is_null())
70 return -1;
72 // Be careful here. TimeDelta has a precision of microseconds, but we want a
73 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
74 // 6? It should be 6 to avoid executing delayed work too early.
75 double timeout =
76 ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
78 // Range check the |timeout| while converting to an integer. If the |timeout|
79 // is negative, then we need to run delayed work soon. If the |timeout| is
80 // "overflowingly" large, that means a delayed task was posted with a
81 // super-long delay.
82 return timeout < 0 ? 0 :
83 (timeout > std::numeric_limits<int>::max() ?
84 std::numeric_limits<int>::max() : static_cast<int>(timeout));
87 //-----------------------------------------------------------------------------
88 // MessagePumpForUI public:
90 MessagePumpForUI::MessagePumpForUI()
91 : atom_(0) {
92 InitMessageWnd();
95 MessagePumpForUI::~MessagePumpForUI() {
96 DestroyWindow(message_hwnd_);
97 UnregisterClass(MAKEINTATOM(atom_),
98 GetModuleFromAddress(&WndProcThunk));
101 void MessagePumpForUI::ScheduleWork() {
102 if (InterlockedExchange(&have_work_, 1))
103 return; // Someone else continued the pumping.
105 // Make sure the MessagePump does some work for us.
106 BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork,
107 reinterpret_cast<WPARAM>(this), 0);
108 if (ret)
109 return; // There was room in the Window Message queue.
111 // We have failed to insert a have-work message, so there is a chance that we
112 // will starve tasks/timers while sitting in a nested message loop. Nested
113 // loops only look at Windows Message queues, and don't look at *our* task
114 // queues, etc., so we might not get a time slice in such. :-(
115 // We could abort here, but the fear is that this failure mode is plausibly
116 // common (queue is full, of about 2000 messages), so we'll do a near-graceful
117 // recovery. Nested loops are pretty transient (we think), so this will
118 // probably be recoverable.
119 InterlockedExchange(&have_work_, 0); // Clarify that we didn't really insert.
120 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR,
121 MESSAGE_LOOP_PROBLEM_MAX);
124 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
125 delayed_work_time_ = delayed_work_time;
126 RescheduleTimer();
129 //-----------------------------------------------------------------------------
130 // MessagePumpForUI private:
132 // static
133 LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
134 HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
135 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
136 tracked_objects::ScopedTracker tracking_profile1(
137 FROM_HERE_WITH_EXPLICIT_FUNCTION(
138 "440919 MessagePumpForUI::WndProcThunk1"));
140 switch (message) {
141 case kMsgHaveWork:
142 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
143 break;
144 case WM_TIMER:
145 reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
146 break;
149 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
150 tracked_objects::ScopedTracker tracking_profile2(
151 FROM_HERE_WITH_EXPLICIT_FUNCTION(
152 "440919 MessagePumpForUI::WndProcThunk2"));
154 return DefWindowProc(hwnd, message, wparam, lparam);
157 void MessagePumpForUI::DoRunLoop() {
158 // IF this was just a simple PeekMessage() loop (servicing all possible work
159 // queues), then Windows would try to achieve the following order according
160 // to MSDN documentation about PeekMessage with no filter):
161 // * Sent messages
162 // * Posted messages
163 // * Sent messages (again)
164 // * WM_PAINT messages
165 // * WM_TIMER messages
167 // Summary: none of the above classes is starved, and sent messages has twice
168 // the chance of being processed (i.e., reduced service time).
170 for (;;) {
171 // If we do any work, we may create more messages etc., and more work may
172 // possibly be waiting in another task group. When we (for example)
173 // ProcessNextWindowsMessage(), there is a good chance there are still more
174 // messages waiting. On the other hand, when any of these methods return
175 // having done no work, then it is pretty unlikely that calling them again
176 // quickly will find any work to do. Finally, if they all say they had no
177 // work, then it is a good time to consider sleeping (waiting) for more
178 // work.
180 bool more_work_is_plausible = ProcessNextWindowsMessage();
181 if (state_->should_quit)
182 break;
184 more_work_is_plausible |= state_->delegate->DoWork();
185 if (state_->should_quit)
186 break;
188 more_work_is_plausible |=
189 state_->delegate->DoDelayedWork(&delayed_work_time_);
190 // If we did not process any delayed work, then we can assume that our
191 // existing WM_TIMER if any will fire when delayed work should run. We
192 // don't want to disturb that timer if it is already in flight. However,
193 // if we did do all remaining delayed work, then lets kill the WM_TIMER.
194 if (more_work_is_plausible && delayed_work_time_.is_null())
195 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
196 if (state_->should_quit)
197 break;
199 if (more_work_is_plausible)
200 continue;
202 more_work_is_plausible = state_->delegate->DoIdleWork();
203 if (state_->should_quit)
204 break;
206 if (more_work_is_plausible)
207 continue;
209 WaitForWork(); // Wait (sleep) until we have work to do again.
213 void MessagePumpForUI::InitMessageWnd() {
214 // Generate a unique window class name.
215 string16 class_name = StringPrintf(kWndClassFormat, this);
217 HINSTANCE instance = GetModuleFromAddress(&WndProcThunk);
218 WNDCLASSEX wc = {0};
219 wc.cbSize = sizeof(wc);
220 wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>;
221 wc.hInstance = instance;
222 wc.lpszClassName = class_name.c_str();
223 atom_ = RegisterClassEx(&wc);
224 DCHECK(atom_);
226 message_hwnd_ = CreateWindow(MAKEINTATOM(atom_), 0, 0, 0, 0, 0, 0,
227 HWND_MESSAGE, 0, instance, 0);
228 DCHECK(message_hwnd_);
231 void MessagePumpForUI::WaitForWork() {
232 // Wait until a message is available, up to the time needed by the timer
233 // manager to fire the next set of timers.
234 int delay = GetCurrentDelay();
235 if (delay < 0) // Negative value means no timers waiting.
236 delay = INFINITE;
238 DWORD result;
239 result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
240 MWMO_INPUTAVAILABLE);
242 if (WAIT_OBJECT_0 == result) {
243 // A WM_* message is available.
244 // If a parent child relationship exists between windows across threads
245 // then their thread inputs are implicitly attached.
246 // This causes the MsgWaitForMultipleObjectsEx API to return indicating
247 // that messages are ready for processing (Specifically, mouse messages
248 // intended for the child window may appear if the child window has
249 // capture).
250 // The subsequent PeekMessages call may fail to return any messages thus
251 // causing us to enter a tight loop at times.
252 // The WaitMessage call below is a workaround to give the child window
253 // some time to process its input messages.
254 MSG msg = {0};
255 DWORD queue_status = GetQueueStatus(QS_MOUSE);
256 if (HIWORD(queue_status) & QS_MOUSE &&
257 !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
258 WaitMessage();
260 return;
263 DCHECK_NE(WAIT_FAILED, result) << GetLastError();
266 void MessagePumpForUI::HandleWorkMessage() {
267 // If we are being called outside of the context of Run, then don't try to do
268 // any work. This could correspond to a MessageBox call or something of that
269 // sort.
270 if (!state_) {
271 // Since we handled a kMsgHaveWork message, we must still update this flag.
272 InterlockedExchange(&have_work_, 0);
273 return;
276 // Let whatever would have run had we not been putting messages in the queue
277 // run now. This is an attempt to make our dummy message not starve other
278 // messages that may be in the Windows message queue.
279 ProcessPumpReplacementMessage();
281 // Now give the delegate a chance to do some work. He'll let us know if he
282 // needs to do more work.
283 if (state_->delegate->DoWork())
284 ScheduleWork();
285 state_->delegate->DoDelayedWork(&delayed_work_time_);
286 RescheduleTimer();
289 void MessagePumpForUI::HandleTimerMessage() {
290 KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
292 // If we are being called outside of the context of Run, then don't do
293 // anything. This could correspond to a MessageBox call or something of
294 // that sort.
295 if (!state_)
296 return;
298 state_->delegate->DoDelayedWork(&delayed_work_time_);
299 RescheduleTimer();
302 void MessagePumpForUI::RescheduleTimer() {
303 if (delayed_work_time_.is_null())
304 return;
306 // We would *like* to provide high resolution timers. Windows timers using
307 // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
308 // mechanism because the application can enter modal windows loops where it
309 // is not running our MessageLoop; the only way to have our timers fire in
310 // these cases is to post messages there.
312 // To provide sub-10ms timers, we process timers directly from our run loop.
313 // For the common case, timers will be processed there as the run loop does
314 // its normal work. However, we *also* set the system timer so that WM_TIMER
315 // events fire. This mops up the case of timers not being able to work in
316 // modal message loops. It is possible for the SetTimer to pop and have no
317 // pending timers, because they could have already been processed by the
318 // run loop itself.
320 // We use a single SetTimer corresponding to the timer that will expire
321 // soonest. As new timers are created and destroyed, we update SetTimer.
322 // Getting a spurious SetTimer event firing is benign, as we'll just be
323 // processing an empty timer queue.
325 int delay_msec = GetCurrentDelay();
326 DCHECK_GE(delay_msec, 0);
327 if (delay_msec == 0) {
328 ScheduleWork();
329 } else {
330 if (delay_msec < USER_TIMER_MINIMUM)
331 delay_msec = USER_TIMER_MINIMUM;
333 // Create a WM_TIMER event that will wake us up to check for any pending
334 // timers (in case we are running within a nested, external sub-pump).
335 BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this),
336 delay_msec, NULL);
337 if (ret)
338 return;
339 // If we can't set timers, we are in big trouble... but cross our fingers
340 // for now.
341 // TODO(jar): If we don't see this error, use a CHECK() here instead.
342 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR,
343 MESSAGE_LOOP_PROBLEM_MAX);
347 bool MessagePumpForUI::ProcessNextWindowsMessage() {
348 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
349 tracked_objects::ScopedTracker tracking_profile1(
350 FROM_HERE_WITH_EXPLICIT_FUNCTION(
351 "440919 MessagePumpForUI::ProcessNextWindowsMessage1"));
353 // If there are sent messages in the queue then PeekMessage internally
354 // dispatches the message and returns false. We return true in this
355 // case to ensure that the message loop peeks again instead of calling
356 // MsgWaitForMultipleObjectsEx again.
357 bool sent_messages_in_queue = false;
358 DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
359 if (HIWORD(queue_status) & QS_SENDMESSAGE)
360 sent_messages_in_queue = true;
362 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
363 tracked_objects::ScopedTracker tracking_profile2(
364 FROM_HERE_WITH_EXPLICIT_FUNCTION(
365 "440919 MessagePumpForUI::ProcessNextWindowsMessage2"));
367 MSG msg;
368 if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE)
369 return ProcessMessageHelper(msg);
371 return sent_messages_in_queue;
374 bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
375 TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper",
376 "message", msg.message);
377 if (WM_QUIT == msg.message) {
378 // Repost the QUIT message so that it will be retrieved by the primary
379 // GetMessage() loop.
380 state_->should_quit = true;
381 PostQuitMessage(static_cast<int>(msg.wParam));
382 return false;
385 // While running our main message pump, we discard kMsgHaveWork messages.
386 if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
387 return ProcessPumpReplacementMessage();
389 if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
390 return true;
392 uint32_t action = MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT;
393 if (state_->dispatcher) {
394 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
395 tracked_objects::ScopedTracker tracking_profile4(
396 FROM_HERE_WITH_EXPLICIT_FUNCTION(
397 "440919 MessagePumpForUI::ProcessMessageHelper4"));
399 action = state_->dispatcher->Dispatch(msg);
401 if (action & MessagePumpDispatcher::POST_DISPATCH_QUIT_LOOP)
402 state_->should_quit = true;
403 if (action & MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT) {
404 TranslateMessage(&msg);
405 DispatchMessage(&msg);
408 return true;
411 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
412 // When we encounter a kMsgHaveWork message, this method is called to peek
413 // and process a replacement message, such as a WM_PAINT or WM_TIMER. The
414 // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
415 // a continuous stream of such messages are posted. This method carefully
416 // peeks a message while there is no chance for a kMsgHaveWork to be pending,
417 // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
418 // possibly be posted), and finally dispatches that peeked replacement. Note
419 // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
421 bool have_message = false;
422 MSG msg;
423 // We should not process all window messages if we are in the context of an
424 // OS modal loop, i.e. in the context of a windows API call like MessageBox.
425 // This is to ensure that these messages are peeked out by the OS modal loop.
426 if (MessageLoop::current()->os_modal_loop()) {
427 // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
428 have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
429 PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
430 } else {
431 have_message = PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE;
434 DCHECK(!have_message || kMsgHaveWork != msg.message ||
435 msg.hwnd != message_hwnd_);
437 // Since we discarded a kMsgHaveWork message, we must update the flag.
438 int old_have_work = InterlockedExchange(&have_work_, 0);
439 DCHECK(old_have_work);
441 // We don't need a special time slice if we didn't have_message to process.
442 if (!have_message)
443 return false;
445 // Guarantee we'll get another time slice in the case where we go into native
446 // windows code. This ScheduleWork() may hurt performance a tiny bit when
447 // tasks appear very infrequently, but when the event queue is busy, the
448 // kMsgHaveWork events get (percentage wise) rarer and rarer.
449 ScheduleWork();
450 return ProcessMessageHelper(msg);
453 //-----------------------------------------------------------------------------
454 // MessagePumpForIO public:
456 MessagePumpForIO::MessagePumpForIO() {
457 port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
458 DCHECK(port_.IsValid());
461 MessagePumpForIO::~MessagePumpForIO() {
464 void MessagePumpForIO::ScheduleWork() {
465 if (InterlockedExchange(&have_work_, 1))
466 return; // Someone else continued the pumping.
468 // Make sure the MessagePump does some work for us.
469 BOOL ret = PostQueuedCompletionStatus(port_.Get(), 0,
470 reinterpret_cast<ULONG_PTR>(this),
471 reinterpret_cast<OVERLAPPED*>(this));
472 if (ret)
473 return; // Post worked perfectly.
475 // See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
476 InterlockedExchange(&have_work_, 0); // Clarify that we didn't succeed.
477 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR,
478 MESSAGE_LOOP_PROBLEM_MAX);
481 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
482 // We know that we can't be blocked right now since this method can only be
483 // called on the same thread as Run, so we only need to update our record of
484 // how long to sleep when we do sleep.
485 delayed_work_time_ = delayed_work_time;
488 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
489 IOHandler* handler) {
490 ULONG_PTR key = HandlerToKey(handler, true);
491 HANDLE port = CreateIoCompletionPort(file_handle, port_.Get(), key, 1);
492 DPCHECK(port);
495 bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle,
496 IOHandler* handler) {
497 // Job object notifications use the OVERLAPPED pointer to carry the message
498 // data. Mark the completion key correspondingly, so we will not try to
499 // convert OVERLAPPED* to IOContext*.
500 ULONG_PTR key = HandlerToKey(handler, false);
501 JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;
502 info.CompletionKey = reinterpret_cast<void*>(key);
503 info.CompletionPort = port_.Get();
504 return SetInformationJobObject(job_handle,
505 JobObjectAssociateCompletionPortInformation,
506 &info,
507 sizeof(info)) != FALSE;
510 //-----------------------------------------------------------------------------
511 // MessagePumpForIO private:
513 void MessagePumpForIO::DoRunLoop() {
514 for (;;) {
515 // If we do any work, we may create more messages etc., and more work may
516 // possibly be waiting in another task group. When we (for example)
517 // WaitForIOCompletion(), there is a good chance there are still more
518 // messages waiting. On the other hand, when any of these methods return
519 // having done no work, then it is pretty unlikely that calling them
520 // again quickly will find any work to do. Finally, if they all say they
521 // had no work, then it is a good time to consider sleeping (waiting) for
522 // more work.
524 bool more_work_is_plausible = state_->delegate->DoWork();
525 if (state_->should_quit)
526 break;
528 more_work_is_plausible |= WaitForIOCompletion(0, NULL);
529 if (state_->should_quit)
530 break;
532 more_work_is_plausible |=
533 state_->delegate->DoDelayedWork(&delayed_work_time_);
534 if (state_->should_quit)
535 break;
537 if (more_work_is_plausible)
538 continue;
540 more_work_is_plausible = state_->delegate->DoIdleWork();
541 if (state_->should_quit)
542 break;
544 if (more_work_is_plausible)
545 continue;
547 WaitForWork(); // Wait (sleep) until we have work to do again.
551 // Wait until IO completes, up to the time needed by the timer manager to fire
552 // the next set of timers.
553 void MessagePumpForIO::WaitForWork() {
554 // We do not support nested IO message loops. This is to avoid messy
555 // recursion problems.
556 DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!";
558 int timeout = GetCurrentDelay();
559 if (timeout < 0) // Negative value means no timers waiting.
560 timeout = INFINITE;
562 WaitForIOCompletion(timeout, NULL);
565 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
566 IOItem item;
567 if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
568 // We have to ask the system for another IO completion.
569 if (!GetIOItem(timeout, &item))
570 return false;
572 if (ProcessInternalIOItem(item))
573 return true;
576 // If |item.has_valid_io_context| is false then |item.context| does not point
577 // to a context structure, and so should not be dereferenced, although it may
578 // still hold valid non-pointer data.
579 if (!item.has_valid_io_context || item.context->handler) {
580 if (filter && item.handler != filter) {
581 // Save this item for later
582 completed_io_.push_back(item);
583 } else {
584 DCHECK(!item.has_valid_io_context ||
585 (item.context->handler == item.handler));
586 WillProcessIOEvent();
587 item.handler->OnIOCompleted(item.context, item.bytes_transfered,
588 item.error);
589 DidProcessIOEvent();
591 } else {
592 // The handler must be gone by now, just cleanup the mess.
593 delete item.context;
595 return true;
598 // Asks the OS for another IO completion result.
599 bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
600 memset(item, 0, sizeof(*item));
601 ULONG_PTR key = NULL;
602 OVERLAPPED* overlapped = NULL;
603 if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
604 &overlapped, timeout)) {
605 if (!overlapped)
606 return false; // Nothing in the queue.
607 item->error = GetLastError();
608 item->bytes_transfered = 0;
611 item->handler = KeyToHandler(key, &item->has_valid_io_context);
612 item->context = reinterpret_cast<IOContext*>(overlapped);
613 return true;
616 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
617 if (reinterpret_cast<void*>(this) == reinterpret_cast<void*>(item.context) &&
618 reinterpret_cast<void*>(this) == reinterpret_cast<void*>(item.handler)) {
619 // This is our internal completion.
620 DCHECK(!item.bytes_transfered);
621 InterlockedExchange(&have_work_, 0);
622 return true;
624 return false;
627 // Returns a completion item that was previously received.
628 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
629 DCHECK(!completed_io_.empty());
630 for (std::list<IOItem>::iterator it = completed_io_.begin();
631 it != completed_io_.end(); ++it) {
632 if (!filter || it->handler == filter) {
633 *item = *it;
634 completed_io_.erase(it);
635 return true;
638 return false;
641 void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
642 io_observers_.AddObserver(obs);
645 void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
646 io_observers_.RemoveObserver(obs);
649 void MessagePumpForIO::WillProcessIOEvent() {
650 FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
653 void MessagePumpForIO::DidProcessIOEvent() {
654 FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
657 // static
658 ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler,
659 bool has_valid_io_context) {
660 ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
662 // |IOHandler| is at least pointer-size aligned, so the lowest two bits are
663 // always cleared. We use the lowest bit to distinguish completion keys with
664 // and without the associated |IOContext|.
665 DCHECK_EQ(key & 1, 0u);
667 // Mark the completion key as context-less.
668 if (!has_valid_io_context)
669 key = key | 1;
670 return key;
673 // static
674 MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler(
675 ULONG_PTR key,
676 bool* has_valid_io_context) {
677 *has_valid_io_context = ((key & 1) == 0);
678 return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1));
681 } // namespace base