1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This defines a set of argument wrappers and related factory methods that
6 // can be used specify the refcounting and reference semantics of arguments
7 // that are bound by the Bind() function in base/bind.h.
9 // It also defines a set of simple functions and utilities that people want
10 // when using Callback<> and Bind().
13 // ARGUMENT BINDING WRAPPERS
15 // The wrapper functions are base::Unretained(), base::Owned(), bass::Passed(),
16 // base::ConstRef(), and base::IgnoreResult().
18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
19 // refcounting on arguments that are refcounted objects.
21 // Owned() transfers ownership of an object to the Callback resulting from
22 // bind; the object will be deleted when the Callback is deleted.
24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
25 // through a Callback. Logically, this signifies a destructive transfer of
26 // the state of the argument into the target function. Invoking
27 // Callback::Run() twice on a Callback that was created with a Passed()
28 // argument will CHECK() because the first invocation would have already
29 // transferred ownership to the target function.
31 // ConstRef() allows binding a constant reference to an argument rather
34 // IgnoreResult() is used to adapt a function or Callback with a return type to
35 // one with a void return. This is most useful if you have a function with,
36 // say, a pesky ignorable bool return that you want to use with PostTask or
37 // something else that expect a Callback with a void return.
39 // EXAMPLE OF Unretained():
43 // void func() { cout << "Foo:f" << endl; }
46 // // In some function somewhere.
48 // Closure foo_callback =
49 // Bind(&Foo::func, Unretained(&foo));
50 // foo_callback.Run(); // Prints "Foo:f".
52 // Without the Unretained() wrapper on |&foo|, the above call would fail
53 // to compile because Foo does not support the AddRef() and Release() methods.
56 // EXAMPLE OF Owned():
58 // void foo(int* arg) { cout << *arg << endl }
60 // int* pn = new int(1);
61 // Closure foo_callback = Bind(&foo, Owned(pn));
63 // foo_callback.Run(); // Prints "1"
64 // foo_callback.Run(); // Prints "1"
66 // foo_callback.Run(); // Prints "2"
68 // foo_callback.Reset(); // |pn| is deleted. Also will happen when
69 // // |foo_callback| goes out of scope.
71 // Without Owned(), someone would have to know to delete |pn| when the last
72 // reference to the Callback is deleted.
75 // EXAMPLE OF ConstRef():
77 // void foo(int arg) { cout << arg << endl }
80 // Closure no_ref = Bind(&foo, n);
81 // Closure has_ref = Bind(&foo, ConstRef(n));
83 // no_ref.Run(); // Prints "1"
84 // has_ref.Run(); // Prints "1"
87 // no_ref.Run(); // Prints "1"
88 // has_ref.Run(); // Prints "2"
90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
91 // its bound callbacks.
94 // EXAMPLE OF IgnoreResult():
96 // int DoSomething(int arg) { cout << arg << endl; }
98 // // Assign to a Callback with a void return type.
99 // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
100 // cb->Run(1); // Prints "1".
102 // // Prints "1" on |ml|.
103 // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
106 // EXAMPLE OF Passed():
108 // void TakesOwnership(scoped_ptr<Foo> arg) { }
109 // scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
111 // scoped_ptr<Foo> f(new Foo());
113 // // |cb| is given ownership of Foo(). |f| is now NULL.
114 // // You can use f.Pass() in place of &f, but it's more verbose.
115 // Closure cb = Bind(&TakesOwnership, Passed(&f));
117 // // Run was never called so |cb| still owns Foo() and deletes
121 // // |cb| is given a new Foo created by CreateFoo().
122 // cb = Bind(&TakesOwnership, Passed(CreateFoo()));
124 // // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
125 // // no longer owns Foo() and, if reset, would not delete Foo().
126 // cb.Run(); // Foo() is now transferred to |arg| and deleted.
127 // cb.Run(); // This CHECK()s since Foo() already been used once.
129 // Passed() is particularly useful with PostTask() when you are transferring
130 // ownership of an argument into a task, but don't necessarily know if the
131 // task will always be executed. This can happen if the task is cancellable
132 // or if it is posted to a MessageLoopProxy.
135 // SIMPLE FUNCTIONS AND UTILITIES.
137 // DoNothing() - Useful for creating a Closure that does nothing when called.
138 // DeletePointer<T>() - Useful for creating a Closure that will delete a
139 // pointer when invoked. Only use this when necessary.
140 // In most cases MessageLoop::DeleteSoon() is a better
142 // ScopedClosureRunner - Scoper object that runs the wrapped closure when it
143 // goes out of scope. It's conceptually similar to
144 // scoped_ptr<> but calls Run() instead of deleting
147 #ifndef BASE_BIND_HELPERS_H_
148 #define BASE_BIND_HELPERS_H_
151 #include "base/basictypes.h"
152 #include "base/callback.h"
153 #include "base/memory/weak_ptr.h"
154 #include "base/template_util.h"
159 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
160 // for the existence of AddRef() and Release() functions of the correct
163 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
164 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
165 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
166 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
168 // The last link in particular show the method used below.
170 // For SFINAE to work with inherited methods, we need to pull some extra tricks
171 // with multiple inheritance. In the more standard formulation, the overloads
172 // of Check would be:
174 // template <typename C>
175 // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
177 // template <typename C>
178 // No NotTheCheckWeWant(...);
180 // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
182 // The problem here is that template resolution will not match
183 // C::TargetFunc if TargetFunc does not exist directly in C. That is, if
184 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
185 // |value| will be false. This formulation only checks for whether or
186 // not TargetFunc exist directly in the class being introspected.
188 // To get around this, we play a dirty trick with multiple inheritance.
189 // First, We create a class BaseMixin that declares each function that we
190 // want to probe for. Then we create a class Base that inherits from both T
191 // (the class we wish to probe) and BaseMixin. Note that the function
192 // signature in BaseMixin does not need to match the signature of the function
193 // we are probing for; thus it's easiest to just use void(void).
195 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
196 // ambiguous resolution between BaseMixin and T. This lets us write the
199 // template <typename C>
200 // No GoodCheck(Helper<&C::TargetFunc>*);
202 // template <typename C>
203 // Yes GoodCheck(...);
205 // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
207 // Notice here that the variadic version of GoodCheck() returns Yes here
208 // instead of No like the previous one. Also notice that we calculate |value|
209 // by specializing GoodCheck() on Base instead of T.
211 // We've reversed the roles of the variadic, and Helper overloads.
212 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
213 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
214 // to the variadic version if T has TargetFunc. If T::TargetFunc does not
215 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution
216 // will prefer GoodCheck(Helper<&C::TargetFunc>*).
218 // This method of SFINAE will correctly probe for inherited names, but it cannot
219 // typecheck those names. It's still a good enough sanity check though.
221 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
223 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
226 // TODO(ajwong): Make this check for Release() as well.
227 // See http://crbug.com/82038.
228 template <typename T
>
229 class SupportsAddRefAndRelease
{
237 // MSVC warns when you try to use Base if T has a private destructor, the
238 // common pattern for refcounted types. It does this even though no attempt to
239 // instantiate Base is made. We disable the warning for this definition.
241 #pragma warning(disable:4624)
243 struct Base
: public T
, public BaseMixin
{
246 #pragma warning(default:4624)
249 template <void(BaseMixin::*)(void)> struct Helper
{};
251 template <typename C
>
252 static No
& Check(Helper
<&C::AddRef
>*);
255 static Yes
& Check(...);
258 static const bool value
= sizeof(Check
<Base
>(0)) == sizeof(Yes
);
261 // Helpers to assert that arguments of a recounted type are bound with a
263 template <bool IsClasstype
, typename T
>
264 struct UnsafeBindtoRefCountedArgHelper
: false_type
{
267 template <typename T
>
268 struct UnsafeBindtoRefCountedArgHelper
<true, T
>
269 : integral_constant
<bool, SupportsAddRefAndRelease
<T
>::value
> {
272 template <typename T
>
273 struct UnsafeBindtoRefCountedArg
: false_type
{
276 template <typename T
>
277 struct UnsafeBindtoRefCountedArg
<T
*>
278 : UnsafeBindtoRefCountedArgHelper
<is_class
<T
>::value
, T
> {
281 template <typename T
>
282 class HasIsMethodTag
{
286 template <typename U
>
287 static Yes
& Check(typename
U::IsMethod
*);
289 template <typename U
>
290 static No
& Check(...);
293 static const bool value
= sizeof(Check
<T
>(0)) == sizeof(Yes
);
296 template <typename T
>
297 class UnretainedWrapper
{
299 explicit UnretainedWrapper(T
* o
) : ptr_(o
) {}
300 T
* get() const { return ptr_
; }
305 template <typename T
>
306 class ConstRefWrapper
{
308 explicit ConstRefWrapper(const T
& o
) : ptr_(&o
) {}
309 const T
& get() const { return *ptr_
; }
314 template <typename T
>
315 struct IgnoreResultHelper
{
316 explicit IgnoreResultHelper(T functor
) : functor_(functor
) {}
321 template <typename T
>
322 struct IgnoreResultHelper
<Callback
<T
> > {
323 explicit IgnoreResultHelper(const Callback
<T
>& functor
) : functor_(functor
) {}
325 const Callback
<T
>& functor_
;
328 // An alternate implementation is to avoid the destructive copy, and instead
329 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
330 // a class that is essentially a scoped_ptr<>.
332 // The current implementation has the benefit though of leaving ParamTraits<>
333 // fully in callback_internal.h as well as avoiding type conversions during
335 template <typename T
>
338 explicit OwnedWrapper(T
* o
) : ptr_(o
) {}
339 ~OwnedWrapper() { delete ptr_
; }
340 T
* get() const { return ptr_
; }
341 OwnedWrapper(const OwnedWrapper
& other
) {
350 // PassedWrapper is a copyable adapter for a scoper that ignores const.
352 // It is needed to get around the fact that Bind() takes a const reference to
353 // all its arguments. Because Bind() takes a const reference to avoid
354 // unnecessary copies, it is incompatible with movable-but-not-copyable
355 // types; doing a destructive "move" of the type into Bind() would violate
356 // the const correctness.
358 // This conundrum cannot be solved without either C++11 rvalue references or
359 // a O(2^n) blowup of Bind() templates to handle each combination of regular
360 // types and movable-but-not-copyable types. Thus we introduce a wrapper type
361 // that is copyable to transmit the correct type information down into
362 // BindState<>. Ignoring const in this type makes sense because it is only
363 // created when we are explicitly trying to do a destructive move.
366 // 1) PassedWrapper supports any type that has a "Pass()" function.
367 // This is intentional. The whitelisting of which specific types we
368 // support is maintained by CallbackParamTraits<>.
369 // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
370 // scoper to a Callback and allow the Callback to execute once.
371 template <typename T
>
372 class PassedWrapper
{
374 explicit PassedWrapper(T scoper
) : is_valid_(true), scoper_(scoper
.Pass()) {}
375 PassedWrapper(const PassedWrapper
& other
)
376 : is_valid_(other
.is_valid_
), scoper_(other
.scoper_
.Pass()) {
381 return scoper_
.Pass();
385 mutable bool is_valid_
;
389 // Unwrap the stored parameters for the wrappers above.
390 template <typename T
>
391 struct UnwrapTraits
{
392 typedef const T
& ForwardType
;
393 static ForwardType
Unwrap(const T
& o
) { return o
; }
396 template <typename T
>
397 struct UnwrapTraits
<UnretainedWrapper
<T
> > {
398 typedef T
* ForwardType
;
399 static ForwardType
Unwrap(UnretainedWrapper
<T
> unretained
) {
400 return unretained
.get();
404 template <typename T
>
405 struct UnwrapTraits
<ConstRefWrapper
<T
> > {
406 typedef const T
& ForwardType
;
407 static ForwardType
Unwrap(ConstRefWrapper
<T
> const_ref
) {
408 return const_ref
.get();
412 template <typename T
>
413 struct UnwrapTraits
<scoped_refptr
<T
> > {
414 typedef T
* ForwardType
;
415 static ForwardType
Unwrap(const scoped_refptr
<T
>& o
) { return o
.get(); }
418 template <typename T
>
419 struct UnwrapTraits
<WeakPtr
<T
> > {
420 typedef const WeakPtr
<T
>& ForwardType
;
421 static ForwardType
Unwrap(const WeakPtr
<T
>& o
) { return o
; }
424 template <typename T
>
425 struct UnwrapTraits
<OwnedWrapper
<T
> > {
426 typedef T
* ForwardType
;
427 static ForwardType
Unwrap(const OwnedWrapper
<T
>& o
) {
432 template <typename T
>
433 struct UnwrapTraits
<PassedWrapper
<T
> > {
434 typedef T ForwardType
;
435 static T
Unwrap(PassedWrapper
<T
>& o
) {
440 // Utility for handling different refcounting semantics in the Bind()
442 template <bool is_method
, typename T
>
443 struct MaybeRefcount
;
445 template <typename T
>
446 struct MaybeRefcount
<false, T
> {
447 static void AddRef(const T
&) {}
448 static void Release(const T
&) {}
451 template <typename T
, size_t n
>
452 struct MaybeRefcount
<false, T
[n
]> {
453 static void AddRef(const T
*) {}
454 static void Release(const T
*) {}
457 template <typename T
>
458 struct MaybeRefcount
<true, T
> {
459 static void AddRef(const T
&) {}
460 static void Release(const T
&) {}
463 template <typename T
>
464 struct MaybeRefcount
<true, T
*> {
465 static void AddRef(T
* o
) { o
->AddRef(); }
466 static void Release(T
* o
) { o
->Release(); }
469 // No need to additionally AddRef() and Release() since we are storing a
470 // scoped_refptr<> inside the storage object already.
471 template <typename T
>
472 struct MaybeRefcount
<true, scoped_refptr
<T
> > {
473 static void AddRef(const scoped_refptr
<T
>& o
) {}
474 static void Release(const scoped_refptr
<T
>& o
) {}
477 template <typename T
>
478 struct MaybeRefcount
<true, const T
*> {
479 static void AddRef(const T
* o
) { o
->AddRef(); }
480 static void Release(const T
* o
) { o
->Release(); }
483 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
484 // method. It is used internally by Bind() to select the correct
485 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
486 // the target object is invalidated.
488 // P1 should be the type of the object that will be received of the method.
489 template <bool IsMethod
, typename P1
>
490 struct IsWeakMethod
: public false_type
{};
492 template <typename T
>
493 struct IsWeakMethod
<true, WeakPtr
<T
> > : public true_type
{};
495 template <typename T
>
496 struct IsWeakMethod
<true, ConstRefWrapper
<WeakPtr
<T
> > > : public true_type
{};
498 } // namespace internal
500 template <typename T
>
501 static inline internal::UnretainedWrapper
<T
> Unretained(T
* o
) {
502 return internal::UnretainedWrapper
<T
>(o
);
505 template <typename T
>
506 static inline internal::ConstRefWrapper
<T
> ConstRef(const T
& o
) {
507 return internal::ConstRefWrapper
<T
>(o
);
510 template <typename T
>
511 static inline internal::OwnedWrapper
<T
> Owned(T
* o
) {
512 return internal::OwnedWrapper
<T
>(o
);
515 // We offer 2 syntaxes for calling Passed(). The first takes a temporary and
516 // is best suited for use with the return value of a function. The second
517 // takes a pointer to the scoper and is just syntactic sugar to avoid having
518 // to write Passed(scoper.Pass()).
519 template <typename T
>
520 static inline internal::PassedWrapper
<T
> Passed(T scoper
) {
521 return internal::PassedWrapper
<T
>(scoper
.Pass());
523 template <typename T
>
524 static inline internal::PassedWrapper
<T
> Passed(T
* scoper
) {
525 return internal::PassedWrapper
<T
>(scoper
->Pass());
528 template <typename T
>
529 static inline internal::IgnoreResultHelper
<T
> IgnoreResult(T data
) {
530 return internal::IgnoreResultHelper
<T
>(data
);
533 template <typename T
>
534 static inline internal::IgnoreResultHelper
<Callback
<T
> >
535 IgnoreResult(const Callback
<T
>& data
) {
536 return internal::IgnoreResultHelper
<Callback
<T
> >(data
);
539 BASE_EXPORT
void DoNothing();
542 void DeletePointer(T
* obj
) {
546 // ScopedClosureRunner is akin to scoped_ptr for Closures. It ensures that the
547 // Closure is executed and deleted no matter how the current scope exits.
548 class BASE_EXPORT ScopedClosureRunner
{
550 explicit ScopedClosureRunner(const Closure
& closure
);
551 ~ScopedClosureRunner();
558 DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedClosureRunner
);
563 #endif // BASE_BIND_HELPERS_H_