1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // The purpose of this file is determine what bitrate to use for mirroring.
6 // Ideally this should be as much as possible, without causing any frames to
9 // The current algorithm is to measure how much bandwidth we've been using
10 // recently. We also keep track of how much data has been queued up for sending
11 // in a virtual "buffer" (this virtual buffer represents all the buffers between
12 // the sender and the receiver, including retransmissions and so forth.)
13 // If we estimate that our virtual buffer is mostly empty, we try to use
14 // more bandwidth than our recent usage, otherwise we use less.
16 #include "media/cast/sender/congestion_control.h"
20 #include "base/logging.h"
21 #include "media/cast/cast_config.h"
22 #include "media/cast/cast_defines.h"
27 class AdaptiveCongestionControl
: public CongestionControl
{
29 AdaptiveCongestionControl(base::TickClock
* clock
,
30 uint32 max_bitrate_configured
,
31 uint32 min_bitrate_configured
,
32 double max_frame_rate
);
34 ~AdaptiveCongestionControl() final
;
36 void UpdateRtt(base::TimeDelta rtt
) final
;
38 void UpdateTargetPlayoutDelay(base::TimeDelta delay
) final
;
40 // Called when an encoded frame is sent to the transport.
41 void SendFrameToTransport(uint32 frame_id
,
42 size_t frame_size_in_bits
,
43 base::TimeTicks when
) final
;
45 // Called when we receive an ACK for a frame.
46 void AckFrame(uint32 frame_id
, base::TimeTicks when
) final
;
48 // Returns the bitrate we should use for the next frame.
49 uint32
GetBitrate(base::TimeTicks playout_time
,
50 base::TimeDelta playout_delay
) final
;
55 // Time this frame was first enqueued for transport.
56 base::TimeTicks enqueue_time
;
57 // Time this frame was acked.
58 base::TimeTicks ack_time
;
59 // Size of encoded frame in bits.
60 size_t frame_size_in_bits
;
63 // Calculate how much "dead air" (idle time) there is between two frames.
64 static base::TimeDelta
DeadTime(const FrameStats
& a
, const FrameStats
& b
);
65 // Get the FrameStats for a given |frame_id|. Never returns nullptr.
66 // Note: Older FrameStats will be removed automatically.
67 FrameStats
* GetFrameStats(uint32 frame_id
);
68 // Discard old FrameStats.
69 void PruneFrameStats();
70 // Calculate a safe bitrate. This is based on how much we've been
71 // sending in the past.
72 double CalculateSafeBitrate();
74 // Estimate when the transport will start sending the data for a given frame.
75 // |estimated_bitrate| is the current estimated transmit bitrate in bits per
77 base::TimeTicks
EstimatedSendingTime(uint32 frame_id
,
78 double estimated_bitrate
);
80 base::TickClock
* const clock_
; // Not owned by this class.
81 const uint32 max_bitrate_configured_
;
82 const uint32 min_bitrate_configured_
;
83 const double max_frame_rate_
;
84 std::deque
<FrameStats
> frame_stats_
;
85 uint32 last_frame_stats_
;
86 uint32 last_acked_frame_
;
87 uint32 last_enqueued_frame_
;
90 size_t acked_bits_in_history_
;
91 base::TimeDelta dead_time_in_history_
;
93 DISALLOW_COPY_AND_ASSIGN(AdaptiveCongestionControl
);
96 class FixedCongestionControl
: public CongestionControl
{
98 FixedCongestionControl(uint32 bitrate
) : bitrate_(bitrate
) {}
99 ~FixedCongestionControl() final
{}
101 void UpdateRtt(base::TimeDelta rtt
) final
{}
103 void UpdateTargetPlayoutDelay(base::TimeDelta delay
) final
{}
105 // Called when an encoded frame is sent to the transport.
106 void SendFrameToTransport(uint32 frame_id
,
107 size_t frame_size_in_bits
,
108 base::TimeTicks when
) final
{}
110 // Called when we receive an ACK for a frame.
111 void AckFrame(uint32 frame_id
, base::TimeTicks when
) final
{}
113 // Returns the bitrate we should use for the next frame.
114 uint32
GetBitrate(base::TimeTicks playout_time
,
115 base::TimeDelta playout_delay
) final
{
121 DISALLOW_COPY_AND_ASSIGN(FixedCongestionControl
);
125 CongestionControl
* NewAdaptiveCongestionControl(
126 base::TickClock
* clock
,
127 uint32 max_bitrate_configured
,
128 uint32 min_bitrate_configured
,
129 double max_frame_rate
) {
130 return new AdaptiveCongestionControl(clock
,
131 max_bitrate_configured
,
132 min_bitrate_configured
,
136 CongestionControl
* NewFixedCongestionControl(uint32 bitrate
) {
137 return new FixedCongestionControl(bitrate
);
140 // This means that we *try* to keep our buffer 90% empty.
141 // If it is less full, we increase the bandwidth, if it is more
142 // we decrease the bandwidth. Making this smaller makes the
143 // congestion control more aggressive.
144 static const double kTargetEmptyBufferFraction
= 0.9;
146 // This is the size of our history in frames. Larger values makes the
147 // congestion control adapt slower.
148 static const size_t kHistorySize
= 100;
150 AdaptiveCongestionControl::FrameStats::FrameStats() : frame_size_in_bits(0) {
153 AdaptiveCongestionControl::AdaptiveCongestionControl(
154 base::TickClock
* clock
,
155 uint32 max_bitrate_configured
,
156 uint32 min_bitrate_configured
,
157 double max_frame_rate
)
159 max_bitrate_configured_(max_bitrate_configured
),
160 min_bitrate_configured_(min_bitrate_configured
),
161 max_frame_rate_(max_frame_rate
),
162 last_frame_stats_(static_cast<uint32
>(-1)),
163 last_acked_frame_(static_cast<uint32
>(-1)),
164 last_enqueued_frame_(static_cast<uint32
>(-1)),
165 history_size_(kHistorySize
),
166 acked_bits_in_history_(0) {
167 DCHECK_GE(max_bitrate_configured
, min_bitrate_configured
) << "Invalid config";
168 frame_stats_
.resize(2);
169 base::TimeTicks now
= clock
->NowTicks();
170 frame_stats_
[0].ack_time
= now
;
171 frame_stats_
[0].enqueue_time
= now
;
172 frame_stats_
[1].ack_time
= now
;
173 DCHECK(!frame_stats_
[0].ack_time
.is_null());
176 CongestionControl::~CongestionControl() {}
177 AdaptiveCongestionControl::~AdaptiveCongestionControl() {}
179 void AdaptiveCongestionControl::UpdateRtt(base::TimeDelta rtt
) {
180 rtt_
= (7 * rtt_
+ rtt
) / 8;
183 void AdaptiveCongestionControl::UpdateTargetPlayoutDelay(
184 base::TimeDelta delay
) {
185 const int max_unacked_frames
=
186 std::min(kMaxUnackedFrames
,
187 1 + static_cast<int>(delay
* max_frame_rate_
/
188 base::TimeDelta::FromSeconds(1)));
189 DCHECK_GT(max_unacked_frames
, 0);
190 history_size_
= max_unacked_frames
+ kHistorySize
;
194 // Calculate how much "dead air" there is between two frames.
195 base::TimeDelta
AdaptiveCongestionControl::DeadTime(const FrameStats
& a
,
196 const FrameStats
& b
) {
197 if (b
.enqueue_time
> a
.ack_time
) {
198 return b
.enqueue_time
- a
.ack_time
;
200 return base::TimeDelta();
204 double AdaptiveCongestionControl::CalculateSafeBitrate() {
205 double transmit_time
=
206 (GetFrameStats(last_acked_frame_
)->ack_time
-
207 frame_stats_
.front().enqueue_time
- dead_time_in_history_
).InSecondsF();
209 if (acked_bits_in_history_
== 0 || transmit_time
<= 0.0) {
210 return min_bitrate_configured_
;
212 return acked_bits_in_history_
/ std::max(transmit_time
, 1E-3);
215 AdaptiveCongestionControl::FrameStats
*
216 AdaptiveCongestionControl::GetFrameStats(uint32 frame_id
) {
217 int32 offset
= static_cast<int32
>(frame_id
- last_frame_stats_
);
218 DCHECK_LT(offset
, static_cast<int32
>(kHistorySize
));
220 frame_stats_
.resize(frame_stats_
.size() + offset
);
221 last_frame_stats_
+= offset
;
225 offset
+= frame_stats_
.size() - 1;
226 // TODO(miu): Change the following to DCHECK once crash fix is confirmed.
227 // http://crbug.com/517145
228 CHECK(offset
>= 0 && offset
< static_cast<int32
>(frame_stats_
.size()));
229 return &frame_stats_
[offset
];
232 void AdaptiveCongestionControl::PruneFrameStats() {
233 while (frame_stats_
.size() > history_size_
) {
234 DCHECK_GT(frame_stats_
.size(), 1UL);
235 DCHECK(!frame_stats_
[0].ack_time
.is_null());
236 acked_bits_in_history_
-= frame_stats_
[0].frame_size_in_bits
;
237 dead_time_in_history_
-= DeadTime(frame_stats_
[0], frame_stats_
[1]);
238 DCHECK_GE(acked_bits_in_history_
, 0UL);
239 VLOG(2) << "DT: " << dead_time_in_history_
.InSecondsF();
240 DCHECK_GE(dead_time_in_history_
.InSecondsF(), 0.0);
241 frame_stats_
.pop_front();
245 void AdaptiveCongestionControl::AckFrame(uint32 frame_id
,
246 base::TimeTicks when
) {
247 FrameStats
* frame_stats
= GetFrameStats(last_acked_frame_
);
248 while (IsNewerFrameId(frame_id
, last_acked_frame_
)) {
249 FrameStats
* last_frame_stats
= frame_stats
;
250 frame_stats
= GetFrameStats(last_acked_frame_
+ 1);
251 if (frame_stats
->enqueue_time
.is_null()) {
252 // Can't ack a frame that hasn't been sent yet.
256 if (when
< frame_stats
->enqueue_time
)
257 when
= frame_stats
->enqueue_time
;
259 frame_stats
->ack_time
= when
;
260 acked_bits_in_history_
+= frame_stats
->frame_size_in_bits
;
261 dead_time_in_history_
+= DeadTime(*last_frame_stats
, *frame_stats
);
265 void AdaptiveCongestionControl::SendFrameToTransport(uint32 frame_id
,
266 size_t frame_size_in_bits
,
267 base::TimeTicks when
) {
268 last_enqueued_frame_
= frame_id
;
269 FrameStats
* frame_stats
= GetFrameStats(frame_id
);
270 frame_stats
->enqueue_time
= when
;
271 frame_stats
->frame_size_in_bits
= frame_size_in_bits
;
274 base::TimeTicks
AdaptiveCongestionControl::EstimatedSendingTime(
276 double estimated_bitrate
) {
277 const base::TimeTicks now
= clock_
->NowTicks();
279 // Starting with the time of the latest acknowledgement, extrapolate forward
280 // to determine an estimated sending time for |frame_id|.
282 // |estimated_sending_time| will contain the estimated sending time for each
283 // frame after the last ACK'ed frame. It is possible for multiple frames to
284 // be in-flight; and therefore it is common for the |estimated_sending_time|
285 // for those frames to be before |now|.
286 base::TimeTicks estimated_sending_time
;
287 for (uint32 f
= last_acked_frame_
; IsNewerFrameId(frame_id
, f
); ++f
) {
288 FrameStats
* const stats
= GetFrameStats(f
);
290 // |estimated_ack_time| is the local time when the sender receives the ACK,
291 // and not the time when the ACK left the receiver.
292 base::TimeTicks estimated_ack_time
= stats
->ack_time
;
294 // If |estimated_ack_time| is not null, then we already have the actual ACK
295 // time, so we'll just use it. Otherwise, we need to estimate when the ACK
297 if (estimated_ack_time
.is_null()) {
298 // Model: The |estimated_sending_time| is the time at which the first byte
299 // of the encoded frame is transmitted. Then, assume the transmission of
300 // the remaining bytes is paced such that the last byte has just left the
301 // sender at |frame_transmit_time| later. This last byte then takes
302 // ~RTT/2 amount of time to travel to the receiver. Finally, the ACK from
303 // the receiver is sent and this takes another ~RTT/2 amount of time to
305 const base::TimeDelta frame_transmit_time
=
306 base::TimeDelta::FromSecondsD(stats
->frame_size_in_bits
/
309 std::max(estimated_sending_time
, stats
->enqueue_time
) +
310 frame_transmit_time
+ rtt_
;
312 if (estimated_ack_time
< now
) {
313 // The current frame has not yet been ACK'ed and the yet the computed
314 // |estimated_ack_time| is before |now|. This contradiction must be
317 // The solution below is a little counter-intuitive, but it seems to
318 // work. Basically, when we estimate that the ACK should have already
319 // happened, we figure out how long ago it should have happened and
320 // guess that the ACK will happen half of that time in the future. This
321 // will cause some over-estimation when acks are late, which is actually
322 // the desired behavior.
323 estimated_ack_time
= now
+ (now
- estimated_ack_time
) / 2;
327 // Since we [in the common case] do not wait for an ACK before we start
328 // sending the next frame, estimate the next frame's sending time as the
329 // time just after the last byte of the current frame left the sender (see
330 // Model comment above).
331 estimated_sending_time
=
332 std::max(estimated_sending_time
, estimated_ack_time
- rtt_
);
335 FrameStats
* const frame_stats
= GetFrameStats(frame_id
);
336 if (frame_stats
->enqueue_time
.is_null()) {
337 // The frame has not yet been enqueued for transport. Since it cannot be
338 // enqueued in the past, ensure the result is lower-bounded by |now|.
339 estimated_sending_time
= std::max(estimated_sending_time
, now
);
341 // |frame_stats->enqueue_time| is the time the frame was enqueued for
342 // transport. The frame may not actually start being sent until a
343 // point-in-time after that, because the transport is waiting for prior
344 // frames to be acknowledged.
345 estimated_sending_time
=
346 std::max(estimated_sending_time
, frame_stats
->enqueue_time
);
349 return estimated_sending_time
;
352 uint32
AdaptiveCongestionControl::GetBitrate(base::TimeTicks playout_time
,
353 base::TimeDelta playout_delay
) {
354 double safe_bitrate
= CalculateSafeBitrate();
355 // Estimate when we might start sending the next frame.
356 base::TimeDelta time_to_catch_up
=
358 EstimatedSendingTime(last_enqueued_frame_
+ 1, safe_bitrate
);
360 double empty_buffer_fraction
=
361 time_to_catch_up
.InSecondsF() / playout_delay
.InSecondsF();
362 empty_buffer_fraction
= std::min(empty_buffer_fraction
, 1.0);
363 empty_buffer_fraction
= std::max(empty_buffer_fraction
, 0.0);
365 uint32 bits_per_second
= static_cast<uint32
>(
366 safe_bitrate
* empty_buffer_fraction
/ kTargetEmptyBufferFraction
);
367 VLOG(3) << " FBR:" << (bits_per_second
/ 1E6
)
368 << " EBF:" << empty_buffer_fraction
369 << " SBR:" << (safe_bitrate
/ 1E6
);
370 bits_per_second
= std::max(bits_per_second
, min_bitrate_configured_
);
371 bits_per_second
= std::min(bits_per_second
, max_bitrate_configured_
);
372 return bits_per_second
;