Updating XTBs based on .GRDs from branch master
[chromium-blink-merge.git] / sandbox / linux / bpf_dsl / codegen.cc
blob2d5c8e406e9ee261cd53edc873a32c1180acd153
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "sandbox/linux/bpf_dsl/codegen.h"
7 #include <limits>
8 #include <utility>
10 #include "base/logging.h"
11 #include "sandbox/linux/system_headers/linux_filter.h"
13 // This CodeGen implementation strives for simplicity while still
14 // generating acceptable BPF programs under typical usage patterns
15 // (e.g., by PolicyCompiler).
17 // The key to its simplicity is that BPF programs only support forward
18 // jumps/branches, which allows constraining the DAG construction API
19 // to make instruction nodes immutable. Immutable nodes admits a
20 // simple greedy approach of emitting new instructions as needed and
21 // then reusing existing ones that have already been emitted. This
22 // cleanly avoids any need to compute basic blocks or apply
23 // topological sorting because the API effectively sorts instructions
24 // for us (e.g., before MakeInstruction() can be called to emit a
25 // branch instruction, it must have already been called for each
26 // branch path).
28 // This greedy algorithm is not without (theoretical) weakness though:
30 // 1. In the general case, we don't eliminate dead code. If needed,
31 // we could trace back through the program in Compile() and elide
32 // any unneeded instructions, but in practice we only emit live
33 // instructions anyway.
35 // 2. By not dividing instructions into basic blocks and sorting, we
36 // lose an opportunity to move non-branch/non-return instructions
37 // adjacent to their successor instructions, which means we might
38 // need to emit additional jumps. But in practice, they'll
39 // already be nearby as long as callers don't go out of their way
40 // to interleave MakeInstruction() calls for unrelated code
41 // sequences.
43 namespace sandbox {
45 // kBranchRange is the maximum value that can be stored in
46 // sock_filter's 8-bit jt and jf fields.
47 const size_t kBranchRange = std::numeric_limits<uint8_t>::max();
49 const CodeGen::Node CodeGen::kNullNode;
51 CodeGen::CodeGen() : program_(), equivalent_(), memos_() {
54 CodeGen::~CodeGen() {
57 void CodeGen::Compile(CodeGen::Node head, Program* out) {
58 DCHECK(out);
59 out->assign(program_.rbegin() + Offset(head), program_.rend());
62 CodeGen::Node CodeGen::MakeInstruction(uint16_t code,
63 uint32_t k,
64 Node jt,
65 Node jf) {
66 // To avoid generating redundant code sequences, we memoize the
67 // results from AppendInstruction().
68 auto res = memos_.insert(std::make_pair(MemoKey(code, k, jt, jf), kNullNode));
69 CodeGen::Node* node = &res.first->second;
70 if (res.second) { // Newly inserted memo entry.
71 *node = AppendInstruction(code, k, jt, jf);
73 return *node;
76 CodeGen::Node CodeGen::AppendInstruction(uint16_t code,
77 uint32_t k,
78 Node jt,
79 Node jf) {
80 if (BPF_CLASS(code) == BPF_JMP) {
81 CHECK_NE(BPF_JA, BPF_OP(code)) << "CodeGen inserts JAs as needed";
83 // Optimally adding jumps is rather tricky, so we use a quick
84 // approximation: by artificially reducing |jt|'s range, |jt| will
85 // stay within its true range even if we add a jump for |jf|.
86 jt = WithinRange(jt, kBranchRange - 1);
87 jf = WithinRange(jf, kBranchRange);
88 return Append(code, k, Offset(jt), Offset(jf));
91 CHECK_EQ(kNullNode, jf) << "Non-branch instructions shouldn't provide jf";
92 if (BPF_CLASS(code) == BPF_RET) {
93 CHECK_EQ(kNullNode, jt) << "Return instructions shouldn't provide jt";
94 } else {
95 // For non-branch/non-return instructions, execution always
96 // proceeds to the next instruction; so we need to arrange for
97 // that to be |jt|.
98 jt = WithinRange(jt, 0);
99 CHECK_EQ(0U, Offset(jt)) << "ICE: Failed to setup next instruction";
101 return Append(code, k, 0, 0);
104 CodeGen::Node CodeGen::WithinRange(Node target, size_t range) {
105 // Just use |target| if it's already within range.
106 if (Offset(target) <= range) {
107 return target;
110 // Alternatively, look for an equivalent instruction within range.
111 if (Offset(equivalent_.at(target)) <= range) {
112 return equivalent_.at(target);
115 // Otherwise, fall back to emitting a jump instruction.
116 Node jump = Append(BPF_JMP | BPF_JA, Offset(target), 0, 0);
117 equivalent_.at(target) = jump;
118 return jump;
121 CodeGen::Node CodeGen::Append(uint16_t code, uint32_t k, size_t jt, size_t jf) {
122 if (BPF_CLASS(code) == BPF_JMP && BPF_OP(code) != BPF_JA) {
123 CHECK_LE(jt, kBranchRange);
124 CHECK_LE(jf, kBranchRange);
125 } else {
126 CHECK_EQ(0U, jt);
127 CHECK_EQ(0U, jf);
130 CHECK_LT(program_.size(), static_cast<size_t>(BPF_MAXINSNS));
131 CHECK_EQ(program_.size(), equivalent_.size());
133 Node res = program_.size();
134 program_.push_back(sock_filter{
135 code, static_cast<uint8_t>(jt), static_cast<uint8_t>(jf), k});
136 equivalent_.push_back(res);
137 return res;
140 size_t CodeGen::Offset(Node target) const {
141 CHECK_LT(target, program_.size()) << "Bogus offset target node";
142 return (program_.size() - 1) - target;
145 // TODO(mdempsky): Move into a general base::Tuple helper library.
146 bool CodeGen::MemoKeyLess::operator()(const MemoKey& lhs,
147 const MemoKey& rhs) const {
148 if (base::get<0>(lhs) != base::get<0>(rhs))
149 return base::get<0>(lhs) < base::get<0>(rhs);
150 if (base::get<1>(lhs) != base::get<1>(rhs))
151 return base::get<1>(lhs) < base::get<1>(rhs);
152 if (base::get<2>(lhs) != base::get<2>(rhs))
153 return base::get<2>(lhs) < base::get<2>(rhs);
154 if (base::get<3>(lhs) != base::get<3>(rhs))
155 return base::get<3>(lhs) < base::get<3>(rhs);
156 return false;
159 } // namespace sandbox