Updating XTBs based on .GRDs from branch master
[chromium-blink-merge.git] / sandbox / linux / integration_tests / namespace_unix_domain_socket_unittest.cc
blob9d79bff1c6afe7e6b8d4ab233afcf5cff3bb34f8
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <sched.h>
6 #include <stdio.h>
7 #include <string.h>
8 #include <sys/socket.h>
9 #include <sys/syscall.h>
10 #include <sys/wait.h>
11 #include <unistd.h>
13 #include <vector>
15 #include "base/files/scoped_file.h"
16 #include "base/logging.h"
17 #include "base/memory/scoped_vector.h"
18 #include "base/posix/eintr_wrapper.h"
19 #include "base/posix/unix_domain_socket_linux.h"
20 #include "base/process/process.h"
21 #include "sandbox/linux/services/syscall_wrappers.h"
22 #include "sandbox/linux/tests/unit_tests.h"
24 // Additional tests for base's UnixDomainSocket to make sure it behaves
25 // correctly in the presence of sandboxing functionality (e.g., receiving
26 // PIDs across namespaces).
28 namespace sandbox {
30 namespace {
32 const char kHello[] = "hello";
34 // If the calling process isn't root, then try using unshare(CLONE_NEWUSER)
35 // to fake it.
36 void FakeRoot() {
37 // If we're already root, then allow test to proceed.
38 if (geteuid() == 0)
39 return;
41 // Otherwise hope the kernel supports unprivileged namespaces.
42 if (unshare(CLONE_NEWUSER) == 0)
43 return;
45 printf("Permission to use CLONE_NEWPID missing; skipping test.\n");
46 UnitTests::IgnoreThisTest();
49 void WaitForExit(pid_t pid) {
50 int status;
51 CHECK_EQ(pid, HANDLE_EINTR(waitpid(pid, &status, 0)));
52 CHECK(WIFEXITED(status));
53 CHECK_EQ(0, WEXITSTATUS(status));
56 base::ProcessId GetParentProcessId(base::ProcessId pid) {
57 // base::GetParentProcessId() is defined as taking a ProcessHandle instead of
58 // a ProcessId, even though it's a POSIX-only function and IDs and Handles
59 // are both simply pid_t on POSIX... :/
60 base::Process process = base::Process::Open(pid);
61 CHECK(process.IsValid());
62 base::ProcessId ret = base::GetParentProcessId(process.Handle());
63 return ret;
66 // SendHello sends a "hello" to socket fd, and then blocks until the recipient
67 // acknowledges it by calling RecvHello.
68 void SendHello(int fd) {
69 int pipe_fds[2];
70 CHECK_EQ(0, pipe(pipe_fds));
71 base::ScopedFD read_pipe(pipe_fds[0]);
72 base::ScopedFD write_pipe(pipe_fds[1]);
74 std::vector<int> send_fds;
75 send_fds.push_back(write_pipe.get());
76 CHECK(base::UnixDomainSocket::SendMsg(fd, kHello, sizeof(kHello), send_fds));
78 write_pipe.reset();
80 // Block until receiver closes their end of the pipe.
81 char ch;
82 CHECK_EQ(0, HANDLE_EINTR(read(read_pipe.get(), &ch, 1)));
85 // RecvHello receives and acknowledges a "hello" on socket fd, and returns the
86 // process ID of the sender in sender_pid. Optionally, write_pipe can be used
87 // to return a file descriptor, and the acknowledgement will be delayed until
88 // the descriptor is closed.
89 // (Implementation details: SendHello allocates a new pipe, sends us the writing
90 // end alongside the "hello" message, and then blocks until we close the writing
91 // end of the pipe.)
92 void RecvHello(int fd,
93 base::ProcessId* sender_pid,
94 base::ScopedFD* write_pipe = NULL) {
95 // Extra receiving buffer space to make sure we really received only
96 // sizeof(kHello) bytes and it wasn't just truncated to fit the buffer.
97 char buf[sizeof(kHello) + 1];
98 ScopedVector<base::ScopedFD> message_fds;
99 ssize_t n = base::UnixDomainSocket::RecvMsgWithPid(
100 fd, buf, sizeof(buf), &message_fds, sender_pid);
101 CHECK_EQ(sizeof(kHello), static_cast<size_t>(n));
102 CHECK_EQ(0, memcmp(buf, kHello, sizeof(kHello)));
103 CHECK_EQ(1U, message_fds.size());
104 if (write_pipe)
105 write_pipe->swap(*message_fds[0]);
108 // Check that receiving PIDs works across a fork().
109 SANDBOX_TEST(UnixDomainSocketTest, Fork) {
110 int fds[2];
111 CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
112 base::ScopedFD recv_sock(fds[0]);
113 base::ScopedFD send_sock(fds[1]);
115 CHECK(base::UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
117 const pid_t pid = fork();
118 CHECK_NE(-1, pid);
119 if (pid == 0) {
120 // Child process.
121 recv_sock.reset();
122 SendHello(send_sock.get());
123 _exit(0);
126 // Parent process.
127 send_sock.reset();
129 base::ProcessId sender_pid;
130 RecvHello(recv_sock.get(), &sender_pid);
131 CHECK_EQ(pid, sender_pid);
133 WaitForExit(pid);
136 // Similar to Fork above, but forking the child into a new pid namespace.
137 SANDBOX_TEST(UnixDomainSocketTest, Namespace) {
138 FakeRoot();
140 int fds[2];
141 CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
142 base::ScopedFD recv_sock(fds[0]);
143 base::ScopedFD send_sock(fds[1]);
145 CHECK(base::UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
147 const pid_t pid = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0);
148 CHECK_NE(-1, pid);
149 if (pid == 0) {
150 // Child process.
151 recv_sock.reset();
153 // Check that we think we're pid 1 in our new namespace.
154 CHECK_EQ(1, sys_getpid());
156 SendHello(send_sock.get());
157 _exit(0);
160 // Parent process.
161 send_sock.reset();
163 base::ProcessId sender_pid;
164 RecvHello(recv_sock.get(), &sender_pid);
165 CHECK_EQ(pid, sender_pid);
167 WaitForExit(pid);
170 // Again similar to Fork, but now with nested PID namespaces.
171 SANDBOX_TEST(UnixDomainSocketTest, DoubleNamespace) {
172 FakeRoot();
174 int fds[2];
175 CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
176 base::ScopedFD recv_sock(fds[0]);
177 base::ScopedFD send_sock(fds[1]);
179 CHECK(base::UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
181 const pid_t pid = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0);
182 CHECK_NE(-1, pid);
183 if (pid == 0) {
184 // Child process.
185 recv_sock.reset();
187 const pid_t pid2 = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0);
188 CHECK_NE(-1, pid2);
190 if (pid2 != 0) {
191 // Wait for grandchild to run to completion; see comments below.
192 WaitForExit(pid2);
194 // Fallthrough once grandchild has sent its hello and exited.
197 // Check that we think we're pid 1.
198 CHECK_EQ(1, sys_getpid());
200 SendHello(send_sock.get());
201 _exit(0);
204 // Parent process.
205 send_sock.reset();
207 // We have two messages to receive: first from the grand-child,
208 // then from the child.
209 for (unsigned iteration = 0; iteration < 2; ++iteration) {
210 base::ProcessId sender_pid;
211 base::ScopedFD pipe_fd;
212 RecvHello(recv_sock.get(), &sender_pid, &pipe_fd);
214 // We need our child and grandchild processes to both be alive for
215 // GetParentProcessId() to return a valid pid, hence the pipe trickery.
216 // (On the first iteration, grandchild is blocked reading from the pipe
217 // until we close it, and child is blocked waiting for grandchild to exit.)
218 switch (iteration) {
219 case 0: // Grandchild's message
220 // Check that sender_pid refers to our grandchild by checking that pid
221 // (our child) is its parent.
222 CHECK_EQ(pid, GetParentProcessId(sender_pid));
223 break;
224 case 1: // Child's message
225 CHECK_EQ(pid, sender_pid);
226 break;
227 default:
228 NOTREACHED();
232 WaitForExit(pid);
235 // Tests that GetPeerPid() returns 0 if the peer does not exist in caller's
236 // namespace.
237 SANDBOX_TEST(UnixDomainSocketTest, ImpossiblePid) {
238 FakeRoot();
240 int fds[2];
241 CHECK_EQ(0, socketpair(AF_UNIX, SOCK_SEQPACKET, 0, fds));
242 base::ScopedFD send_sock(fds[0]);
243 base::ScopedFD recv_sock(fds[1]);
245 CHECK(base::UnixDomainSocket::EnableReceiveProcessId(recv_sock.get()));
247 const pid_t pid = sys_clone(CLONE_NEWPID | SIGCHLD, 0, 0, 0, 0);
248 CHECK_NE(-1, pid);
249 if (pid == 0) {
250 // Child process.
251 send_sock.reset();
253 base::ProcessId sender_pid;
254 RecvHello(recv_sock.get(), &sender_pid);
255 CHECK_EQ(0, sender_pid);
256 _exit(0);
259 // Parent process.
260 recv_sock.reset();
261 SendHello(send_sock.get());
262 WaitForExit(pid);
265 } // namespace
267 } // namespace sandbox