gn vim: apply to *.gni also
[chromium-blink-merge.git] / skia / ext / image_operations.cc
blobbf063d7719b20170537d483698a5d37a052152d0
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #define _USE_MATH_DEFINES
6 #include <algorithm>
7 #include <cmath>
8 #include <limits>
10 #include "skia/ext/image_operations.h"
12 // TODO(pkasting): skia/ext should not depend on base/!
13 #include "base/containers/stack_container.h"
14 #include "base/debug/trace_event.h"
15 #include "base/logging.h"
16 #include "base/metrics/histogram.h"
17 #include "base/time/time.h"
18 #include "build/build_config.h"
19 #include "skia/ext/convolver.h"
20 #include "third_party/skia/include/core/SkColorPriv.h"
21 #include "third_party/skia/include/core/SkFontHost.h"
22 #include "third_party/skia/include/core/SkRect.h"
24 namespace skia {
26 namespace {
28 // Returns the ceiling/floor as an integer.
29 inline int CeilInt(float val) {
30 return static_cast<int>(ceil(val));
32 inline int FloorInt(float val) {
33 return static_cast<int>(floor(val));
36 // Filter function computation -------------------------------------------------
38 // Evaluates the box filter, which goes from -0.5 to +0.5.
39 float EvalBox(float x) {
40 return (x >= -0.5f && x < 0.5f) ? 1.0f : 0.0f;
43 // Evaluates the Lanczos filter of the given filter size window for the given
44 // position.
46 // |filter_size| is the width of the filter (the "window"), outside of which
47 // the value of the function is 0. Inside of the window, the value is the
48 // normalized sinc function:
49 // lanczos(x) = sinc(x) * sinc(x / filter_size);
50 // where
51 // sinc(x) = sin(pi*x) / (pi*x);
52 float EvalLanczos(int filter_size, float x) {
53 if (x <= -filter_size || x >= filter_size)
54 return 0.0f; // Outside of the window.
55 if (x > -std::numeric_limits<float>::epsilon() &&
56 x < std::numeric_limits<float>::epsilon())
57 return 1.0f; // Special case the discontinuity at the origin.
58 float xpi = x * static_cast<float>(M_PI);
59 return (sin(xpi) / xpi) * // sinc(x)
60 sin(xpi / filter_size) / (xpi / filter_size); // sinc(x/filter_size)
63 // Evaluates the Hamming filter of the given filter size window for the given
64 // position.
66 // The filter covers [-filter_size, +filter_size]. Outside of this window
67 // the value of the function is 0. Inside of the window, the value is sinus
68 // cardinal multiplied by a recentered Hamming function. The traditional
69 // Hamming formula for a window of size N and n ranging in [0, N-1] is:
70 // hamming(n) = 0.54 - 0.46 * cos(2 * pi * n / (N-1)))
71 // In our case we want the function centered for x == 0 and at its minimum
72 // on both ends of the window (x == +/- filter_size), hence the adjusted
73 // formula:
74 // hamming(x) = (0.54 -
75 // 0.46 * cos(2 * pi * (x - filter_size)/ (2 * filter_size)))
76 // = 0.54 - 0.46 * cos(pi * x / filter_size - pi)
77 // = 0.54 + 0.46 * cos(pi * x / filter_size)
78 float EvalHamming(int filter_size, float x) {
79 if (x <= -filter_size || x >= filter_size)
80 return 0.0f; // Outside of the window.
81 if (x > -std::numeric_limits<float>::epsilon() &&
82 x < std::numeric_limits<float>::epsilon())
83 return 1.0f; // Special case the sinc discontinuity at the origin.
84 const float xpi = x * static_cast<float>(M_PI);
86 return ((sin(xpi) / xpi) * // sinc(x)
87 (0.54f + 0.46f * cos(xpi / filter_size))); // hamming(x)
90 // ResizeFilter ----------------------------------------------------------------
92 // Encapsulates computation and storage of the filters required for one complete
93 // resize operation.
94 class ResizeFilter {
95 public:
96 ResizeFilter(ImageOperations::ResizeMethod method,
97 int src_full_width, int src_full_height,
98 int dest_width, int dest_height,
99 const SkIRect& dest_subset);
101 // Returns the filled filter values.
102 const ConvolutionFilter1D& x_filter() { return x_filter_; }
103 const ConvolutionFilter1D& y_filter() { return y_filter_; }
105 private:
106 // Returns the number of pixels that the filer spans, in filter space (the
107 // destination image).
108 float GetFilterSupport(float scale) {
109 switch (method_) {
110 case ImageOperations::RESIZE_BOX:
111 // The box filter just scales with the image scaling.
112 return 0.5f; // Only want one side of the filter = /2.
113 case ImageOperations::RESIZE_HAMMING1:
114 // The Hamming filter takes as much space in the source image in
115 // each direction as the size of the window = 1 for Hamming1.
116 return 1.0f;
117 case ImageOperations::RESIZE_LANCZOS2:
118 // The Lanczos filter takes as much space in the source image in
119 // each direction as the size of the window = 2 for Lanczos2.
120 return 2.0f;
121 case ImageOperations::RESIZE_LANCZOS3:
122 // The Lanczos filter takes as much space in the source image in
123 // each direction as the size of the window = 3 for Lanczos3.
124 return 3.0f;
125 default:
126 NOTREACHED();
127 return 1.0f;
131 // Computes one set of filters either horizontally or vertically. The caller
132 // will specify the "min" and "max" rather than the bottom/top and
133 // right/bottom so that the same code can be re-used in each dimension.
135 // |src_depend_lo| and |src_depend_size| gives the range for the source
136 // depend rectangle (horizontally or vertically at the caller's discretion
137 // -- see above for what this means).
139 // Likewise, the range of destination values to compute and the scale factor
140 // for the transform is also specified.
141 void ComputeFilters(int src_size,
142 int dest_subset_lo, int dest_subset_size,
143 float scale,
144 ConvolutionFilter1D* output);
146 // Computes the filter value given the coordinate in filter space.
147 inline float ComputeFilter(float pos) {
148 switch (method_) {
149 case ImageOperations::RESIZE_BOX:
150 return EvalBox(pos);
151 case ImageOperations::RESIZE_HAMMING1:
152 return EvalHamming(1, pos);
153 case ImageOperations::RESIZE_LANCZOS2:
154 return EvalLanczos(2, pos);
155 case ImageOperations::RESIZE_LANCZOS3:
156 return EvalLanczos(3, pos);
157 default:
158 NOTREACHED();
159 return 0;
163 ImageOperations::ResizeMethod method_;
165 // Size of the filter support on one side only in the destination space.
166 // See GetFilterSupport.
167 float x_filter_support_;
168 float y_filter_support_;
170 // Subset of scaled destination bitmap to compute.
171 SkIRect out_bounds_;
173 ConvolutionFilter1D x_filter_;
174 ConvolutionFilter1D y_filter_;
176 DISALLOW_COPY_AND_ASSIGN(ResizeFilter);
179 ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method,
180 int src_full_width, int src_full_height,
181 int dest_width, int dest_height,
182 const SkIRect& dest_subset)
183 : method_(method),
184 out_bounds_(dest_subset) {
185 // method_ will only ever refer to an "algorithm method".
186 SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
187 (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD));
189 float scale_x = static_cast<float>(dest_width) /
190 static_cast<float>(src_full_width);
191 float scale_y = static_cast<float>(dest_height) /
192 static_cast<float>(src_full_height);
194 ComputeFilters(src_full_width, dest_subset.fLeft, dest_subset.width(),
195 scale_x, &x_filter_);
196 ComputeFilters(src_full_height, dest_subset.fTop, dest_subset.height(),
197 scale_y, &y_filter_);
200 // TODO(egouriou): Take advantage of periods in the convolution.
201 // Practical resizing filters are periodic outside of the border area.
202 // For Lanczos, a scaling by a (reduced) factor of p/q (q pixels in the
203 // source become p pixels in the destination) will have a period of p.
204 // A nice consequence is a period of 1 when downscaling by an integral
205 // factor. Downscaling from typical display resolutions is also bound
206 // to produce interesting periods as those are chosen to have multiple
207 // small factors.
208 // Small periods reduce computational load and improve cache usage if
209 // the coefficients can be shared. For periods of 1 we can consider
210 // loading the factors only once outside the borders.
211 void ResizeFilter::ComputeFilters(int src_size,
212 int dest_subset_lo, int dest_subset_size,
213 float scale,
214 ConvolutionFilter1D* output) {
215 int dest_subset_hi = dest_subset_lo + dest_subset_size; // [lo, hi)
217 // When we're doing a magnification, the scale will be larger than one. This
218 // means the destination pixels are much smaller than the source pixels, and
219 // that the range covered by the filter won't necessarily cover any source
220 // pixel boundaries. Therefore, we use these clamped values (max of 1) for
221 // some computations.
222 float clamped_scale = std::min(1.0f, scale);
224 // This is how many source pixels from the center we need to count
225 // to support the filtering function.
226 float src_support = GetFilterSupport(clamped_scale) / clamped_scale;
228 // Speed up the divisions below by turning them into multiplies.
229 float inv_scale = 1.0f / scale;
231 base::StackVector<float, 64> filter_values;
232 base::StackVector<int16, 64> fixed_filter_values;
234 // Loop over all pixels in the output range. We will generate one set of
235 // filter values for each one. Those values will tell us how to blend the
236 // source pixels to compute the destination pixel.
237 for (int dest_subset_i = dest_subset_lo; dest_subset_i < dest_subset_hi;
238 dest_subset_i++) {
239 // Reset the arrays. We don't declare them inside so they can re-use the
240 // same malloc-ed buffer.
241 filter_values->clear();
242 fixed_filter_values->clear();
244 // This is the pixel in the source directly under the pixel in the dest.
245 // Note that we base computations on the "center" of the pixels. To see
246 // why, observe that the destination pixel at coordinates (0, 0) in a 5.0x
247 // downscale should "cover" the pixels around the pixel with *its center*
248 // at coordinates (2.5, 2.5) in the source, not those around (0, 0).
249 // Hence we need to scale coordinates (0.5, 0.5), not (0, 0).
250 float src_pixel = (static_cast<float>(dest_subset_i) + 0.5f) * inv_scale;
252 // Compute the (inclusive) range of source pixels the filter covers.
253 int src_begin = std::max(0, FloorInt(src_pixel - src_support));
254 int src_end = std::min(src_size - 1, CeilInt(src_pixel + src_support));
256 // Compute the unnormalized filter value at each location of the source
257 // it covers.
258 float filter_sum = 0.0f; // Sub of the filter values for normalizing.
259 for (int cur_filter_pixel = src_begin; cur_filter_pixel <= src_end;
260 cur_filter_pixel++) {
261 // Distance from the center of the filter, this is the filter coordinate
262 // in source space. We also need to consider the center of the pixel
263 // when comparing distance against 'src_pixel'. In the 5x downscale
264 // example used above the distance from the center of the filter to
265 // the pixel with coordinates (2, 2) should be 0, because its center
266 // is at (2.5, 2.5).
267 float src_filter_dist =
268 ((static_cast<float>(cur_filter_pixel) + 0.5f) - src_pixel);
270 // Since the filter really exists in dest space, map it there.
271 float dest_filter_dist = src_filter_dist * clamped_scale;
273 // Compute the filter value at that location.
274 float filter_value = ComputeFilter(dest_filter_dist);
275 filter_values->push_back(filter_value);
277 filter_sum += filter_value;
279 DCHECK(!filter_values->empty()) << "We should always get a filter!";
281 // The filter must be normalized so that we don't affect the brightness of
282 // the image. Convert to normalized fixed point.
283 int16 fixed_sum = 0;
284 for (size_t i = 0; i < filter_values->size(); i++) {
285 int16 cur_fixed = output->FloatToFixed(filter_values[i] / filter_sum);
286 fixed_sum += cur_fixed;
287 fixed_filter_values->push_back(cur_fixed);
290 // The conversion to fixed point will leave some rounding errors, which
291 // we add back in to avoid affecting the brightness of the image. We
292 // arbitrarily add this to the center of the filter array (this won't always
293 // be the center of the filter function since it could get clipped on the
294 // edges, but it doesn't matter enough to worry about that case).
295 int16 leftovers = output->FloatToFixed(1.0f) - fixed_sum;
296 fixed_filter_values[fixed_filter_values->size() / 2] += leftovers;
298 // Now it's ready to go.
299 output->AddFilter(src_begin, &fixed_filter_values[0],
300 static_cast<int>(fixed_filter_values->size()));
303 output->PaddingForSIMD();
306 ImageOperations::ResizeMethod ResizeMethodToAlgorithmMethod(
307 ImageOperations::ResizeMethod method) {
308 // Convert any "Quality Method" into an "Algorithm Method"
309 if (method >= ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD &&
310 method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD) {
311 return method;
313 // The call to ImageOperationsGtv::Resize() above took care of
314 // GPU-acceleration in the cases where it is possible. So now we just
315 // pick the appropriate software method for each resize quality.
316 switch (method) {
317 // Users of RESIZE_GOOD are willing to trade a lot of quality to
318 // get speed, allowing the use of linear resampling to get hardware
319 // acceleration (SRB). Hence any of our "good" software filters
320 // will be acceptable, and we use the fastest one, Hamming-1.
321 case ImageOperations::RESIZE_GOOD:
322 // Users of RESIZE_BETTER are willing to trade some quality in order
323 // to improve performance, but are guaranteed not to devolve to a linear
324 // resampling. In visual tests we see that Hamming-1 is not as good as
325 // Lanczos-2, however it is about 40% faster and Lanczos-2 itself is
326 // about 30% faster than Lanczos-3. The use of Hamming-1 has been deemed
327 // an acceptable trade-off between quality and speed.
328 case ImageOperations::RESIZE_BETTER:
329 return ImageOperations::RESIZE_HAMMING1;
330 default:
331 return ImageOperations::RESIZE_LANCZOS3;
335 } // namespace
337 // Resize ----------------------------------------------------------------------
339 // static
340 SkBitmap ImageOperations::Resize(const SkBitmap& source,
341 ResizeMethod method,
342 int dest_width, int dest_height,
343 const SkIRect& dest_subset,
344 SkBitmap::Allocator* allocator) {
345 if (method == ImageOperations::RESIZE_SUBPIXEL) {
346 return ResizeSubpixel(source, dest_width, dest_height,
347 dest_subset, allocator);
348 } else {
349 return ResizeBasic(source, method, dest_width, dest_height, dest_subset,
350 allocator);
354 // static
355 SkBitmap ImageOperations::ResizeSubpixel(const SkBitmap& source,
356 int dest_width, int dest_height,
357 const SkIRect& dest_subset,
358 SkBitmap::Allocator* allocator) {
359 TRACE_EVENT2("skia", "ImageOperations::ResizeSubpixel",
360 "src_pixels", source.width()*source.height(),
361 "dst_pixels", dest_width*dest_height);
362 // Currently only works on Linux/BSD because these are the only platforms
363 // where SkFontHost::GetSubpixelOrder is defined.
364 #if defined(OS_LINUX) && !defined(GTV)
365 // Understand the display.
366 const SkFontHost::LCDOrder order = SkFontHost::GetSubpixelOrder();
367 const SkFontHost::LCDOrientation orientation =
368 SkFontHost::GetSubpixelOrientation();
370 // Decide on which dimension, if any, to deploy subpixel rendering.
371 int w = 1;
372 int h = 1;
373 switch (orientation) {
374 case SkFontHost::kHorizontal_LCDOrientation:
375 w = dest_width < source.width() ? 3 : 1;
376 break;
377 case SkFontHost::kVertical_LCDOrientation:
378 h = dest_height < source.height() ? 3 : 1;
379 break;
382 // Resize the image.
383 const int width = dest_width * w;
384 const int height = dest_height * h;
385 SkIRect subset = { dest_subset.fLeft, dest_subset.fTop,
386 dest_subset.fLeft + dest_subset.width() * w,
387 dest_subset.fTop + dest_subset.height() * h };
388 SkBitmap img = ResizeBasic(source, ImageOperations::RESIZE_LANCZOS3, width,
389 height, subset, allocator);
390 const int row_words = img.rowBytes() / 4;
391 if (w == 1 && h == 1)
392 return img;
394 // Render into subpixels.
395 SkBitmap result;
396 result.setInfo(SkImageInfo::MakeN32(dest_subset.width(), dest_subset.height(),
397 img.alphaType()));
398 result.allocPixels(allocator, NULL);
399 if (!result.readyToDraw())
400 return img;
402 SkAutoLockPixels locker(img);
403 if (!img.readyToDraw())
404 return img;
406 uint32* src_row = img.getAddr32(0, 0);
407 uint32* dst_row = result.getAddr32(0, 0);
408 for (int y = 0; y < dest_subset.height(); y++) {
409 uint32* src = src_row;
410 uint32* dst = dst_row;
411 for (int x = 0; x < dest_subset.width(); x++, src += w, dst++) {
412 uint8 r = 0, g = 0, b = 0, a = 0;
413 switch (order) {
414 case SkFontHost::kRGB_LCDOrder:
415 switch (orientation) {
416 case SkFontHost::kHorizontal_LCDOrientation:
417 r = SkGetPackedR32(src[0]);
418 g = SkGetPackedG32(src[1]);
419 b = SkGetPackedB32(src[2]);
420 a = SkGetPackedA32(src[1]);
421 break;
422 case SkFontHost::kVertical_LCDOrientation:
423 r = SkGetPackedR32(src[0 * row_words]);
424 g = SkGetPackedG32(src[1 * row_words]);
425 b = SkGetPackedB32(src[2 * row_words]);
426 a = SkGetPackedA32(src[1 * row_words]);
427 break;
429 break;
430 case SkFontHost::kBGR_LCDOrder:
431 switch (orientation) {
432 case SkFontHost::kHorizontal_LCDOrientation:
433 b = SkGetPackedB32(src[0]);
434 g = SkGetPackedG32(src[1]);
435 r = SkGetPackedR32(src[2]);
436 a = SkGetPackedA32(src[1]);
437 break;
438 case SkFontHost::kVertical_LCDOrientation:
439 b = SkGetPackedB32(src[0 * row_words]);
440 g = SkGetPackedG32(src[1 * row_words]);
441 r = SkGetPackedR32(src[2 * row_words]);
442 a = SkGetPackedA32(src[1 * row_words]);
443 break;
445 break;
446 case SkFontHost::kNONE_LCDOrder:
447 NOTREACHED();
449 // Premultiplied alpha is very fragile.
450 a = a > r ? a : r;
451 a = a > g ? a : g;
452 a = a > b ? a : b;
453 *dst = SkPackARGB32(a, r, g, b);
455 src_row += h * row_words;
456 dst_row += result.rowBytes() / 4;
458 return result;
459 #else
460 return SkBitmap();
461 #endif // OS_POSIX && !OS_MACOSX && !defined(OS_ANDROID)
464 // static
465 SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source,
466 ResizeMethod method,
467 int dest_width, int dest_height,
468 const SkIRect& dest_subset,
469 SkBitmap::Allocator* allocator) {
470 TRACE_EVENT2("skia", "ImageOperations::ResizeBasic",
471 "src_pixels", source.width()*source.height(),
472 "dst_pixels", dest_width*dest_height);
473 // Ensure that the ResizeMethod enumeration is sound.
474 SkASSERT(((RESIZE_FIRST_QUALITY_METHOD <= method) &&
475 (method <= RESIZE_LAST_QUALITY_METHOD)) ||
476 ((RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
477 (method <= RESIZE_LAST_ALGORITHM_METHOD)));
479 // Time how long this takes to see if it's a problem for users.
480 base::TimeTicks resize_start = base::TimeTicks::Now();
482 SkIRect dest = { 0, 0, dest_width, dest_height };
483 DCHECK(dest.contains(dest_subset)) <<
484 "The supplied subset does not fall within the destination image.";
486 // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just
487 // return empty.
488 if (source.width() < 1 || source.height() < 1 ||
489 dest_width < 1 || dest_height < 1)
490 return SkBitmap();
492 method = ResizeMethodToAlgorithmMethod(method);
493 // Check that we deal with an "algorithm methods" from this point onward.
494 SkASSERT((ImageOperations::RESIZE_FIRST_ALGORITHM_METHOD <= method) &&
495 (method <= ImageOperations::RESIZE_LAST_ALGORITHM_METHOD));
497 SkAutoLockPixels locker(source);
498 if (!source.readyToDraw() || source.colorType() != kN32_SkColorType)
499 return SkBitmap();
501 ResizeFilter filter(method, source.width(), source.height(),
502 dest_width, dest_height, dest_subset);
504 // Get a source bitmap encompassing this touched area. We construct the
505 // offsets and row strides such that it looks like a new bitmap, while
506 // referring to the old data.
507 const uint8* source_subset =
508 reinterpret_cast<const uint8*>(source.getPixels());
510 // Convolve into the result.
511 SkBitmap result;
512 result.setInfo(SkImageInfo::MakeN32(dest_subset.width(), dest_subset.height(), source.alphaType()));
513 result.allocPixels(allocator, NULL);
514 if (!result.readyToDraw())
515 return SkBitmap();
517 BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()),
518 !source.isOpaque(), filter.x_filter(), filter.y_filter(),
519 static_cast<int>(result.rowBytes()),
520 static_cast<unsigned char*>(result.getPixels()),
521 true);
523 base::TimeDelta delta = base::TimeTicks::Now() - resize_start;
524 UMA_HISTOGRAM_TIMES("Image.ResampleMS", delta);
526 return result;
529 // static
530 SkBitmap ImageOperations::Resize(const SkBitmap& source,
531 ResizeMethod method,
532 int dest_width, int dest_height,
533 SkBitmap::Allocator* allocator) {
534 SkIRect dest_subset = { 0, 0, dest_width, dest_height };
535 return Resize(source, method, dest_width, dest_height, dest_subset,
536 allocator);
539 } // namespace skia