ozone: evdev: Sync caps lock LED state to evdev
[chromium-blink-merge.git] / base / threading / thread_perftest.cc
blobb94f942fbb02b19c52b3735c0d4c9722ccc72f54
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/base_switches.h"
6 #include "base/bind.h"
7 #include "base/command_line.h"
8 #include "base/memory/scoped_vector.h"
9 #include "base/strings/stringprintf.h"
10 #include "base/synchronization/condition_variable.h"
11 #include "base/synchronization/lock.h"
12 #include "base/synchronization/waitable_event.h"
13 #include "base/threading/thread.h"
14 #include "base/time/time.h"
15 #include "build/build_config.h"
16 #include "testing/gtest/include/gtest/gtest.h"
17 #include "testing/perf/perf_test.h"
19 #if defined(OS_POSIX)
20 #include <pthread.h>
21 #endif
23 namespace base {
25 namespace {
27 const int kNumRuns = 100000;
29 // Base class for a threading perf-test. This sets up some threads for the
30 // test and measures the clock-time in addition to time spent on each thread.
31 class ThreadPerfTest : public testing::Test {
32 public:
33 ThreadPerfTest()
34 : done_(false, false) {
35 // Disable the task profiler as it adds significant cost!
36 CommandLine::Init(0, NULL);
37 CommandLine::ForCurrentProcess()->AppendSwitchASCII(
38 switches::kProfilerTiming,
39 switches::kProfilerTimingDisabledValue);
42 // To be implemented by each test. Subclass must uses threads_ such that
43 // their cpu-time can be measured. Test must return from PingPong() _and_
44 // call FinishMeasurement from any thread to complete the test.
45 virtual void Init() {}
46 virtual void PingPong(int hops) = 0;
47 virtual void Reset() {}
49 void TimeOnThread(base::TimeTicks* ticks, base::WaitableEvent* done) {
50 *ticks = base::TimeTicks::ThreadNow();
51 done->Signal();
54 base::TimeTicks ThreadNow(base::Thread* thread) {
55 base::WaitableEvent done(false, false);
56 base::TimeTicks ticks;
57 thread->message_loop_proxy()->PostTask(
58 FROM_HERE,
59 base::Bind(&ThreadPerfTest::TimeOnThread,
60 base::Unretained(this),
61 &ticks,
62 &done));
63 done.Wait();
64 return ticks;
67 void RunPingPongTest(const std::string& name, unsigned num_threads) {
68 // Create threads and collect starting cpu-time for each thread.
69 std::vector<base::TimeTicks> thread_starts;
70 while (threads_.size() < num_threads) {
71 threads_.push_back(new base::Thread("PingPonger"));
72 threads_.back()->Start();
73 if (base::TimeTicks::IsThreadNowSupported())
74 thread_starts.push_back(ThreadNow(threads_.back()));
77 Init();
79 base::TimeTicks start = base::TimeTicks::Now();
80 PingPong(kNumRuns);
81 done_.Wait();
82 base::TimeTicks end = base::TimeTicks::Now();
84 // Gather the cpu-time spent on each thread. This does one extra tasks,
85 // but that should be in the noise given enough runs.
86 base::TimeDelta thread_time;
87 while (threads_.size()) {
88 if (base::TimeTicks::IsThreadNowSupported()) {
89 thread_time += ThreadNow(threads_.back()) - thread_starts.back();
90 thread_starts.pop_back();
92 threads_.pop_back();
95 Reset();
97 double num_runs = static_cast<double>(kNumRuns);
98 double us_per_task_clock = (end - start).InMicroseconds() / num_runs;
99 double us_per_task_cpu = thread_time.InMicroseconds() / num_runs;
101 // Clock time per task.
102 perf_test::PrintResult(
103 "task", "", name + "_time ", us_per_task_clock, "us/hop", true);
105 // Total utilization across threads if available (likely higher).
106 if (base::TimeTicks::IsThreadNowSupported()) {
107 perf_test::PrintResult(
108 "task", "", name + "_cpu ", us_per_task_cpu, "us/hop", true);
112 protected:
113 void FinishMeasurement() { done_.Signal(); }
114 ScopedVector<base::Thread> threads_;
116 private:
117 base::WaitableEvent done_;
120 // Class to test task performance by posting empty tasks back and forth.
121 class TaskPerfTest : public ThreadPerfTest {
122 base::Thread* NextThread(int count) {
123 return threads_[count % threads_.size()];
126 void PingPong(int hops) override {
127 if (!hops) {
128 FinishMeasurement();
129 return;
131 NextThread(hops)->message_loop_proxy()->PostTask(
132 FROM_HERE,
133 base::Bind(
134 &ThreadPerfTest::PingPong, base::Unretained(this), hops - 1));
138 // This tries to test the 'best-case' as well as the 'worst-case' task posting
139 // performance. The best-case keeps one thread alive such that it never yeilds,
140 // while the worse-case forces a context switch for every task. Four threads are
141 // used to ensure the threads do yeild (with just two it might be possible for
142 // both threads to stay awake if they can signal each other fast enough).
143 TEST_F(TaskPerfTest, TaskPingPong) {
144 RunPingPongTest("1_Task_Threads", 1);
145 RunPingPongTest("4_Task_Threads", 4);
149 // Same as above, but add observers to test their perf impact.
150 class MessageLoopObserver : public base::MessageLoop::TaskObserver {
151 public:
152 void WillProcessTask(const base::PendingTask& pending_task) override {}
153 void DidProcessTask(const base::PendingTask& pending_task) override {}
155 MessageLoopObserver message_loop_observer;
157 class TaskObserverPerfTest : public TaskPerfTest {
158 public:
159 void Init() override {
160 TaskPerfTest::Init();
161 for (size_t i = 0; i < threads_.size(); i++) {
162 threads_[i]->message_loop()->AddTaskObserver(&message_loop_observer);
167 TEST_F(TaskObserverPerfTest, TaskPingPong) {
168 RunPingPongTest("1_Task_Threads_With_Observer", 1);
169 RunPingPongTest("4_Task_Threads_With_Observer", 4);
172 // Class to test our WaitableEvent performance by signaling back and fort.
173 // WaitableEvent is templated so we can also compare with other versions.
174 template <typename WaitableEventType>
175 class EventPerfTest : public ThreadPerfTest {
176 public:
177 virtual void Init() override {
178 for (size_t i = 0; i < threads_.size(); i++)
179 events_.push_back(new WaitableEventType(false, false));
182 virtual void Reset() override { events_.clear(); }
184 void WaitAndSignalOnThread(size_t event) {
185 size_t next_event = (event + 1) % events_.size();
186 int my_hops = 0;
187 do {
188 events_[event]->Wait();
189 my_hops = --remaining_hops_; // We own 'hops' between Wait and Signal.
190 events_[next_event]->Signal();
191 } while (my_hops > 0);
192 // Once we are done, all threads will signal as hops passes zero.
193 // We only signal completion once, on the thread that reaches zero.
194 if (!my_hops)
195 FinishMeasurement();
198 virtual void PingPong(int hops) override {
199 remaining_hops_ = hops;
200 for (size_t i = 0; i < threads_.size(); i++) {
201 threads_[i]->message_loop_proxy()->PostTask(
202 FROM_HERE,
203 base::Bind(&EventPerfTest::WaitAndSignalOnThread,
204 base::Unretained(this),
205 i));
208 // Kick off the Signal ping-ponging.
209 events_.front()->Signal();
212 int remaining_hops_;
213 ScopedVector<WaitableEventType> events_;
216 // Similar to the task posting test, this just tests similar functionality
217 // using WaitableEvents. We only test four threads (worst-case), but we
218 // might want to craft a way to test the best-case (where the thread doesn't
219 // end up blocking because the event is already signalled).
220 typedef EventPerfTest<base::WaitableEvent> WaitableEventPerfTest;
221 TEST_F(WaitableEventPerfTest, EventPingPong) {
222 RunPingPongTest("4_WaitableEvent_Threads", 4);
225 // Build a minimal event using ConditionVariable.
226 class ConditionVariableEvent {
227 public:
228 ConditionVariableEvent(bool manual_reset, bool initially_signaled)
229 : cond_(&lock_), signaled_(false) {
230 DCHECK(!manual_reset);
231 DCHECK(!initially_signaled);
234 void Signal() {
236 base::AutoLock scoped_lock(lock_);
237 signaled_ = true;
239 cond_.Signal();
242 void Wait() {
243 base::AutoLock scoped_lock(lock_);
244 while (!signaled_)
245 cond_.Wait();
246 signaled_ = false;
249 private:
250 base::Lock lock_;
251 base::ConditionVariable cond_;
252 bool signaled_;
255 // This is meant to test the absolute minimal context switching time
256 // using our own base synchronization code.
257 typedef EventPerfTest<ConditionVariableEvent> ConditionVariablePerfTest;
258 TEST_F(ConditionVariablePerfTest, EventPingPong) {
259 RunPingPongTest("4_ConditionVariable_Threads", 4);
261 #if defined(OS_POSIX)
263 // Absolutely 100% minimal posix waitable event. If there is a better/faster
264 // way to force a context switch, we should use that instead.
265 class PthreadEvent {
266 public:
267 PthreadEvent(bool manual_reset, bool initially_signaled) {
268 DCHECK(!manual_reset);
269 DCHECK(!initially_signaled);
270 pthread_mutex_init(&mutex_, 0);
271 pthread_cond_init(&cond_, 0);
272 signaled_ = false;
275 ~PthreadEvent() {
276 pthread_cond_destroy(&cond_);
277 pthread_mutex_destroy(&mutex_);
280 void Signal() {
281 pthread_mutex_lock(&mutex_);
282 signaled_ = true;
283 pthread_mutex_unlock(&mutex_);
284 pthread_cond_signal(&cond_);
287 void Wait() {
288 pthread_mutex_lock(&mutex_);
289 while (!signaled_)
290 pthread_cond_wait(&cond_, &mutex_);
291 signaled_ = false;
292 pthread_mutex_unlock(&mutex_);
295 private:
296 bool signaled_;
297 pthread_mutex_t mutex_;
298 pthread_cond_t cond_;
301 // This is meant to test the absolute minimal context switching time.
302 // If there is any faster way to do this we should substitute it in.
303 typedef EventPerfTest<PthreadEvent> PthreadEventPerfTest;
304 TEST_F(PthreadEventPerfTest, EventPingPong) {
305 RunPingPongTest("4_PthreadCondVar_Threads", 4);
308 #endif
310 } // namespace
312 } // namespace base