ozone: evdev: Sync caps lock LED state to evdev
[chromium-blink-merge.git] / components / rappor / byte_vector_utils.cc
blob69abcd4dffd8e3c8cfb55061c8aa2cc58c61cedf
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "components/rappor/byte_vector_utils.h"
7 #include <string>
9 #include "base/logging.h"
10 #include "base/rand_util.h"
11 #include "base/strings/string_number_conversions.h"
12 #include "crypto/random.h"
14 namespace rappor {
16 namespace {
18 // Reinterpets a ByteVector as a StringPiece.
19 base::StringPiece ByteVectorAsStringPiece(const ByteVector& lhs) {
20 return base::StringPiece(reinterpret_cast<const char *>(&lhs[0]), lhs.size());
23 // Concatenates parameters together as a string.
24 std::string Concat(const ByteVector& value, char c, const std::string& data) {
25 return std::string(value.begin(), value.end()) + c + data;
28 // Performs the operation: K = HMAC(K, data)
29 // The input "K" is passed by initializing |hmac| with it.
30 // The output "K" is returned by initializing |result| with it.
31 // Returns false on an error.
32 bool HMAC_Rotate(const crypto::HMAC& hmac,
33 const std::string& data,
34 crypto::HMAC* result) {
35 ByteVector key(hmac.DigestLength());
36 if (!hmac.Sign(data, &key[0], key.size()))
37 return false;
38 return result->Init(ByteVectorAsStringPiece(key));
41 // Performs the operation: V = HMAC(K, V)
42 // The input "K" is passed by initializing |hmac| with it.
43 // "V" is read from and written to |value|.
44 // Returns false on an error.
45 bool HMAC_Rehash(const crypto::HMAC& hmac, ByteVector* value) {
46 return hmac.Sign(ByteVectorAsStringPiece(*value),
47 &(*value)[0], value->size());
50 // Implements (Key, V) = HMAC_DRBG_Update(provided_data, Key, V)
51 // See: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
52 // "V" is read from and written to |value|.
53 // The input "Key" is passed by initializing |hmac1| with it.
54 // The output "Key" is returned by initializing |out_hmac| with it.
55 // Returns false on an error.
56 bool HMAC_DRBG_Update(const std::string& provided_data,
57 const crypto::HMAC& hmac1,
58 ByteVector* value,
59 crypto::HMAC* out_hmac) {
60 // HMAC_DRBG Update Process
61 crypto::HMAC temp_hmac(crypto::HMAC::SHA256);
62 crypto::HMAC* hmac2 = provided_data.size() > 0 ? &temp_hmac : out_hmac;
63 // 1. K = HMAC(K, V || 0x00 || provided_data)
64 if (!HMAC_Rotate(hmac1, Concat(*value, 0x00, provided_data), hmac2))
65 return false;
66 // 2. V = HMAC(K, V)
67 if (!HMAC_Rehash(*hmac2, value))
68 return false;
69 // 3. If (provided_data = Null), then return K and V.
70 if (hmac2 == out_hmac)
71 return true;
72 // 4. K = HMAC(K, V || 0x01 || provided_data)
73 if (!HMAC_Rotate(*hmac2, Concat(*value, 0x01, provided_data), out_hmac))
74 return false;
75 // 5. V = HMAC(K, V)
76 return HMAC_Rehash(*out_hmac, value);
79 } // namespace
81 ByteVector* ByteVectorAnd(const ByteVector& lhs, ByteVector* rhs) {
82 DCHECK_EQ(lhs.size(), rhs->size());
83 for (size_t i = 0; i < lhs.size(); ++i) {
84 (*rhs)[i] = lhs[i] & (*rhs)[i];
86 return rhs;
89 ByteVector* ByteVectorOr(const ByteVector& lhs, ByteVector* rhs) {
90 DCHECK_EQ(lhs.size(), rhs->size());
91 for (size_t i = 0; i < lhs.size(); ++i) {
92 (*rhs)[i] = lhs[i] | (*rhs)[i];
94 return rhs;
97 ByteVector* ByteVectorMerge(const ByteVector& mask,
98 const ByteVector& lhs,
99 ByteVector* rhs) {
100 DCHECK_EQ(lhs.size(), rhs->size());
101 for (size_t i = 0; i < lhs.size(); ++i) {
102 (*rhs)[i] = (lhs[i] & ~mask[i]) | ((*rhs)[i] & mask[i]);
104 return rhs;
107 int CountBits(const ByteVector& vector) {
108 int bit_count = 0;
109 for (size_t i = 0; i < vector.size(); ++i) {
110 uint8_t byte = vector[i];
111 for (int j = 0; j < 8 ; ++j) {
112 if (byte & (1 << j))
113 bit_count++;
116 return bit_count;
119 ByteVectorGenerator::ByteVectorGenerator(size_t byte_count)
120 : byte_count_(byte_count) {}
122 ByteVectorGenerator::~ByteVectorGenerator() {}
124 ByteVector ByteVectorGenerator::GetRandomByteVector() {
125 ByteVector bytes(byte_count_);
126 crypto::RandBytes(&bytes[0], bytes.size());
127 return bytes;
130 ByteVector ByteVectorGenerator::GetWeightedRandomByteVector(
131 Probability probability) {
132 ByteVector bytes = GetRandomByteVector();
133 switch (probability) {
134 case PROBABILITY_75:
135 return *ByteVectorOr(GetRandomByteVector(), &bytes);
136 case PROBABILITY_50:
137 return bytes;
138 case PROBABILITY_25:
139 return *ByteVectorAnd(GetRandomByteVector(), &bytes);
141 NOTREACHED();
142 return bytes;
145 HmacByteVectorGenerator::HmacByteVectorGenerator(
146 size_t byte_count,
147 const std::string& entropy_input,
148 const std::string& personalization_string)
149 : ByteVectorGenerator(byte_count),
150 hmac_(crypto::HMAC::SHA256),
151 value_(hmac_.DigestLength(), 0x01),
152 generated_bytes_(0) {
153 // HMAC_DRBG Instantiate Process
154 // See: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
155 // 1. seed_material = entropy_input + nonce + personalization_string
156 // Note: We are using the 8.6.7 interpretation, where the entropy_input and
157 // nonce are acquired at the same time from the same source.
158 DCHECK_EQ(kEntropyInputSize, entropy_input.size());
159 std::string seed_material(entropy_input + personalization_string);
160 // 2. Key = 0x00 00...00
161 crypto::HMAC hmac1(crypto::HMAC::SHA256);
162 if (!hmac1.Init(std::string(hmac_.DigestLength(), 0x00)))
163 NOTREACHED();
164 // 3. V = 0x01 01...01
165 // (value_ in initializer list)
167 // 4. (Key, V) = HMAC_DRBG_Update(seed_material, Key, V)
168 if (!HMAC_DRBG_Update(seed_material, hmac1, &value_, &hmac_))
169 NOTREACHED();
172 HmacByteVectorGenerator::~HmacByteVectorGenerator() {}
174 HmacByteVectorGenerator::HmacByteVectorGenerator(
175 const HmacByteVectorGenerator& prev_request)
176 : ByteVectorGenerator(prev_request.byte_count()),
177 hmac_(crypto::HMAC::SHA256),
178 value_(prev_request.value_),
179 generated_bytes_(0) {
180 if (!HMAC_DRBG_Update("", prev_request.hmac_, &value_, &hmac_))
181 NOTREACHED();
184 // HMAC_DRBG requires entropy input to be security_strength bits long,
185 // and nonce to be at least 1/2 security_strength bits long. We
186 // generate them both as a single "extra strong" entropy input.
187 // max_security_strength for SHA256 is 256 bits.
188 // See: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
189 const size_t HmacByteVectorGenerator::kEntropyInputSize = (256 / 8) * 3 / 2;
191 // static
192 std::string HmacByteVectorGenerator::GenerateEntropyInput() {
193 return base::RandBytesAsString(kEntropyInputSize);
196 ByteVector HmacByteVectorGenerator::GetRandomByteVector() {
197 // Streams bytes from HMAC_DRBG_Generate
198 // See: http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
199 const size_t digest_length = hmac_.DigestLength();
200 DCHECK_EQ(value_.size(), digest_length);
201 ByteVector bytes(byte_count());
202 uint8_t* data = &bytes[0];
203 size_t bytes_to_go = byte_count();
204 while (bytes_to_go > 0) {
205 size_t requested_byte_in_digest = generated_bytes_ % digest_length;
206 if (requested_byte_in_digest == 0) {
207 // Do step 4.1 of the HMAC_DRBG Generate Process for more bits.
208 // V = HMAC(Key, V)
209 if (!HMAC_Rehash(hmac_, &value_))
210 NOTREACHED();
212 size_t n = std::min(bytes_to_go,
213 digest_length - requested_byte_in_digest);
214 memcpy(data, &value_[requested_byte_in_digest], n);
215 data += n;
216 bytes_to_go -= n;
217 generated_bytes_ += n;
218 // Check max_number_of_bits_per_request from 10.1 Table 2
219 // max_number_of_bits_per_request == 2^19 bits == 2^16 bytes
220 DCHECK_LT(generated_bytes_, 1U << 16);
222 return bytes;
225 } // namespace rappor