ozone: evdev: Sync caps lock LED state to evdev
[chromium-blink-merge.git] / net / url_request / url_request_throttler_simulation_unittest.cc
blobcd186594eed62fc69ff7aadbc66ffa9230fc40f0
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // The tests in this file attempt to verify the following through simulation:
6 // a) That a server experiencing overload will actually benefit from the
7 // anti-DDoS throttling logic, i.e. that its traffic spike will subside
8 // and be distributed over a longer period of time;
9 // b) That "well-behaved" clients of a server under DDoS attack actually
10 // benefit from the anti-DDoS throttling logic; and
11 // c) That the approximate increase in "perceived downtime" introduced by
12 // anti-DDoS throttling for various different actual downtimes is what
13 // we expect it to be.
15 #include <cmath>
16 #include <limits>
17 #include <vector>
19 #include "base/environment.h"
20 #include "base/memory/scoped_ptr.h"
21 #include "base/memory/scoped_vector.h"
22 #include "base/rand_util.h"
23 #include "base/time/time.h"
24 #include "net/base/request_priority.h"
25 #include "net/url_request/url_request.h"
26 #include "net/url_request/url_request_context.h"
27 #include "net/url_request/url_request_test_util.h"
28 #include "net/url_request/url_request_throttler_manager.h"
29 #include "net/url_request/url_request_throttler_test_support.h"
30 #include "testing/gtest/include/gtest/gtest.h"
32 using base::TimeDelta;
33 using base::TimeTicks;
35 namespace net {
36 namespace {
38 // Set this variable in your environment if you want to see verbose results
39 // of the simulation tests.
40 const char kShowSimulationVariableName[] = "SHOW_SIMULATION_RESULTS";
42 // Prints output only if a given environment variable is set. We use this
43 // to not print any output for human evaluation when the test is run without
44 // supervision.
45 void VerboseOut(const char* format, ...) {
46 static bool have_checked_environment = false;
47 static bool should_print = false;
48 if (!have_checked_environment) {
49 have_checked_environment = true;
50 scoped_ptr<base::Environment> env(base::Environment::Create());
51 if (env->HasVar(kShowSimulationVariableName))
52 should_print = true;
55 if (should_print) {
56 va_list arglist;
57 va_start(arglist, format);
58 vprintf(format, arglist);
59 va_end(arglist);
63 // A simple two-phase discrete time simulation. Actors are added in the order
64 // they should take action at every tick of the clock. Ticks of the clock
65 // are two-phase:
66 // - Phase 1 advances every actor's time to a new absolute time.
67 // - Phase 2 asks each actor to perform their action.
68 class DiscreteTimeSimulation {
69 public:
70 class Actor {
71 public:
72 virtual ~Actor() {}
73 virtual void AdvanceTime(const TimeTicks& absolute_time) = 0;
74 virtual void PerformAction() = 0;
77 DiscreteTimeSimulation() {}
79 // Adds an |actor| to the simulation. The client of the simulation maintains
80 // ownership of |actor| and must ensure its lifetime exceeds that of the
81 // simulation. Actors should be added in the order you wish for them to
82 // act at each tick of the simulation.
83 void AddActor(Actor* actor) {
84 actors_.push_back(actor);
87 // Runs the simulation for, pretending |time_between_ticks| passes from one
88 // tick to the next. The start time will be the current real time. The
89 // simulation will stop when the simulated duration is equal to or greater
90 // than |maximum_simulated_duration|.
91 void RunSimulation(const TimeDelta& maximum_simulated_duration,
92 const TimeDelta& time_between_ticks) {
93 TimeTicks start_time = TimeTicks();
94 TimeTicks now = start_time;
95 while ((now - start_time) <= maximum_simulated_duration) {
96 for (std::vector<Actor*>::iterator it = actors_.begin();
97 it != actors_.end();
98 ++it) {
99 (*it)->AdvanceTime(now);
102 for (std::vector<Actor*>::iterator it = actors_.begin();
103 it != actors_.end();
104 ++it) {
105 (*it)->PerformAction();
108 now += time_between_ticks;
112 private:
113 std::vector<Actor*> actors_;
115 DISALLOW_COPY_AND_ASSIGN(DiscreteTimeSimulation);
118 // Represents a web server in a simulation of a server under attack by
119 // a lot of clients. Must be added to the simulation's list of actors
120 // after all |Requester| objects.
121 class Server : public DiscreteTimeSimulation::Actor {
122 public:
123 Server(int max_queries_per_tick, double request_drop_ratio)
124 : max_queries_per_tick_(max_queries_per_tick),
125 request_drop_ratio_(request_drop_ratio),
126 num_overloaded_ticks_remaining_(0),
127 num_current_tick_queries_(0),
128 num_overloaded_ticks_(0),
129 max_experienced_queries_per_tick_(0),
130 mock_request_(context_.CreateRequest(
131 GURL(), DEFAULT_PRIORITY, NULL, NULL)) {}
133 void SetDowntime(const TimeTicks& start_time, const TimeDelta& duration) {
134 start_downtime_ = start_time;
135 end_downtime_ = start_time + duration;
138 void AdvanceTime(const TimeTicks& absolute_time) override {
139 now_ = absolute_time;
142 void PerformAction() override {
143 // We are inserted at the end of the actor's list, so all Requester
144 // instances have already done their bit.
145 if (num_current_tick_queries_ > max_experienced_queries_per_tick_)
146 max_experienced_queries_per_tick_ = num_current_tick_queries_;
148 if (num_current_tick_queries_ > max_queries_per_tick_) {
149 // We pretend the server fails for the next several ticks after it
150 // gets overloaded.
151 num_overloaded_ticks_remaining_ = 5;
152 ++num_overloaded_ticks_;
153 } else if (num_overloaded_ticks_remaining_ > 0) {
154 --num_overloaded_ticks_remaining_;
157 requests_per_tick_.push_back(num_current_tick_queries_);
158 num_current_tick_queries_ = 0;
161 // This is called by Requester. It returns the response code from
162 // the server.
163 int HandleRequest() {
164 ++num_current_tick_queries_;
165 if (!start_downtime_.is_null() &&
166 start_downtime_ < now_ && now_ < end_downtime_) {
167 // For the simulation measuring the increase in perceived
168 // downtime, it might be interesting to count separately the
169 // queries seen by the server (assuming a front-end reverse proxy
170 // is what actually serves up the 503s in this case) so that we could
171 // visualize the traffic spike seen by the server when it comes up,
172 // which would in many situations be ameliorated by the anti-DDoS
173 // throttling.
174 return 503;
177 if ((num_overloaded_ticks_remaining_ > 0 ||
178 num_current_tick_queries_ > max_queries_per_tick_) &&
179 base::RandDouble() < request_drop_ratio_) {
180 return 503;
183 return 200;
186 int num_overloaded_ticks() const {
187 return num_overloaded_ticks_;
190 int max_experienced_queries_per_tick() const {
191 return max_experienced_queries_per_tick_;
194 const URLRequest& mock_request() const {
195 return *mock_request_.get();
198 std::string VisualizeASCII(int terminal_width) {
199 // Account for | characters we place at left of graph.
200 terminal_width -= 1;
202 VerboseOut("Overloaded for %d of %d ticks.\n",
203 num_overloaded_ticks_, requests_per_tick_.size());
204 VerboseOut("Got maximum of %d requests in a tick.\n\n",
205 max_experienced_queries_per_tick_);
207 VerboseOut("Traffic graph:\n\n");
209 // Printing the graph like this is a bit overkill, but was very useful
210 // while developing the various simulations to see if they were testing
211 // the corner cases we want to simulate.
213 // Find the smallest number of whole ticks we need to group into a
214 // column that will let all ticks fit into the column width we have.
215 int num_ticks = requests_per_tick_.size();
216 double ticks_per_column_exact =
217 static_cast<double>(num_ticks) / static_cast<double>(terminal_width);
218 int ticks_per_column = std::ceil(ticks_per_column_exact);
219 DCHECK_GE(ticks_per_column * terminal_width, num_ticks);
221 // Sum up the column values.
222 int num_columns = num_ticks / ticks_per_column;
223 if (num_ticks % ticks_per_column)
224 ++num_columns;
225 DCHECK_LE(num_columns, terminal_width);
226 scoped_ptr<int[]> columns(new int[num_columns]);
227 for (int tx = 0; tx < num_ticks; ++tx) {
228 int cx = tx / ticks_per_column;
229 if (tx % ticks_per_column == 0)
230 columns[cx] = 0;
231 columns[cx] += requests_per_tick_[tx];
234 // Find the lowest integer divisor that will let the column values
235 // be represented in a graph of maximum height 50.
236 int max_value = 0;
237 for (int cx = 0; cx < num_columns; ++cx)
238 max_value = std::max(max_value, columns[cx]);
239 const int kNumRows = 50;
240 double row_divisor_exact = max_value / static_cast<double>(kNumRows);
241 int row_divisor = std::ceil(row_divisor_exact);
242 DCHECK_GE(row_divisor * kNumRows, max_value);
244 // To show the overload line, we calculate the appropriate value.
245 int overload_value = max_queries_per_tick_ * ticks_per_column;
247 // When num_ticks is not a whole multiple of ticks_per_column, the last
248 // column includes fewer ticks than the others. In this case, don't
249 // print it so that we don't show an inconsistent value.
250 int num_printed_columns = num_columns;
251 if (num_ticks % ticks_per_column)
252 --num_printed_columns;
254 // This is a top-to-bottom traversal of rows, left-to-right per row.
255 std::string output;
256 for (int rx = 0; rx < kNumRows; ++rx) {
257 int range_min = (kNumRows - rx) * row_divisor;
258 int range_max = range_min + row_divisor;
259 if (range_min == 0)
260 range_min = -1; // Make 0 values fit in the bottom range.
261 output.append("|");
262 for (int cx = 0; cx < num_printed_columns; ++cx) {
263 char block = ' ';
264 // Show the overload line.
265 if (range_min < overload_value && overload_value <= range_max)
266 block = '-';
268 // Preferentially, show the graph line.
269 if (range_min < columns[cx] && columns[cx] <= range_max)
270 block = '#';
272 output.append(1, block);
274 output.append("\n");
276 output.append("|");
277 output.append(num_printed_columns, '=');
279 return output;
282 const URLRequestContext& context() const { return context_; }
284 private:
285 TimeTicks now_;
286 TimeTicks start_downtime_; // Can be 0 to say "no downtime".
287 TimeTicks end_downtime_;
288 const int max_queries_per_tick_;
289 const double request_drop_ratio_; // Ratio of requests to 503 when failing.
290 int num_overloaded_ticks_remaining_;
291 int num_current_tick_queries_;
292 int num_overloaded_ticks_;
293 int max_experienced_queries_per_tick_;
294 std::vector<int> requests_per_tick_;
296 TestURLRequestContext context_;
297 scoped_ptr<URLRequest> mock_request_;
299 DISALLOW_COPY_AND_ASSIGN(Server);
302 // Mock throttler entry used by Requester class.
303 class MockURLRequestThrottlerEntry : public URLRequestThrottlerEntry {
304 public:
305 explicit MockURLRequestThrottlerEntry(URLRequestThrottlerManager* manager)
306 : URLRequestThrottlerEntry(manager, std::string()),
307 mock_backoff_entry_(&backoff_policy_) {}
309 const BackoffEntry* GetBackoffEntry() const override {
310 return &mock_backoff_entry_;
313 BackoffEntry* GetBackoffEntry() override { return &mock_backoff_entry_; }
315 TimeTicks ImplGetTimeNow() const override { return fake_now_; }
317 void SetFakeNow(const TimeTicks& fake_time) {
318 fake_now_ = fake_time;
319 mock_backoff_entry_.set_fake_now(fake_time);
322 TimeTicks fake_now() const {
323 return fake_now_;
326 protected:
327 ~MockURLRequestThrottlerEntry() override {}
329 private:
330 TimeTicks fake_now_;
331 MockBackoffEntry mock_backoff_entry_;
334 // Registry of results for a class of |Requester| objects (e.g. attackers vs.
335 // regular clients).
336 class RequesterResults {
337 public:
338 RequesterResults()
339 : num_attempts_(0), num_successful_(0), num_failed_(0), num_blocked_(0) {
342 void AddSuccess() {
343 ++num_attempts_;
344 ++num_successful_;
347 void AddFailure() {
348 ++num_attempts_;
349 ++num_failed_;
352 void AddBlocked() {
353 ++num_attempts_;
354 ++num_blocked_;
357 int num_attempts() const { return num_attempts_; }
358 int num_successful() const { return num_successful_; }
359 int num_failed() const { return num_failed_; }
360 int num_blocked() const { return num_blocked_; }
362 double GetBlockedRatio() {
363 DCHECK(num_attempts_);
364 return static_cast<double>(num_blocked_) /
365 static_cast<double>(num_attempts_);
368 double GetSuccessRatio() {
369 DCHECK(num_attempts_);
370 return static_cast<double>(num_successful_) /
371 static_cast<double>(num_attempts_);
374 void PrintResults(const char* class_description) {
375 if (num_attempts_ == 0) {
376 VerboseOut("No data for %s\n", class_description);
377 return;
380 VerboseOut("Requester results for %s\n", class_description);
381 VerboseOut(" %d attempts\n", num_attempts_);
382 VerboseOut(" %d successes\n", num_successful_);
383 VerboseOut(" %d 5xx responses\n", num_failed_);
384 VerboseOut(" %d requests blocked\n", num_blocked_);
385 VerboseOut(" %.2f success ratio\n", GetSuccessRatio());
386 VerboseOut(" %.2f blocked ratio\n", GetBlockedRatio());
387 VerboseOut("\n");
390 private:
391 int num_attempts_;
392 int num_successful_;
393 int num_failed_;
394 int num_blocked_;
397 // Represents an Requester in a simulated DDoS situation, that periodically
398 // requests a specific resource.
399 class Requester : public DiscreteTimeSimulation::Actor {
400 public:
401 Requester(MockURLRequestThrottlerEntry* throttler_entry,
402 const TimeDelta& time_between_requests,
403 Server* server,
404 RequesterResults* results)
405 : throttler_entry_(throttler_entry),
406 time_between_requests_(time_between_requests),
407 last_attempt_was_failure_(false),
408 server_(server),
409 results_(results) {
410 DCHECK(server_);
413 void AdvanceTime(const TimeTicks& absolute_time) override {
414 if (time_of_last_success_.is_null())
415 time_of_last_success_ = absolute_time;
417 throttler_entry_->SetFakeNow(absolute_time);
420 void PerformAction() override {
421 TimeDelta effective_delay = time_between_requests_;
422 TimeDelta current_jitter = TimeDelta::FromMilliseconds(
423 request_jitter_.InMilliseconds() * base::RandDouble());
424 if (base::RandInt(0, 1)) {
425 effective_delay -= current_jitter;
426 } else {
427 effective_delay += current_jitter;
430 if (throttler_entry_->fake_now() - time_of_last_attempt_ >
431 effective_delay) {
432 if (!throttler_entry_->ShouldRejectRequest(
433 server_->mock_request(),
434 server_->context().network_delegate())) {
435 int status_code = server_->HandleRequest();
436 MockURLRequestThrottlerHeaderAdapter response_headers(status_code);
437 throttler_entry_->UpdateWithResponse(std::string(), &response_headers);
439 if (status_code == 200) {
440 if (results_)
441 results_->AddSuccess();
443 if (last_attempt_was_failure_) {
444 last_downtime_duration_ =
445 throttler_entry_->fake_now() - time_of_last_success_;
448 time_of_last_success_ = throttler_entry_->fake_now();
449 last_attempt_was_failure_ = false;
450 } else {
451 if (results_)
452 results_->AddFailure();
453 last_attempt_was_failure_ = true;
455 } else {
456 if (results_)
457 results_->AddBlocked();
458 last_attempt_was_failure_ = true;
461 time_of_last_attempt_ = throttler_entry_->fake_now();
465 // Adds a delay until the first request, equal to a uniformly distributed
466 // value between now and now + max_delay.
467 void SetStartupJitter(const TimeDelta& max_delay) {
468 int delay_ms = base::RandInt(0, max_delay.InMilliseconds());
469 time_of_last_attempt_ = TimeTicks() +
470 TimeDelta::FromMilliseconds(delay_ms) - time_between_requests_;
473 void SetRequestJitter(const TimeDelta& request_jitter) {
474 request_jitter_ = request_jitter;
477 TimeDelta last_downtime_duration() const { return last_downtime_duration_; }
479 private:
480 scoped_refptr<MockURLRequestThrottlerEntry> throttler_entry_;
481 const TimeDelta time_between_requests_;
482 TimeDelta request_jitter_;
483 TimeTicks time_of_last_attempt_;
484 TimeTicks time_of_last_success_;
485 bool last_attempt_was_failure_;
486 TimeDelta last_downtime_duration_;
487 Server* const server_;
488 RequesterResults* const results_; // May be NULL.
490 DISALLOW_COPY_AND_ASSIGN(Requester);
493 void SimulateAttack(Server* server,
494 RequesterResults* attacker_results,
495 RequesterResults* client_results,
496 bool enable_throttling) {
497 const size_t kNumAttackers = 50;
498 const size_t kNumClients = 50;
499 DiscreteTimeSimulation simulation;
500 URLRequestThrottlerManager manager;
501 ScopedVector<Requester> requesters;
502 for (size_t i = 0; i < kNumAttackers; ++i) {
503 // Use a tiny time_between_requests so the attackers will ping the
504 // server at every tick of the simulation.
505 scoped_refptr<MockURLRequestThrottlerEntry> throttler_entry(
506 new MockURLRequestThrottlerEntry(&manager));
507 if (!enable_throttling)
508 throttler_entry->DisableBackoffThrottling();
510 Requester* attacker = new Requester(throttler_entry.get(),
511 TimeDelta::FromMilliseconds(1),
512 server,
513 attacker_results);
514 attacker->SetStartupJitter(TimeDelta::FromSeconds(120));
515 requesters.push_back(attacker);
516 simulation.AddActor(attacker);
518 for (size_t i = 0; i < kNumClients; ++i) {
519 // Normal clients only make requests every 2 minutes, plus/minus 1 minute.
520 scoped_refptr<MockURLRequestThrottlerEntry> throttler_entry(
521 new MockURLRequestThrottlerEntry(&manager));
522 if (!enable_throttling)
523 throttler_entry->DisableBackoffThrottling();
525 Requester* client = new Requester(throttler_entry.get(),
526 TimeDelta::FromMinutes(2),
527 server,
528 client_results);
529 client->SetStartupJitter(TimeDelta::FromSeconds(120));
530 client->SetRequestJitter(TimeDelta::FromMinutes(1));
531 requesters.push_back(client);
532 simulation.AddActor(client);
534 simulation.AddActor(server);
536 simulation.RunSimulation(TimeDelta::FromMinutes(6),
537 TimeDelta::FromSeconds(1));
540 TEST(URLRequestThrottlerSimulation, HelpsInAttack) {
541 Server unprotected_server(30, 1.0);
542 RequesterResults unprotected_attacker_results;
543 RequesterResults unprotected_client_results;
544 Server protected_server(30, 1.0);
545 RequesterResults protected_attacker_results;
546 RequesterResults protected_client_results;
547 SimulateAttack(&unprotected_server,
548 &unprotected_attacker_results,
549 &unprotected_client_results,
550 false);
551 SimulateAttack(&protected_server,
552 &protected_attacker_results,
553 &protected_client_results,
554 true);
556 // These assert that the DDoS protection actually benefits the
557 // server. Manual inspection of the traffic graphs will show this
558 // even more clearly.
559 EXPECT_GT(unprotected_server.num_overloaded_ticks(),
560 protected_server.num_overloaded_ticks());
561 EXPECT_GT(unprotected_server.max_experienced_queries_per_tick(),
562 protected_server.max_experienced_queries_per_tick());
564 // These assert that the DDoS protection actually benefits non-malicious
565 // (and non-degenerate/accidentally DDoSing) users.
566 EXPECT_LT(protected_client_results.GetBlockedRatio(),
567 protected_attacker_results.GetBlockedRatio());
568 EXPECT_GT(protected_client_results.GetSuccessRatio(),
569 unprotected_client_results.GetSuccessRatio());
571 // The rest is just for optional manual evaluation of the results;
572 // in particular the traffic pattern is interesting.
574 VerboseOut("\nUnprotected server's results:\n\n");
575 VerboseOut(unprotected_server.VisualizeASCII(132).c_str());
576 VerboseOut("\n\n");
577 VerboseOut("Protected server's results:\n\n");
578 VerboseOut(protected_server.VisualizeASCII(132).c_str());
579 VerboseOut("\n\n");
581 unprotected_attacker_results.PrintResults(
582 "attackers attacking unprotected server.");
583 unprotected_client_results.PrintResults(
584 "normal clients making requests to unprotected server.");
585 protected_attacker_results.PrintResults(
586 "attackers attacking protected server.");
587 protected_client_results.PrintResults(
588 "normal clients making requests to protected server.");
591 // Returns the downtime perceived by the client, as a ratio of the
592 // actual downtime.
593 double SimulateDowntime(const TimeDelta& duration,
594 const TimeDelta& average_client_interval,
595 bool enable_throttling) {
596 TimeDelta time_between_ticks = duration / 200;
597 TimeTicks start_downtime = TimeTicks() + (duration / 2);
599 // A server that never rejects requests, but will go down for maintenance.
600 Server server(std::numeric_limits<int>::max(), 1.0);
601 server.SetDowntime(start_downtime, duration);
603 URLRequestThrottlerManager manager;
604 scoped_refptr<MockURLRequestThrottlerEntry> throttler_entry(
605 new MockURLRequestThrottlerEntry(&manager));
606 if (!enable_throttling)
607 throttler_entry->DisableBackoffThrottling();
609 Requester requester(
610 throttler_entry.get(), average_client_interval, &server, NULL);
611 requester.SetStartupJitter(duration / 3);
612 requester.SetRequestJitter(average_client_interval);
614 DiscreteTimeSimulation simulation;
615 simulation.AddActor(&requester);
616 simulation.AddActor(&server);
618 simulation.RunSimulation(duration * 2, time_between_ticks);
620 return static_cast<double>(
621 requester.last_downtime_duration().InMilliseconds()) /
622 static_cast<double>(duration.InMilliseconds());
625 TEST(URLRequestThrottlerSimulation, PerceivedDowntimeRatio) {
626 struct Stats {
627 // Expected interval that we expect the ratio of downtime when anti-DDoS
628 // is enabled and downtime when anti-DDoS is not enabled to fall within.
630 // The expected interval depends on two things: The exponential back-off
631 // policy encoded in URLRequestThrottlerEntry, and the test or set of
632 // tests that the Stats object is tracking (e.g. a test where the client
633 // retries very rapidly on a very long downtime will tend to increase the
634 // number).
636 // To determine an appropriate new interval when parameters have changed,
637 // run the test a few times (you may have to Ctrl-C out of it after a few
638 // seconds) and choose an interval that the test converges quickly and
639 // reliably to. Then set the new interval, and run the test e.g. 20 times
640 // in succession to make sure it never takes an obscenely long time to
641 // converge to this interval.
642 double expected_min_increase;
643 double expected_max_increase;
645 size_t num_runs;
646 double total_ratio_unprotected;
647 double total_ratio_protected;
649 bool DidConverge(double* increase_ratio_out) {
650 double unprotected_ratio = total_ratio_unprotected / num_runs;
651 double protected_ratio = total_ratio_protected / num_runs;
652 double increase_ratio = protected_ratio / unprotected_ratio;
653 if (increase_ratio_out)
654 *increase_ratio_out = increase_ratio;
655 return expected_min_increase <= increase_ratio &&
656 increase_ratio <= expected_max_increase;
659 void ReportTrialResult(double increase_ratio) {
660 VerboseOut(
661 " Perceived downtime with throttling is %.4f times without.\n",
662 increase_ratio);
663 VerboseOut(" Test result after %d trials.\n", num_runs);
667 Stats global_stats = { 1.08, 1.15 };
669 struct Trial {
670 TimeDelta duration;
671 TimeDelta average_client_interval;
672 Stats stats;
674 void PrintTrialDescription() {
675 double duration_minutes =
676 static_cast<double>(duration.InSeconds()) / 60.0;
677 double interval_minutes =
678 static_cast<double>(average_client_interval.InSeconds()) / 60.0;
679 VerboseOut("Trial with %.2f min downtime, avg. interval %.2f min.\n",
680 duration_minutes, interval_minutes);
684 // We don't set or check expected ratio intervals on individual
685 // experiments as this might make the test too fragile, but we
686 // print them out at the end for manual evaluation (we want to be
687 // able to make claims about the expected ratios depending on the
688 // type of behavior of the client and the downtime, e.g. the difference
689 // in behavior between a client making requests every few minutes vs.
690 // one that makes a request every 15 seconds).
691 Trial trials[] = {
692 { TimeDelta::FromSeconds(10), TimeDelta::FromSeconds(3) },
693 { TimeDelta::FromSeconds(30), TimeDelta::FromSeconds(7) },
694 { TimeDelta::FromMinutes(5), TimeDelta::FromSeconds(30) },
695 { TimeDelta::FromMinutes(10), TimeDelta::FromSeconds(20) },
696 { TimeDelta::FromMinutes(20), TimeDelta::FromSeconds(15) },
697 { TimeDelta::FromMinutes(20), TimeDelta::FromSeconds(50) },
698 { TimeDelta::FromMinutes(30), TimeDelta::FromMinutes(2) },
699 { TimeDelta::FromMinutes(30), TimeDelta::FromMinutes(5) },
700 { TimeDelta::FromMinutes(40), TimeDelta::FromMinutes(7) },
701 { TimeDelta::FromMinutes(40), TimeDelta::FromMinutes(2) },
702 { TimeDelta::FromMinutes(40), TimeDelta::FromSeconds(15) },
703 { TimeDelta::FromMinutes(60), TimeDelta::FromMinutes(7) },
704 { TimeDelta::FromMinutes(60), TimeDelta::FromMinutes(2) },
705 { TimeDelta::FromMinutes(60), TimeDelta::FromSeconds(15) },
706 { TimeDelta::FromMinutes(80), TimeDelta::FromMinutes(20) },
707 { TimeDelta::FromMinutes(80), TimeDelta::FromMinutes(3) },
708 { TimeDelta::FromMinutes(80), TimeDelta::FromSeconds(15) },
710 // Most brutal?
711 { TimeDelta::FromMinutes(45), TimeDelta::FromMilliseconds(500) },
714 // If things don't converge by the time we've done 100K trials, then
715 // clearly one or more of the expected intervals are wrong.
716 while (global_stats.num_runs < 100000) {
717 for (size_t i = 0; i < arraysize(trials); ++i) {
718 ++global_stats.num_runs;
719 ++trials[i].stats.num_runs;
720 double ratio_unprotected = SimulateDowntime(
721 trials[i].duration, trials[i].average_client_interval, false);
722 double ratio_protected = SimulateDowntime(
723 trials[i].duration, trials[i].average_client_interval, true);
724 global_stats.total_ratio_unprotected += ratio_unprotected;
725 global_stats.total_ratio_protected += ratio_protected;
726 trials[i].stats.total_ratio_unprotected += ratio_unprotected;
727 trials[i].stats.total_ratio_protected += ratio_protected;
730 double increase_ratio;
731 if (global_stats.DidConverge(&increase_ratio))
732 break;
734 if (global_stats.num_runs > 200) {
735 VerboseOut("Test has not yet converged on expected interval.\n");
736 global_stats.ReportTrialResult(increase_ratio);
740 double average_increase_ratio;
741 EXPECT_TRUE(global_stats.DidConverge(&average_increase_ratio));
743 // Print individual trial results for optional manual evaluation.
744 double max_increase_ratio = 0.0;
745 for (size_t i = 0; i < arraysize(trials); ++i) {
746 double increase_ratio;
747 trials[i].stats.DidConverge(&increase_ratio);
748 max_increase_ratio = std::max(max_increase_ratio, increase_ratio);
749 trials[i].PrintTrialDescription();
750 trials[i].stats.ReportTrialResult(increase_ratio);
753 VerboseOut("Average increase ratio was %.4f\n", average_increase_ratio);
754 VerboseOut("Maximum increase ratio was %.4f\n", max_increase_ratio);
757 } // namespace
758 } // namespace net