ozone: evdev: Sync caps lock LED state to evdev
[chromium-blink-merge.git] / net / websockets / websocket_frame_test.cc
blobeca94f02647ee014efaad3bf84b21f65b64f6376
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/websockets/websocket_frame.h"
7 #include <algorithm>
8 #include <vector>
10 #include "base/basictypes.h"
11 #include "base/memory/aligned_memory.h"
12 #include "net/base/net_errors.h"
13 #include "testing/gtest/include/gtest/gtest.h"
15 namespace net {
17 namespace {
19 TEST(WebSocketFrameHeaderTest, FrameLengths) {
20 struct TestCase {
21 const char* frame_header;
22 size_t frame_header_length;
23 uint64 frame_length;
25 static const TestCase kTests[] = {
26 { "\x81\x00", 2, GG_UINT64_C(0) },
27 { "\x81\x7D", 2, GG_UINT64_C(125) },
28 { "\x81\x7E\x00\x7E", 4, GG_UINT64_C(126) },
29 { "\x81\x7E\xFF\xFF", 4, GG_UINT64_C(0xFFFF) },
30 { "\x81\x7F\x00\x00\x00\x00\x00\x01\x00\x00", 10, GG_UINT64_C(0x10000) },
31 { "\x81\x7F\x7F\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 10,
32 GG_UINT64_C(0x7FFFFFFFFFFFFFFF) }
34 static const int kNumTests = arraysize(kTests);
36 for (int i = 0; i < kNumTests; ++i) {
37 WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText);
38 header.final = true;
39 header.payload_length = kTests[i].frame_length;
41 std::vector<char> expected_output(
42 kTests[i].frame_header,
43 kTests[i].frame_header + kTests[i].frame_header_length);
44 std::vector<char> output(expected_output.size());
45 EXPECT_EQ(static_cast<int>(expected_output.size()),
46 WriteWebSocketFrameHeader(
47 header, NULL, &output.front(), output.size()));
48 EXPECT_EQ(expected_output, output);
52 TEST(WebSocketFrameHeaderTest, FrameLengthsWithMasking) {
53 static const char kMaskingKey[] = "\xDE\xAD\xBE\xEF";
54 static_assert(
55 arraysize(kMaskingKey) - 1 == WebSocketFrameHeader::kMaskingKeyLength,
56 "incorrect masking key size");
58 struct TestCase {
59 const char* frame_header;
60 size_t frame_header_length;
61 uint64 frame_length;
63 static const TestCase kTests[] = {
64 { "\x81\x80\xDE\xAD\xBE\xEF", 6, GG_UINT64_C(0) },
65 { "\x81\xFD\xDE\xAD\xBE\xEF", 6, GG_UINT64_C(125) },
66 { "\x81\xFE\x00\x7E\xDE\xAD\xBE\xEF", 8, GG_UINT64_C(126) },
67 { "\x81\xFE\xFF\xFF\xDE\xAD\xBE\xEF", 8, GG_UINT64_C(0xFFFF) },
68 { "\x81\xFF\x00\x00\x00\x00\x00\x01\x00\x00\xDE\xAD\xBE\xEF", 14,
69 GG_UINT64_C(0x10000) },
70 { "\x81\xFF\x7F\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xDE\xAD\xBE\xEF", 14,
71 GG_UINT64_C(0x7FFFFFFFFFFFFFFF) }
73 static const int kNumTests = arraysize(kTests);
75 WebSocketMaskingKey masking_key;
76 std::copy(kMaskingKey,
77 kMaskingKey + WebSocketFrameHeader::kMaskingKeyLength,
78 masking_key.key);
80 for (int i = 0; i < kNumTests; ++i) {
81 WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText);
82 header.final = true;
83 header.masked = true;
84 header.payload_length = kTests[i].frame_length;
86 std::vector<char> expected_output(
87 kTests[i].frame_header,
88 kTests[i].frame_header + kTests[i].frame_header_length);
89 std::vector<char> output(expected_output.size());
90 EXPECT_EQ(static_cast<int>(expected_output.size()),
91 WriteWebSocketFrameHeader(
92 header, &masking_key, &output.front(), output.size()));
93 EXPECT_EQ(expected_output, output);
97 TEST(WebSocketFrameHeaderTest, FrameOpCodes) {
98 struct TestCase {
99 const char* frame_header;
100 size_t frame_header_length;
101 WebSocketFrameHeader::OpCode opcode;
103 static const TestCase kTests[] = {
104 { "\x80\x00", 2, WebSocketFrameHeader::kOpCodeContinuation },
105 { "\x81\x00", 2, WebSocketFrameHeader::kOpCodeText },
106 { "\x82\x00", 2, WebSocketFrameHeader::kOpCodeBinary },
107 { "\x88\x00", 2, WebSocketFrameHeader::kOpCodeClose },
108 { "\x89\x00", 2, WebSocketFrameHeader::kOpCodePing },
109 { "\x8A\x00", 2, WebSocketFrameHeader::kOpCodePong },
110 // These are undefined opcodes, but the builder should accept them anyway.
111 { "\x83\x00", 2, 0x3 },
112 { "\x84\x00", 2, 0x4 },
113 { "\x85\x00", 2, 0x5 },
114 { "\x86\x00", 2, 0x6 },
115 { "\x87\x00", 2, 0x7 },
116 { "\x8B\x00", 2, 0xB },
117 { "\x8C\x00", 2, 0xC },
118 { "\x8D\x00", 2, 0xD },
119 { "\x8E\x00", 2, 0xE },
120 { "\x8F\x00", 2, 0xF }
122 static const int kNumTests = arraysize(kTests);
124 for (int i = 0; i < kNumTests; ++i) {
125 WebSocketFrameHeader header(kTests[i].opcode);
126 header.final = true;
127 header.payload_length = 0;
129 std::vector<char> expected_output(
130 kTests[i].frame_header,
131 kTests[i].frame_header + kTests[i].frame_header_length);
132 std::vector<char> output(expected_output.size());
133 EXPECT_EQ(static_cast<int>(expected_output.size()),
134 WriteWebSocketFrameHeader(
135 header, NULL, &output.front(), output.size()));
136 EXPECT_EQ(expected_output, output);
140 TEST(WebSocketFrameHeaderTest, FinalBitAndReservedBits) {
141 struct TestCase {
142 const char* frame_header;
143 size_t frame_header_length;
144 bool final;
145 bool reserved1;
146 bool reserved2;
147 bool reserved3;
149 static const TestCase kTests[] = {
150 { "\x81\x00", 2, true, false, false, false },
151 { "\x01\x00", 2, false, false, false, false },
152 { "\xC1\x00", 2, true, true, false, false },
153 { "\xA1\x00", 2, true, false, true, false },
154 { "\x91\x00", 2, true, false, false, true },
155 { "\x71\x00", 2, false, true, true, true },
156 { "\xF1\x00", 2, true, true, true, true }
158 static const int kNumTests = arraysize(kTests);
160 for (int i = 0; i < kNumTests; ++i) {
161 WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText);
162 header.final = kTests[i].final;
163 header.reserved1 = kTests[i].reserved1;
164 header.reserved2 = kTests[i].reserved2;
165 header.reserved3 = kTests[i].reserved3;
166 header.payload_length = 0;
168 std::vector<char> expected_output(
169 kTests[i].frame_header,
170 kTests[i].frame_header + kTests[i].frame_header_length);
171 std::vector<char> output(expected_output.size());
172 EXPECT_EQ(static_cast<int>(expected_output.size()),
173 WriteWebSocketFrameHeader(
174 header, NULL, &output.front(), output.size()));
175 EXPECT_EQ(expected_output, output);
179 TEST(WebSocketFrameHeaderTest, InsufficientBufferSize) {
180 struct TestCase {
181 uint64 payload_length;
182 bool masked;
183 size_t expected_header_size;
185 static const TestCase kTests[] = {
186 { GG_UINT64_C(0), false, 2u },
187 { GG_UINT64_C(125), false, 2u },
188 { GG_UINT64_C(126), false, 4u },
189 { GG_UINT64_C(0xFFFF), false, 4u },
190 { GG_UINT64_C(0x10000), false, 10u },
191 { GG_UINT64_C(0x7FFFFFFFFFFFFFFF), false, 10u },
192 { GG_UINT64_C(0), true, 6u },
193 { GG_UINT64_C(125), true, 6u },
194 { GG_UINT64_C(126), true, 8u },
195 { GG_UINT64_C(0xFFFF), true, 8u },
196 { GG_UINT64_C(0x10000), true, 14u },
197 { GG_UINT64_C(0x7FFFFFFFFFFFFFFF), true, 14u }
199 static const int kNumTests = arraysize(kTests);
201 for (int i = 0; i < kNumTests; ++i) {
202 WebSocketFrameHeader header(WebSocketFrameHeader::kOpCodeText);
203 header.final = true;
204 header.opcode = WebSocketFrameHeader::kOpCodeText;
205 header.masked = kTests[i].masked;
206 header.payload_length = kTests[i].payload_length;
208 char dummy_buffer[14];
209 // Set an insufficient size to |buffer_size|.
210 EXPECT_EQ(
211 ERR_INVALID_ARGUMENT,
212 WriteWebSocketFrameHeader(
213 header, NULL, dummy_buffer, kTests[i].expected_header_size - 1));
217 TEST(WebSocketFrameTest, MaskPayload) {
218 struct TestCase {
219 const char* masking_key;
220 uint64 frame_offset;
221 const char* input;
222 const char* output;
223 size_t data_length;
225 static const TestCase kTests[] = {
226 { "\xDE\xAD\xBE\xEF", 0, "FooBar", "\x98\xC2\xD1\xAD\xBF\xDF", 6 },
227 { "\xDE\xAD\xBE\xEF", 1, "FooBar", "\xEB\xD1\x80\x9C\xCC\xCC", 6 },
228 { "\xDE\xAD\xBE\xEF", 2, "FooBar", "\xF8\x80\xB1\xEF\xDF\x9D", 6 },
229 { "\xDE\xAD\xBE\xEF", 3, "FooBar", "\xA9\xB1\xC2\xFC\x8E\xAC", 6 },
230 { "\xDE\xAD\xBE\xEF", 4, "FooBar", "\x98\xC2\xD1\xAD\xBF\xDF", 6 },
231 { "\xDE\xAD\xBE\xEF", 42, "FooBar", "\xF8\x80\xB1\xEF\xDF\x9D", 6 },
232 { "\xDE\xAD\xBE\xEF", 0, "", "", 0 },
233 { "\xDE\xAD\xBE\xEF", 0, "\xDE\xAD\xBE\xEF", "\x00\x00\x00\x00", 4 },
234 { "\xDE\xAD\xBE\xEF", 0, "\x00\x00\x00\x00", "\xDE\xAD\xBE\xEF", 4 },
235 { "\x00\x00\x00\x00", 0, "FooBar", "FooBar", 6 },
236 { "\xFF\xFF\xFF\xFF", 0, "FooBar", "\xB9\x90\x90\xBD\x9E\x8D", 6 },
238 static const int kNumTests = arraysize(kTests);
240 for (int i = 0; i < kNumTests; ++i) {
241 WebSocketMaskingKey masking_key;
242 std::copy(kTests[i].masking_key,
243 kTests[i].masking_key + WebSocketFrameHeader::kMaskingKeyLength,
244 masking_key.key);
245 std::vector<char> frame_data(kTests[i].input,
246 kTests[i].input + kTests[i].data_length);
247 std::vector<char> expected_output(kTests[i].output,
248 kTests[i].output + kTests[i].data_length);
249 MaskWebSocketFramePayload(masking_key,
250 kTests[i].frame_offset,
251 frame_data.empty() ? NULL : &frame_data.front(),
252 frame_data.size());
253 EXPECT_EQ(expected_output, frame_data);
257 // Check that all combinations of alignment, frame offset and chunk size work
258 // correctly for MaskWebSocketFramePayload(). This is mainly used to ensure that
259 // vectorisation optimisations don't break anything. We could take a "white box"
260 // approach and only test the edge cases, but since the exhaustive "black box"
261 // approach runs in acceptable time, we don't have to take the risk of being
262 // clever.
264 // This brute-force approach runs in O(N^3) time where N is the size of the
265 // maximum vector size we want to test again. This might need reconsidering if
266 // MaskWebSocketFramePayload() is ever optimised for a dedicated vector
267 // architecture.
268 TEST(WebSocketFrameTest, MaskPayloadAlignment) {
269 // This reflects what might be implemented in the future, rather than
270 // the current implementation. FMA3 and FMA4 support 256-bit vector ops.
271 static const size_t kMaxVectorSizeInBits = 256;
272 static const size_t kMaxVectorSize = kMaxVectorSizeInBits / 8;
273 static const size_t kMaxVectorAlignment = kMaxVectorSize;
274 static const size_t kMaskingKeyLength =
275 WebSocketFrameHeader::kMaskingKeyLength;
276 static const size_t kScratchBufferSize =
277 kMaxVectorAlignment + kMaxVectorSize * 2;
278 static const char kTestMask[] = "\xd2\xba\x5a\xbe";
279 // We use 786 bits of random input to reduce the risk of correlated errors.
280 static const char kTestInput[] = {
281 "\x3d\x77\x1d\x1b\x19\x8c\x48\xa3\x19\x6d\xf7\xcc\x39\xe7\x57\x0b"
282 "\x69\x8c\xda\x4b\xfc\xac\x2c\xd3\x49\x96\x6e\x8a\x7b\x5a\x32\x76"
283 "\xd0\x11\x43\xa0\x89\xfc\x76\x2b\x10\x2f\x4c\x7b\x4f\xa6\xdd\xe4"
284 "\xfc\x8e\xd8\x72\xcf\x7e\x37\xcd\x31\xcd\xc1\xc0\x89\x0c\xa7\x4c"
285 "\xda\xa8\x4b\x75\xa1\xcb\xa9\x77\x19\x4d\x6e\xdf\xc8\x08\x1c\xb6"
286 "\x6d\xfb\x38\x04\x44\xd5\xba\x57\x9f\x76\xb0\x2e\x07\x91\xe6\xa8"
288 static const size_t kTestInputSize = arraysize(kTestInput) - 1;
289 static const char kTestOutput[] = {
290 "\xef\xcd\x47\xa5\xcb\x36\x12\x1d\xcb\xd7\xad\x72\xeb\x5d\x0d\xb5"
291 "\xbb\x36\x80\xf5\x2e\x16\x76\x6d\x9b\x2c\x34\x34\xa9\xe0\x68\xc8"
292 "\x02\xab\x19\x1e\x5b\x46\x2c\x95\xc2\x95\x16\xc5\x9d\x1c\x87\x5a"
293 "\x2e\x34\x82\xcc\x1d\xc4\x6d\x73\xe3\x77\x9b\x7e\x5b\xb6\xfd\xf2"
294 "\x08\x12\x11\xcb\x73\x71\xf3\xc9\xcb\xf7\x34\x61\x1a\xb2\x46\x08"
295 "\xbf\x41\x62\xba\x96\x6f\xe0\xe9\x4d\xcc\xea\x90\xd5\x2b\xbc\x16"
297 static_assert(arraysize(kTestInput) == arraysize(kTestOutput),
298 "output and input arrays should have the same length");
299 scoped_ptr<char, base::AlignedFreeDeleter> scratch(
300 static_cast<char*>(
301 base::AlignedAlloc(kScratchBufferSize, kMaxVectorAlignment)));
302 WebSocketMaskingKey masking_key;
303 std::copy(kTestMask, kTestMask + kMaskingKeyLength, masking_key.key);
304 for (size_t frame_offset = 0; frame_offset < kMaskingKeyLength;
305 ++frame_offset) {
306 for (size_t alignment = 0; alignment < kMaxVectorAlignment; ++alignment) {
307 char* const aligned_scratch = scratch.get() + alignment;
308 const size_t aligned_len = std::min(kScratchBufferSize - alignment,
309 kTestInputSize - frame_offset);
310 for (size_t chunk_size = 1; chunk_size < kMaxVectorSize; ++chunk_size) {
311 memcpy(aligned_scratch, kTestInput + frame_offset, aligned_len);
312 for (size_t chunk_start = 0; chunk_start < aligned_len;
313 chunk_start += chunk_size) {
314 const size_t this_chunk_size =
315 std::min(chunk_size, aligned_len - chunk_start);
316 MaskWebSocketFramePayload(masking_key,
317 frame_offset + chunk_start,
318 aligned_scratch + chunk_start,
319 this_chunk_size);
321 // Stop the test if it fails, since we don't want to spew thousands of
322 // failures.
323 ASSERT_TRUE(std::equal(aligned_scratch,
324 aligned_scratch + aligned_len,
325 kTestOutput + frame_offset))
326 << "Output failed to match for frame_offset=" << frame_offset
327 << ", alignment=" << alignment << ", chunk_size=" << chunk_size;
333 // "IsKnownDataOpCode" is currently implemented in an "obviously correct"
334 // manner, but we test is anyway in case it changes to a more complex
335 // implementation in future.
336 TEST(WebSocketFrameHeaderTest, IsKnownDataOpCode) {
337 // Make the test less verbose.
338 typedef WebSocketFrameHeader Frame;
340 // Known opcode, is used for data frames
341 EXPECT_TRUE(Frame::IsKnownDataOpCode(Frame::kOpCodeContinuation));
342 EXPECT_TRUE(Frame::IsKnownDataOpCode(Frame::kOpCodeText));
343 EXPECT_TRUE(Frame::IsKnownDataOpCode(Frame::kOpCodeBinary));
345 // Known opcode, is used for control frames
346 EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeClose));
347 EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodePing));
348 EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodePong));
350 // Check that unused opcodes return false
351 EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeDataUnused));
352 EXPECT_FALSE(Frame::IsKnownDataOpCode(Frame::kOpCodeControlUnused));
354 // Check that opcodes with the 4 bit set return false
355 EXPECT_FALSE(Frame::IsKnownDataOpCode(0x6));
356 EXPECT_FALSE(Frame::IsKnownDataOpCode(0xF));
358 // Check that out-of-range opcodes return false
359 EXPECT_FALSE(Frame::IsKnownDataOpCode(-1));
360 EXPECT_FALSE(Frame::IsKnownDataOpCode(0xFF));
363 // "IsKnownControlOpCode" is implemented in an "obviously correct" manner but
364 // might be optimised in future.
365 TEST(WebSocketFrameHeaderTest, IsKnownControlOpCode) {
366 // Make the test less verbose.
367 typedef WebSocketFrameHeader Frame;
369 // Known opcode, is used for data frames
370 EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeContinuation));
371 EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeText));
372 EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeBinary));
374 // Known opcode, is used for control frames
375 EXPECT_TRUE(Frame::IsKnownControlOpCode(Frame::kOpCodeClose));
376 EXPECT_TRUE(Frame::IsKnownControlOpCode(Frame::kOpCodePing));
377 EXPECT_TRUE(Frame::IsKnownControlOpCode(Frame::kOpCodePong));
379 // Check that unused opcodes return false
380 EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeDataUnused));
381 EXPECT_FALSE(Frame::IsKnownControlOpCode(Frame::kOpCodeControlUnused));
383 // Check that opcodes with the 4 bit set return false
384 EXPECT_FALSE(Frame::IsKnownControlOpCode(0x6));
385 EXPECT_FALSE(Frame::IsKnownControlOpCode(0xF));
387 // Check that out-of-range opcodes return false
388 EXPECT_FALSE(Frame::IsKnownControlOpCode(-1));
389 EXPECT_FALSE(Frame::IsKnownControlOpCode(0xFF));
392 } // namespace
394 } // namespace net