Fixed initialisation of tf in file_open(). Without setting the memory to 0,
[cinelerra_cv/mob.git] / quicktime / ffmpeg / libavcodec / adpcm.c
blob3c67242f41b87b2c104b2fdd6c487169db8be2bc
1 /*
2 * ADPCM codecs
3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 #include "avcodec.h"
20 #include "bitstream.h"
22 /**
23 * @file adpcm.c
24 * ADPCM codecs.
25 * First version by Francois Revol (revol@free.fr)
26 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
27 * by Mike Melanson (melanson@pcisys.net)
28 * CD-ROM XA ADPCM codec by BERO
29 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
31 * Features and limitations:
33 * Reference documents:
34 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
35 * http://www.geocities.com/SiliconValley/8682/aud3.txt
36 * http://openquicktime.sourceforge.net/plugins.htm
37 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
38 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
39 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
41 * CD-ROM XA:
42 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
43 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
44 * readstr http://www.geocities.co.jp/Playtown/2004/
47 #define BLKSIZE 1024
49 #define CLAMP_TO_SHORT(value) \
50 if (value > 32767) \
51 value = 32767; \
52 else if (value < -32768) \
53 value = -32768; \
55 /* step_table[] and index_table[] are from the ADPCM reference source */
56 /* This is the index table: */
57 static const int index_table[16] = {
58 -1, -1, -1, -1, 2, 4, 6, 8,
59 -1, -1, -1, -1, 2, 4, 6, 8,
62 /**
63 * This is the step table. Note that many programs use slight deviations from
64 * this table, but such deviations are negligible:
66 static const int step_table[89] = {
67 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
68 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
69 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
70 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
71 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
72 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
73 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
74 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
75 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
78 /* These are for MS-ADPCM */
79 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
80 static const int AdaptationTable[] = {
81 230, 230, 230, 230, 307, 409, 512, 614,
82 768, 614, 512, 409, 307, 230, 230, 230
85 static const int AdaptCoeff1[] = {
86 256, 512, 0, 192, 240, 460, 392
89 static const int AdaptCoeff2[] = {
90 0, -256, 0, 64, 0, -208, -232
93 /* These are for CD-ROM XA ADPCM */
94 static const int xa_adpcm_table[5][2] = {
95 { 0, 0 },
96 { 60, 0 },
97 { 115, -52 },
98 { 98, -55 },
99 { 122, -60 }
102 static const int ea_adpcm_table[] = {
103 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
104 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
107 static const int ct_adpcm_table[8] = {
108 0x00E6, 0x00E6, 0x00E6, 0x00E6,
109 0x0133, 0x0199, 0x0200, 0x0266
112 // padded to zero where table size is less then 16
113 static const int swf_index_tables[4][16] = {
114 /*2*/ { -1, 2 },
115 /*3*/ { -1, -1, 2, 4 },
116 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
117 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
120 static const int yamaha_indexscale[] = {
121 230, 230, 230, 230, 307, 409, 512, 614,
122 230, 230, 230, 230, 307, 409, 512, 614
125 static const int yamaha_difflookup[] = {
126 1, 3, 5, 7, 9, 11, 13, 15,
127 -1, -3, -5, -7, -9, -11, -13, -15
130 /* end of tables */
132 typedef struct ADPCMChannelStatus {
133 int predictor;
134 short int step_index;
135 int step;
136 /* for encoding */
137 int prev_sample;
139 /* MS version */
140 short sample1;
141 short sample2;
142 int coeff1;
143 int coeff2;
144 int idelta;
145 } ADPCMChannelStatus;
147 typedef struct ADPCMContext {
148 int channel; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
149 ADPCMChannelStatus status[2];
150 short sample_buffer[32]; /* hold left samples while waiting for right samples */
152 /* SWF only */
153 int nb_bits;
154 int nb_samples;
155 } ADPCMContext;
157 /* XXX: implement encoding */
159 #ifdef CONFIG_ENCODERS
160 static int adpcm_encode_init(AVCodecContext *avctx)
162 if (avctx->channels > 2)
163 return -1; /* only stereo or mono =) */
164 switch(avctx->codec->id) {
165 case CODEC_ID_ADPCM_IMA_QT:
166 av_log(avctx, AV_LOG_ERROR, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
167 avctx->frame_size = 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
168 return -1;
169 break;
170 case CODEC_ID_ADPCM_IMA_WAV:
171 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
172 /* and we have 4 bytes per channel overhead */
173 avctx->block_align = BLKSIZE;
174 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
175 break;
176 case CODEC_ID_ADPCM_MS:
177 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
178 /* and we have 7 bytes per channel overhead */
179 avctx->block_align = BLKSIZE;
180 break;
181 case CODEC_ID_ADPCM_YAMAHA:
182 avctx->frame_size = BLKSIZE * avctx->channels;
183 avctx->block_align = BLKSIZE;
184 break;
185 default:
186 return -1;
187 break;
190 avctx->coded_frame= avcodec_alloc_frame();
191 avctx->coded_frame->key_frame= 1;
193 return 0;
196 static int adpcm_encode_close(AVCodecContext *avctx)
198 av_freep(&avctx->coded_frame);
200 return 0;
204 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
206 int step_index;
207 unsigned char nibble;
209 int sign = 0; /* sign bit of the nibble (MSB) */
210 int delta, predicted_delta;
212 delta = sample - c->prev_sample;
214 if (delta < 0) {
215 sign = 1;
216 delta = -delta;
219 step_index = c->step_index;
221 /* nibble = 4 * delta / step_table[step_index]; */
222 nibble = (delta << 2) / step_table[step_index];
224 if (nibble > 7)
225 nibble = 7;
227 step_index += index_table[nibble];
228 if (step_index < 0)
229 step_index = 0;
230 if (step_index > 88)
231 step_index = 88;
233 /* what the decoder will find */
234 predicted_delta = ((step_table[step_index] * nibble) / 4) + (step_table[step_index] / 8);
236 if (sign)
237 c->prev_sample -= predicted_delta;
238 else
239 c->prev_sample += predicted_delta;
241 CLAMP_TO_SHORT(c->prev_sample);
244 nibble += sign << 3; /* sign * 8 */
246 /* save back */
247 c->step_index = step_index;
249 return nibble;
252 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
254 int predictor, nibble, bias;
256 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
258 nibble= sample - predictor;
259 if(nibble>=0) bias= c->idelta/2;
260 else bias=-c->idelta/2;
262 nibble= (nibble + bias) / c->idelta;
263 nibble= clip(nibble, -8, 7)&0x0F;
265 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
266 CLAMP_TO_SHORT(predictor);
268 c->sample2 = c->sample1;
269 c->sample1 = predictor;
271 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
272 if (c->idelta < 16) c->idelta = 16;
274 return nibble;
277 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
279 int i1 = 0, j1;
281 if(!c->step) {
282 c->predictor = 0;
283 c->step = 127;
285 j1 = sample - c->predictor;
287 j1 = (j1 * 8) / c->step;
288 i1 = abs(j1) / 2;
289 if (i1 > 7)
290 i1 = 7;
291 if (j1 < 0)
292 i1 += 8;
294 c->predictor = c->predictor + ((c->step * yamaha_difflookup[i1]) / 8);
295 CLAMP_TO_SHORT(c->predictor);
296 c->step = (c->step * yamaha_indexscale[i1]) >> 8;
297 c->step = clip(c->step, 127, 24567);
299 return i1;
302 static int adpcm_encode_frame(AVCodecContext *avctx,
303 unsigned char *frame, int buf_size, void *data)
305 int n, i, st;
306 short *samples;
307 unsigned char *dst;
308 ADPCMContext *c = avctx->priv_data;
310 dst = frame;
311 samples = (short *)data;
312 st= avctx->channels == 2;
313 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
315 switch(avctx->codec->id) {
316 case CODEC_ID_ADPCM_IMA_QT: /* XXX: can't test until we get .mov writer */
317 break;
318 case CODEC_ID_ADPCM_IMA_WAV:
319 n = avctx->frame_size / 8;
320 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
321 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
322 *dst++ = (c->status[0].prev_sample) & 0xFF; /* little endian */
323 *dst++ = (c->status[0].prev_sample >> 8) & 0xFF;
324 *dst++ = (unsigned char)c->status[0].step_index;
325 *dst++ = 0; /* unknown */
326 samples++;
327 if (avctx->channels == 2) {
328 c->status[1].prev_sample = (signed short)samples[1];
329 /* c->status[1].step_index = 0; */
330 *dst++ = (c->status[1].prev_sample) & 0xFF;
331 *dst++ = (c->status[1].prev_sample >> 8) & 0xFF;
332 *dst++ = (unsigned char)c->status[1].step_index;
333 *dst++ = 0;
334 samples++;
337 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
338 for (; n>0; n--) {
339 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]) & 0x0F;
340 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4) & 0xF0;
341 dst++;
342 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]) & 0x0F;
343 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4) & 0xF0;
344 dst++;
345 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]) & 0x0F;
346 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4) & 0xF0;
347 dst++;
348 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]) & 0x0F;
349 *dst |= (adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4) & 0xF0;
350 dst++;
351 /* right channel */
352 if (avctx->channels == 2) {
353 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
354 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
355 dst++;
356 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
357 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
358 dst++;
359 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
360 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
361 dst++;
362 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
363 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
364 dst++;
366 samples += 8 * avctx->channels;
368 break;
369 case CODEC_ID_ADPCM_MS:
370 for(i=0; i<avctx->channels; i++){
371 int predictor=0;
373 *dst++ = predictor;
374 c->status[i].coeff1 = AdaptCoeff1[predictor];
375 c->status[i].coeff2 = AdaptCoeff2[predictor];
377 for(i=0; i<avctx->channels; i++){
378 if (c->status[i].idelta < 16)
379 c->status[i].idelta = 16;
381 *dst++ = c->status[i].idelta & 0xFF;
382 *dst++ = c->status[i].idelta >> 8;
384 for(i=0; i<avctx->channels; i++){
385 c->status[i].sample1= *samples++;
387 *dst++ = c->status[i].sample1 & 0xFF;
388 *dst++ = c->status[i].sample1 >> 8;
390 for(i=0; i<avctx->channels; i++){
391 c->status[i].sample2= *samples++;
393 *dst++ = c->status[i].sample2 & 0xFF;
394 *dst++ = c->status[i].sample2 >> 8;
397 for(i=7*avctx->channels; i<avctx->block_align; i++) {
398 int nibble;
399 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
400 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
401 *dst++ = nibble;
403 break;
404 case CODEC_ID_ADPCM_YAMAHA:
405 n = avctx->frame_size / 2;
406 for (; n>0; n--) {
407 for(i = 0; i < avctx->channels; i++) {
408 int nibble;
409 nibble = adpcm_yamaha_compress_sample(&c->status[i], samples[i]);
410 nibble |= adpcm_yamaha_compress_sample(&c->status[i], samples[i+avctx->channels]) << 4;
411 *dst++ = nibble;
413 samples += 2 * avctx->channels;
415 break;
416 default:
417 return -1;
419 return dst - frame;
421 #endif //CONFIG_ENCODERS
423 static int adpcm_decode_init(AVCodecContext * avctx)
425 ADPCMContext *c = avctx->priv_data;
427 c->channel = 0;
428 c->status[0].predictor = c->status[1].predictor = 0;
429 c->status[0].step_index = c->status[1].step_index = 0;
430 c->status[0].step = c->status[1].step = 0;
432 switch(avctx->codec->id) {
433 case CODEC_ID_ADPCM_CT:
434 c->status[0].step = c->status[1].step = 511;
435 break;
436 default:
437 break;
439 return 0;
442 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
444 int step_index;
445 int predictor;
446 int sign, delta, diff, step;
448 step = step_table[c->step_index];
449 step_index = c->step_index + index_table[(unsigned)nibble];
450 if (step_index < 0) step_index = 0;
451 else if (step_index > 88) step_index = 88;
453 sign = nibble & 8;
454 delta = nibble & 7;
455 /* perform direct multiplication instead of series of jumps proposed by
456 * the reference ADPCM implementation since modern CPUs can do the mults
457 * quickly enough */
458 diff = ((2 * delta + 1) * step) >> shift;
459 predictor = c->predictor;
460 if (sign) predictor -= diff;
461 else predictor += diff;
463 CLAMP_TO_SHORT(predictor);
464 c->predictor = predictor;
465 c->step_index = step_index;
467 return (short)predictor;
470 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
472 int predictor;
474 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256;
475 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
476 CLAMP_TO_SHORT(predictor);
478 c->sample2 = c->sample1;
479 c->sample1 = predictor;
480 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
481 if (c->idelta < 16) c->idelta = 16;
483 return (short)predictor;
486 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
488 int predictor;
489 int sign, delta, diff;
490 int new_step;
492 sign = nibble & 8;
493 delta = nibble & 7;
494 /* perform direct multiplication instead of series of jumps proposed by
495 * the reference ADPCM implementation since modern CPUs can do the mults
496 * quickly enough */
497 diff = ((2 * delta + 1) * c->step) >> 3;
498 predictor = c->predictor;
499 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
500 if(sign)
501 predictor = ((predictor * 254) >> 8) - diff;
502 else
503 predictor = ((predictor * 254) >> 8) + diff;
504 /* calculate new step and clamp it to range 511..32767 */
505 new_step = (ct_adpcm_table[nibble & 7] * c->step) >> 8;
506 c->step = new_step;
507 if(c->step < 511)
508 c->step = 511;
509 if(c->step > 32767)
510 c->step = 32767;
512 CLAMP_TO_SHORT(predictor);
513 c->predictor = predictor;
514 return (short)predictor;
517 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
519 if(!c->step) {
520 c->predictor = 0;
521 c->step = 127;
524 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
525 CLAMP_TO_SHORT(c->predictor);
526 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
527 c->step = clip(c->step, 127, 24567);
528 return c->predictor;
531 static void xa_decode(short *out, const unsigned char *in,
532 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
534 int i, j;
535 int shift,filter,f0,f1;
536 int s_1,s_2;
537 int d,s,t;
539 for(i=0;i<4;i++) {
541 shift = 12 - (in[4+i*2] & 15);
542 filter = in[4+i*2] >> 4;
543 f0 = xa_adpcm_table[filter][0];
544 f1 = xa_adpcm_table[filter][1];
546 s_1 = left->sample1;
547 s_2 = left->sample2;
549 for(j=0;j<28;j++) {
550 d = in[16+i+j*4];
552 t = (signed char)(d<<4)>>4;
553 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
554 CLAMP_TO_SHORT(s);
555 *out = s;
556 out += inc;
557 s_2 = s_1;
558 s_1 = s;
561 if (inc==2) { /* stereo */
562 left->sample1 = s_1;
563 left->sample2 = s_2;
564 s_1 = right->sample1;
565 s_2 = right->sample2;
566 out = out + 1 - 28*2;
569 shift = 12 - (in[5+i*2] & 15);
570 filter = in[5+i*2] >> 4;
572 f0 = xa_adpcm_table[filter][0];
573 f1 = xa_adpcm_table[filter][1];
575 for(j=0;j<28;j++) {
576 d = in[16+i+j*4];
578 t = (signed char)d >> 4;
579 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
580 CLAMP_TO_SHORT(s);
581 *out = s;
582 out += inc;
583 s_2 = s_1;
584 s_1 = s;
587 if (inc==2) { /* stereo */
588 right->sample1 = s_1;
589 right->sample2 = s_2;
590 out -= 1;
591 } else {
592 left->sample1 = s_1;
593 left->sample2 = s_2;
599 /* DK3 ADPCM support macro */
600 #define DK3_GET_NEXT_NIBBLE() \
601 if (decode_top_nibble_next) \
603 nibble = (last_byte >> 4) & 0x0F; \
604 decode_top_nibble_next = 0; \
606 else \
608 last_byte = *src++; \
609 if (src >= buf + buf_size) break; \
610 nibble = last_byte & 0x0F; \
611 decode_top_nibble_next = 1; \
614 static int adpcm_decode_frame(AVCodecContext *avctx,
615 void *data, int *data_size,
616 uint8_t *buf, int buf_size)
618 ADPCMContext *c = avctx->priv_data;
619 ADPCMChannelStatus *cs;
620 int n, m, channel, i;
621 int block_predictor[2];
622 short *samples;
623 uint8_t *src;
624 int st; /* stereo */
626 /* DK3 ADPCM accounting variables */
627 unsigned char last_byte = 0;
628 unsigned char nibble;
629 int decode_top_nibble_next = 0;
630 int diff_channel;
632 /* EA ADPCM state variables */
633 uint32_t samples_in_chunk;
634 int32_t previous_left_sample, previous_right_sample;
635 int32_t current_left_sample, current_right_sample;
636 int32_t next_left_sample, next_right_sample;
637 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
638 uint8_t shift_left, shift_right;
639 int count1, count2;
641 if (!buf_size)
642 return 0;
644 samples = data;
645 src = buf;
647 st = avctx->channels == 2;
649 switch(avctx->codec->id) {
650 case CODEC_ID_ADPCM_IMA_QT:
651 n = (buf_size - 2);/* >> 2*avctx->channels;*/
652 channel = c->channel;
653 cs = &(c->status[channel]);
654 /* (pppppp) (piiiiiii) */
656 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
657 cs->predictor = (*src++) << 8;
658 cs->predictor |= (*src & 0x80);
659 cs->predictor &= 0xFF80;
661 /* sign extension */
662 if(cs->predictor & 0x8000)
663 cs->predictor -= 0x10000;
665 CLAMP_TO_SHORT(cs->predictor);
667 cs->step_index = (*src++) & 0x7F;
669 if (cs->step_index > 88) av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
670 if (cs->step_index > 88) cs->step_index = 88;
672 cs->step = step_table[cs->step_index];
674 if (st && channel)
675 samples++;
677 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
678 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
679 samples += avctx->channels;
680 *samples = adpcm_ima_expand_nibble(cs, (src[0] >> 4) & 0x0F, 3);
681 samples += avctx->channels;
682 src ++;
685 if(st) { /* handle stereo interlacing */
686 c->channel = (channel + 1) % 2; /* we get one packet for left, then one for right data */
687 if(channel == 1) { /* wait for the other packet before outputing anything */
688 return src - buf;
691 break;
692 case CODEC_ID_ADPCM_IMA_WAV:
693 if (avctx->block_align != 0 && buf_size > avctx->block_align)
694 buf_size = avctx->block_align;
696 for(i=0; i<avctx->channels; i++){
697 cs = &(c->status[i]);
698 cs->predictor = *src++;
699 cs->predictor |= (*src++) << 8;
700 if(cs->predictor & 0x8000)
701 cs->predictor -= 0x10000;
702 CLAMP_TO_SHORT(cs->predictor);
704 // XXX: is this correct ??: *samples++ = cs->predictor;
706 cs->step_index = *src++;
707 if (cs->step_index < 0) cs->step_index = 0;
708 if (cs->step_index > 88) cs->step_index = 88;
709 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null !!\n"); /* unused */
712 for(m=4; src < (buf + buf_size);) {
713 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] & 0x0F, 3);
714 if (st)
715 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[4] & 0x0F, 3);
716 *samples++ = adpcm_ima_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F, 3);
717 if (st) {
718 *samples++ = adpcm_ima_expand_nibble(&c->status[1], (src[4] >> 4) & 0x0F, 3);
719 if (!--m) {
720 m=4;
721 src+=4;
724 src++;
726 break;
727 case CODEC_ID_ADPCM_4XM:
728 cs = &(c->status[0]);
729 c->status[0].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
730 if(st){
731 c->status[1].predictor= (int16_t)(src[0] + (src[1]<<8)); src+=2;
733 c->status[0].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
734 if(st){
735 c->status[1].step_index= (int16_t)(src[0] + (src[1]<<8)); src+=2;
737 if (cs->step_index < 0) cs->step_index = 0;
738 if (cs->step_index > 88) cs->step_index = 88;
740 m= (buf_size - (src - buf))>>st;
741 for(i=0; i<m; i++) {
742 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
743 if (st)
744 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
745 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
746 if (st)
747 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
750 src += m<<st;
752 break;
753 case CODEC_ID_ADPCM_MS:
754 if (avctx->block_align != 0 && buf_size > avctx->block_align)
755 buf_size = avctx->block_align;
756 n = buf_size - 7 * avctx->channels;
757 if (n < 0)
758 return -1;
759 block_predictor[0] = clip(*src++, 0, 7);
760 block_predictor[1] = 0;
761 if (st)
762 block_predictor[1] = clip(*src++, 0, 7);
763 c->status[0].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
764 src+=2;
765 if (st){
766 c->status[1].idelta = (int16_t)((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
767 src+=2;
769 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
770 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
771 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
772 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
774 c->status[0].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
775 src+=2;
776 if (st) c->status[1].sample1 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
777 if (st) src+=2;
778 c->status[0].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
779 src+=2;
780 if (st) c->status[1].sample2 = ((*src & 0xFF) | ((src[1] << 8) & 0xFF00));
781 if (st) src+=2;
783 *samples++ = c->status[0].sample1;
784 if (st) *samples++ = c->status[1].sample1;
785 *samples++ = c->status[0].sample2;
786 if (st) *samples++ = c->status[1].sample2;
787 for(;n>0;n--) {
788 *samples++ = adpcm_ms_expand_nibble(&c->status[0], (src[0] >> 4) & 0x0F);
789 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
790 src ++;
792 break;
793 case CODEC_ID_ADPCM_IMA_DK4:
794 if (avctx->block_align != 0 && buf_size > avctx->block_align)
795 buf_size = avctx->block_align;
797 c->status[0].predictor = (int16_t)(src[0] | (src[1] << 8));
798 c->status[0].step_index = src[2];
799 src += 4;
800 *samples++ = c->status[0].predictor;
801 if (st) {
802 c->status[1].predictor = (int16_t)(src[0] | (src[1] << 8));
803 c->status[1].step_index = src[2];
804 src += 4;
805 *samples++ = c->status[1].predictor;
807 while (src < buf + buf_size) {
809 /* take care of the top nibble (always left or mono channel) */
810 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
811 (src[0] >> 4) & 0x0F, 3);
813 /* take care of the bottom nibble, which is right sample for
814 * stereo, or another mono sample */
815 if (st)
816 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
817 src[0] & 0x0F, 3);
818 else
819 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
820 src[0] & 0x0F, 3);
822 src++;
824 break;
825 case CODEC_ID_ADPCM_IMA_DK3:
826 if (avctx->block_align != 0 && buf_size > avctx->block_align)
827 buf_size = avctx->block_align;
829 c->status[0].predictor = (int16_t)(src[10] | (src[11] << 8));
830 c->status[1].predictor = (int16_t)(src[12] | (src[13] << 8));
831 c->status[0].step_index = src[14];
832 c->status[1].step_index = src[15];
833 /* sign extend the predictors */
834 src += 16;
835 diff_channel = c->status[1].predictor;
837 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
838 * the buffer is consumed */
839 while (1) {
841 /* for this algorithm, c->status[0] is the sum channel and
842 * c->status[1] is the diff channel */
844 /* process the first predictor of the sum channel */
845 DK3_GET_NEXT_NIBBLE();
846 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
848 /* process the diff channel predictor */
849 DK3_GET_NEXT_NIBBLE();
850 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
852 /* process the first pair of stereo PCM samples */
853 diff_channel = (diff_channel + c->status[1].predictor) / 2;
854 *samples++ = c->status[0].predictor + c->status[1].predictor;
855 *samples++ = c->status[0].predictor - c->status[1].predictor;
857 /* process the second predictor of the sum channel */
858 DK3_GET_NEXT_NIBBLE();
859 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
861 /* process the second pair of stereo PCM samples */
862 diff_channel = (diff_channel + c->status[1].predictor) / 2;
863 *samples++ = c->status[0].predictor + c->status[1].predictor;
864 *samples++ = c->status[0].predictor - c->status[1].predictor;
866 break;
867 case CODEC_ID_ADPCM_IMA_WS:
868 /* no per-block initialization; just start decoding the data */
869 while (src < buf + buf_size) {
871 if (st) {
872 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
873 (src[0] >> 4) & 0x0F, 3);
874 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
875 src[0] & 0x0F, 3);
876 } else {
877 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
878 (src[0] >> 4) & 0x0F, 3);
879 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
880 src[0] & 0x0F, 3);
883 src++;
885 break;
886 case CODEC_ID_ADPCM_XA:
887 c->status[0].sample1 = c->status[0].sample2 =
888 c->status[1].sample1 = c->status[1].sample2 = 0;
889 while (buf_size >= 128) {
890 xa_decode(samples, src, &c->status[0], &c->status[1],
891 avctx->channels);
892 src += 128;
893 samples += 28 * 8;
894 buf_size -= 128;
896 break;
897 case CODEC_ID_ADPCM_EA:
898 samples_in_chunk = LE_32(src);
899 if (samples_in_chunk >= ((buf_size - 12) * 2)) {
900 src += buf_size;
901 break;
903 src += 4;
904 current_left_sample = (int16_t)LE_16(src);
905 src += 2;
906 previous_left_sample = (int16_t)LE_16(src);
907 src += 2;
908 current_right_sample = (int16_t)LE_16(src);
909 src += 2;
910 previous_right_sample = (int16_t)LE_16(src);
911 src += 2;
913 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
914 coeff1l = ea_adpcm_table[(*src >> 4) & 0x0F];
915 coeff2l = ea_adpcm_table[((*src >> 4) & 0x0F) + 4];
916 coeff1r = ea_adpcm_table[*src & 0x0F];
917 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
918 src++;
920 shift_left = ((*src >> 4) & 0x0F) + 8;
921 shift_right = (*src & 0x0F) + 8;
922 src++;
924 for (count2 = 0; count2 < 28; count2++) {
925 next_left_sample = (((*src & 0xF0) << 24) >> shift_left);
926 next_right_sample = (((*src & 0x0F) << 28) >> shift_right);
927 src++;
929 next_left_sample = (next_left_sample +
930 (current_left_sample * coeff1l) +
931 (previous_left_sample * coeff2l) + 0x80) >> 8;
932 next_right_sample = (next_right_sample +
933 (current_right_sample * coeff1r) +
934 (previous_right_sample * coeff2r) + 0x80) >> 8;
935 CLAMP_TO_SHORT(next_left_sample);
936 CLAMP_TO_SHORT(next_right_sample);
938 previous_left_sample = current_left_sample;
939 current_left_sample = next_left_sample;
940 previous_right_sample = current_right_sample;
941 current_right_sample = next_right_sample;
942 *samples++ = (unsigned short)current_left_sample;
943 *samples++ = (unsigned short)current_right_sample;
946 break;
947 case CODEC_ID_ADPCM_IMA_SMJPEG:
948 c->status[0].predictor = *src;
949 src += 2;
950 c->status[0].step_index = *src++;
951 src++; /* skip another byte before getting to the meat */
952 while (src < buf + buf_size) {
953 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
954 *src & 0x0F, 3);
955 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
956 (*src >> 4) & 0x0F, 3);
957 src++;
959 break;
960 case CODEC_ID_ADPCM_CT:
961 while (src < buf + buf_size) {
962 if (st) {
963 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
964 (src[0] >> 4) & 0x0F);
965 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
966 src[0] & 0x0F);
967 } else {
968 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
969 (src[0] >> 4) & 0x0F);
970 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
971 src[0] & 0x0F);
973 src++;
975 break;
976 case CODEC_ID_ADPCM_SWF:
978 GetBitContext gb;
979 const int *table;
980 int k0, signmask;
981 int size = buf_size*8;
983 init_get_bits(&gb, buf, size);
985 // first frame, read bits & inital values
986 if (!c->nb_bits)
988 c->nb_bits = get_bits(&gb, 2)+2;
989 // av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", c->nb_bits);
992 table = swf_index_tables[c->nb_bits-2];
993 k0 = 1 << (c->nb_bits-2);
994 signmask = 1 << (c->nb_bits-1);
996 while (get_bits_count(&gb) <= size)
998 int i;
1000 c->nb_samples++;
1001 // wrap around at every 4096 samples...
1002 if ((c->nb_samples & 0xfff) == 1)
1004 for (i = 0; i <= st; i++)
1006 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1007 c->status[i].step_index = get_bits(&gb, 6);
1011 // similar to IMA adpcm
1012 for (i = 0; i <= st; i++)
1014 int delta = get_bits(&gb, c->nb_bits);
1015 int step = step_table[c->status[i].step_index];
1016 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1017 int k = k0;
1019 do {
1020 if (delta & k)
1021 vpdiff += step;
1022 step >>= 1;
1023 k >>= 1;
1024 } while(k);
1025 vpdiff += step;
1027 if (delta & signmask)
1028 c->status[i].predictor -= vpdiff;
1029 else
1030 c->status[i].predictor += vpdiff;
1032 c->status[i].step_index += table[delta & (~signmask)];
1034 c->status[i].step_index = clip(c->status[i].step_index, 0, 88);
1035 c->status[i].predictor = clip(c->status[i].predictor, -32768, 32767);
1037 *samples++ = c->status[i].predictor;
1041 // src += get_bits_count(&gb)*8;
1042 src += size;
1044 break;
1046 case CODEC_ID_ADPCM_YAMAHA:
1047 while (src < buf + buf_size) {
1048 if (st) {
1049 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1050 src[0] & 0x0F);
1051 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1052 (src[0] >> 4) & 0x0F);
1053 } else {
1054 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1055 src[0] & 0x0F);
1056 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1057 (src[0] >> 4) & 0x0F);
1059 src++;
1061 break;
1062 default:
1063 return -1;
1065 *data_size = (uint8_t *)samples - (uint8_t *)data;
1066 return src - buf;
1071 #ifdef CONFIG_ENCODERS
1072 #define ADPCM_ENCODER(id,name) \
1073 AVCodec name ## _encoder = { \
1074 #name, \
1075 CODEC_TYPE_AUDIO, \
1076 id, \
1077 sizeof(ADPCMContext), \
1078 adpcm_encode_init, \
1079 adpcm_encode_frame, \
1080 adpcm_encode_close, \
1081 NULL, \
1083 #else
1084 #define ADPCM_ENCODER(id,name)
1085 #endif
1087 #ifdef CONFIG_DECODERS
1088 #define ADPCM_DECODER(id,name) \
1089 AVCodec name ## _decoder = { \
1090 #name, \
1091 CODEC_TYPE_AUDIO, \
1092 id, \
1093 sizeof(ADPCMContext), \
1094 adpcm_decode_init, \
1095 NULL, \
1096 NULL, \
1097 adpcm_decode_frame, \
1099 #else
1100 #define ADPCM_DECODER(id,name)
1101 #endif
1103 #define ADPCM_CODEC(id, name) \
1104 ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1106 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt);
1107 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav);
1108 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3);
1109 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4);
1110 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws);
1111 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg);
1112 ADPCM_CODEC(CODEC_ID_ADPCM_MS, adpcm_ms);
1113 ADPCM_CODEC(CODEC_ID_ADPCM_4XM, adpcm_4xm);
1114 ADPCM_CODEC(CODEC_ID_ADPCM_XA, adpcm_xa);
1115 ADPCM_CODEC(CODEC_ID_ADPCM_ADX, adpcm_adx);
1116 ADPCM_CODEC(CODEC_ID_ADPCM_EA, adpcm_ea);
1117 ADPCM_CODEC(CODEC_ID_ADPCM_CT, adpcm_ct);
1118 ADPCM_CODEC(CODEC_ID_ADPCM_SWF, adpcm_swf);
1119 ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha);
1121 #undef ADPCM_CODEC