r911: some more cleaning up of dependencies
[cinelerra_cv/mob.git] / mpeg2enc / fdctref.c
blob61996dbcfac42cc608e015ef6168a8ce577eb193
1 /* fdctref.c, forward discrete cosine transform, double precision */
3 /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
5 /*
6 * Disclaimer of Warranty
8 * These software programs are available to the user without any license fee or
9 * royalty on an "as is" basis. The MPEG Software Simulation Group disclaims
10 * any and all warranties, whether express, implied, or statuary, including any
11 * implied warranties or merchantability or of fitness for a particular
12 * purpose. In no event shall the copyright-holder be liable for any
13 * incidental, punitive, or consequential damages of any kind whatsoever
14 * arising from the use of these programs.
16 * This disclaimer of warranty extends to the user of these programs and user's
17 * customers, employees, agents, transferees, successors, and assigns.
19 * The MPEG Software Simulation Group does not represent or warrant that the
20 * programs furnished hereunder are free of infringement of any third-party
21 * patents.
23 * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
24 * are subject to royalty fees to patent holders. Many of these patents are
25 * general enough such that they are unavoidable regardless of implementation
26 * design.
30 #include <math.h>
32 #include "config.h"
34 #ifndef PI
35 # ifdef M_PI
36 # define PI M_PI
37 # else
38 # define PI 3.14159265358979323846
39 # endif
40 #endif
42 /* global declarations */
43 void init_fdct _ANSI_ARGS_((void));
44 void fdct _ANSI_ARGS_((short *block));
46 /* private data */
47 static double c[8][8]; /* transform coefficients */
49 void init_fdct()
51 int i, j;
52 double s;
54 for (i=0; i<8; i++)
56 s = (i==0) ? sqrt(0.125) : 0.5;
58 for (j=0; j<8; j++)
59 c[i][j] = s * cos((PI/8.0)*i*(j+0.5));
63 void fdct(block)
64 short *block;
66 register int i, j;
67 double s;
68 double tmp[64];
70 for(i = 0; i < 8; i++)
71 for(j = 0; j < 8; j++)
73 s = 0.0;
76 * for(k = 0; k < 8; k++)
77 * s += c[j][k] * block[8 * i + k];
79 s += c[j][0] * block[8 * i + 0];
80 s += c[j][1] * block[8 * i + 1];
81 s += c[j][2] * block[8 * i + 2];
82 s += c[j][3] * block[8 * i + 3];
83 s += c[j][4] * block[8 * i + 4];
84 s += c[j][5] * block[8 * i + 5];
85 s += c[j][6] * block[8 * i + 6];
86 s += c[j][7] * block[8 * i + 7];
88 tmp[8 * i + j] = s;
91 for(j = 0; j < 8; j++)
92 for(i = 0; i < 8; i++)
94 s = 0.0;
97 * for(k = 0; k < 8; k++)
98 * s += c[i][k] * tmp[8 * k + j];
100 s += c[i][0] * tmp[8 * 0 + j];
101 s += c[i][1] * tmp[8 * 1 + j];
102 s += c[i][2] * tmp[8 * 2 + j];
103 s += c[i][3] * tmp[8 * 3 + j];
104 s += c[i][4] * tmp[8 * 4 + j];
105 s += c[i][5] * tmp[8 * 5 + j];
106 s += c[i][6] * tmp[8 * 6 + j];
107 s += c[i][7] * tmp[8 * 7 + j];
109 block[8 * i + j] = (int)floor(s + 0.499999);
111 * reason for adding 0.499999 instead of 0.5:
112 * s is quite often x.5 (at least for i and/or j = 0 or 4)
113 * and setting the rounding threshold exactly to 0.5 leads to an
114 * extremely high arithmetic implementation dependency of the result;
115 * s being between x.5 and x.500001 (which is now incorrectly rounded
116 * downwards instead of upwards) is assumed to occur less often
117 * (if at all)