3 * Copyright (c) 2002 Fabrice Bellard.
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 * FFT/IFFT transforms.
28 * The size of the FFT is 2^nbits. If inverse is TRUE, inverse FFT is
31 int ff_fft_init(FFTContext
*s
, int nbits
, int inverse
)
34 float alpha
, c1
, s1
, s2
;
39 s
->exptab
= av_malloc((n
/ 2) * sizeof(FFTComplex
));
42 s
->revtab
= av_malloc(n
* sizeof(uint16_t));
47 s2
= inverse
? 1.0 : -1.0;
49 for(i
=0;i
<(n
/2);i
++) {
50 alpha
= 2 * M_PI
* (float)i
/ (float)n
;
56 s
->fft_calc
= ff_fft_calc_c
;
59 /* compute constant table for HAVE_SSE version */
60 #if (defined(HAVE_MMX) && defined(HAVE_BUILTIN_VECTOR)) || defined(HAVE_ALTIVEC)
65 has_vectors
= mm_support() & MM_SSE
;
67 #if defined(HAVE_ALTIVEC) && !defined(ALTIVEC_USE_REFERENCE_C_CODE)
68 has_vectors
= mm_support() & MM_ALTIVEC
;
71 int np
, nblocks
, np2
, l
;
77 s
->exptab1
= av_malloc(np
* 2 * sizeof(FFTComplex
));
82 for(l
= 0; l
< np2
; l
+= 2 * nblocks
) {
84 *q
++ = s
->exptab
[l
+ nblocks
];
86 q
->re
= -s
->exptab
[l
].im
;
87 q
->im
= s
->exptab
[l
].re
;
89 q
->re
= -s
->exptab
[l
+ nblocks
].im
;
90 q
->im
= s
->exptab
[l
+ nblocks
].re
;
93 nblocks
= nblocks
>> 1;
94 } while (nblocks
!= 0);
97 s
->fft_calc
= ff_fft_calc_sse
;
99 s
->fft_calc
= ff_fft_calc_altivec
;
105 /* compute bit reverse table */
109 for(j
=0;j
<nbits
;j
++) {
110 m
|= ((i
>> j
) & 1) << (nbits
-j
-1);
116 av_freep(&s
->revtab
);
117 av_freep(&s
->exptab
);
118 av_freep(&s
->exptab1
);
123 #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
125 FFTSample ax, ay, bx, by;\
136 #define MUL16(a,b) ((a) * (b))
138 #define CMUL(pre, pim, are, aim, bre, bim) \
140 pre = (MUL16(are, bre) - MUL16(aim, bim));\
141 pim = (MUL16(are, bim) + MUL16(bre, aim));\
145 * Do a complex FFT with the parameters defined in ff_fft_init(). The
146 * input data must be permuted before with s->revtab table. No
147 * 1.0/sqrt(n) normalization is done.
149 void ff_fft_calc_c(FFTContext
*s
, FFTComplex
*z
)
154 register FFTComplex
*p
, *q
;
155 FFTComplex
*exptab
= s
->exptab
;
157 FFTSample tmp_re
, tmp_im
;
166 BF(p
[0].re
, p
[0].im
, p
[1].re
, p
[1].im
,
167 p
[0].re
, p
[0].im
, p
[1].re
, p
[1].im
);
178 BF(p
[0].re
, p
[0].im
, p
[2].re
, p
[2].im
,
179 p
[0].re
, p
[0].im
, p
[2].re
, p
[2].im
);
180 BF(p
[1].re
, p
[1].im
, p
[3].re
, p
[3].im
,
181 p
[1].re
, p
[1].im
, -p
[3].im
, p
[3].re
);
186 BF(p
[0].re
, p
[0].im
, p
[2].re
, p
[2].im
,
187 p
[0].re
, p
[0].im
, p
[2].re
, p
[2].im
);
188 BF(p
[1].re
, p
[1].im
, p
[3].re
, p
[3].im
,
189 p
[1].re
, p
[1].im
, p
[3].im
, -p
[3].re
);
201 for (j
= 0; j
< nblocks
; ++j
) {
202 BF(p
->re
, p
->im
, q
->re
, q
->im
,
203 p
->re
, p
->im
, q
->re
, q
->im
);
207 for(l
= nblocks
; l
< np2
; l
+= nblocks
) {
208 CMUL(tmp_re
, tmp_im
, exptab
[l
].re
, exptab
[l
].im
, q
->re
, q
->im
);
209 BF(p
->re
, p
->im
, q
->re
, q
->im
,
210 p
->re
, p
->im
, tmp_re
, tmp_im
);
218 nblocks
= nblocks
>> 1;
219 nloops
= nloops
<< 1;
220 } while (nblocks
!= 0);
224 * Do the permutation needed BEFORE calling ff_fft_calc()
226 void ff_fft_permute(FFTContext
*s
, FFTComplex
*z
)
230 const uint16_t *revtab
= s
->revtab
;
244 void ff_fft_end(FFTContext
*s
)
246 av_freep(&s
->revtab
);
247 av_freep(&s
->exptab
);
248 av_freep(&s
->exptab1
);