4 * Copyright (C) 1991-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains a slow-but-accurate integer implementation of the
9 * forward DCT (Discrete Cosine Transform).
11 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
12 * on each column. Direct algorithms are also available, but they are
13 * much more complex and seem not to be any faster when reduced to code.
15 * This implementation is based on an algorithm described in
16 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
17 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
18 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
19 * The primary algorithm described there uses 11 multiplies and 29 adds.
20 * We use their alternate method with 12 multiplies and 32 adds.
21 * The advantage of this method is that no data path contains more than one
22 * multiplication; this allows a very simple and accurate implementation in
23 * scaled fixed-point arithmetic, with a minimal number of shifts.
28 * Independent JPEG Group's slow & accurate dct.
38 #define BITS_IN_JSAMPLE 8
40 #define RIGHT_SHIFT(x, n) ((x) >> (n))
41 #define MULTIPLY16C16(var,const) ((var)*(const))
43 #if 1 //def USE_ACCURATE_ROUNDING
44 #define DESCALE(x,n) RIGHT_SHIFT((x) + (1 << ((n) - 1)), n)
46 #define DESCALE(x,n) RIGHT_SHIFT(x, n)
51 * This module is specialized to the case DCTSIZE = 8.
55 Sorry
, this code only copes with
8x8 DCTs
. /* deliberate syntax err */
60 * The poop on this scaling stuff is as follows:
62 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
63 * larger than the true DCT outputs. The final outputs are therefore
64 * a factor of N larger than desired; since N=8 this can be cured by
65 * a simple right shift at the end of the algorithm. The advantage of
66 * this arrangement is that we save two multiplications per 1-D DCT,
67 * because the y0 and y4 outputs need not be divided by sqrt(N).
68 * In the IJG code, this factor of 8 is removed by the quantization step
69 * (in jcdctmgr.c), NOT in this module.
71 * We have to do addition and subtraction of the integer inputs, which
72 * is no problem, and multiplication by fractional constants, which is
73 * a problem to do in integer arithmetic. We multiply all the constants
74 * by CONST_SCALE and convert them to integer constants (thus retaining
75 * CONST_BITS bits of precision in the constants). After doing a
76 * multiplication we have to divide the product by CONST_SCALE, with proper
77 * rounding, to produce the correct output. This division can be done
78 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
79 * as long as possible so that partial sums can be added together with
80 * full fractional precision.
82 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
83 * they are represented to better-than-integral precision. These outputs
84 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
85 * with the recommended scaling. (For 12-bit sample data, the intermediate
86 * array is int32_t anyway.)
88 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
89 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
90 * shows that the values given below are the most effective.
93 #if BITS_IN_JSAMPLE == 8
95 #define PASS1_BITS 4 /* set this to 2 if 16x16 multiplies are faster */
98 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
101 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
102 * causing a lot of useless floating-point operations at run time.
103 * To get around this we use the following pre-calculated constants.
104 * If you change CONST_BITS you may want to add appropriate values.
105 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
109 #define FIX_0_298631336 ((int32_t) 2446) /* FIX(0.298631336) */
110 #define FIX_0_390180644 ((int32_t) 3196) /* FIX(0.390180644) */
111 #define FIX_0_541196100 ((int32_t) 4433) /* FIX(0.541196100) */
112 #define FIX_0_765366865 ((int32_t) 6270) /* FIX(0.765366865) */
113 #define FIX_0_899976223 ((int32_t) 7373) /* FIX(0.899976223) */
114 #define FIX_1_175875602 ((int32_t) 9633) /* FIX(1.175875602) */
115 #define FIX_1_501321110 ((int32_t) 12299) /* FIX(1.501321110) */
116 #define FIX_1_847759065 ((int32_t) 15137) /* FIX(1.847759065) */
117 #define FIX_1_961570560 ((int32_t) 16069) /* FIX(1.961570560) */
118 #define FIX_2_053119869 ((int32_t) 16819) /* FIX(2.053119869) */
119 #define FIX_2_562915447 ((int32_t) 20995) /* FIX(2.562915447) */
120 #define FIX_3_072711026 ((int32_t) 25172) /* FIX(3.072711026) */
122 #define FIX_0_298631336 FIX(0.298631336)
123 #define FIX_0_390180644 FIX(0.390180644)
124 #define FIX_0_541196100 FIX(0.541196100)
125 #define FIX_0_765366865 FIX(0.765366865)
126 #define FIX_0_899976223 FIX(0.899976223)
127 #define FIX_1_175875602 FIX(1.175875602)
128 #define FIX_1_501321110 FIX(1.501321110)
129 #define FIX_1_847759065 FIX(1.847759065)
130 #define FIX_1_961570560 FIX(1.961570560)
131 #define FIX_2_053119869 FIX(2.053119869)
132 #define FIX_2_562915447 FIX(2.562915447)
133 #define FIX_3_072711026 FIX(3.072711026)
137 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
138 * For 8-bit samples with the recommended scaling, all the variable
139 * and constant values involved are no more than 16 bits wide, so a
140 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
141 * For 12-bit samples, a full 32-bit multiplication will be needed.
144 #if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2
145 #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
147 #define MULTIPLY(var,const) ((var) * (const))
151 static always_inline
void row_fdct(DCTELEM
* data
){
152 int_fast32_t tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
;
153 int_fast32_t tmp10
, tmp11
, tmp12
, tmp13
;
154 int_fast32_t z1
, z2
, z3
, z4
, z5
;
159 /* Pass 1: process rows. */
160 /* Note results are scaled up by sqrt(8) compared to a true DCT; */
161 /* furthermore, we scale the results by 2**PASS1_BITS. */
164 for (ctr
= DCTSIZE
-1; ctr
>= 0; ctr
--) {
165 tmp0
= dataptr
[0] + dataptr
[7];
166 tmp7
= dataptr
[0] - dataptr
[7];
167 tmp1
= dataptr
[1] + dataptr
[6];
168 tmp6
= dataptr
[1] - dataptr
[6];
169 tmp2
= dataptr
[2] + dataptr
[5];
170 tmp5
= dataptr
[2] - dataptr
[5];
171 tmp3
= dataptr
[3] + dataptr
[4];
172 tmp4
= dataptr
[3] - dataptr
[4];
174 /* Even part per LL&M figure 1 --- note that published figure is faulty;
175 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
183 dataptr
[0] = (DCTELEM
) ((tmp10
+ tmp11
) << PASS1_BITS
);
184 dataptr
[4] = (DCTELEM
) ((tmp10
- tmp11
) << PASS1_BITS
);
186 z1
= MULTIPLY(tmp12
+ tmp13
, FIX_0_541196100
);
187 dataptr
[2] = (DCTELEM
) DESCALE(z1
+ MULTIPLY(tmp13
, FIX_0_765366865
),
188 CONST_BITS
-PASS1_BITS
);
189 dataptr
[6] = (DCTELEM
) DESCALE(z1
+ MULTIPLY(tmp12
, - FIX_1_847759065
),
190 CONST_BITS
-PASS1_BITS
);
192 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
193 * cK represents cos(K*pi/16).
194 * i0..i3 in the paper are tmp4..tmp7 here.
201 z5
= MULTIPLY(z3
+ z4
, FIX_1_175875602
); /* sqrt(2) * c3 */
203 tmp4
= MULTIPLY(tmp4
, FIX_0_298631336
); /* sqrt(2) * (-c1+c3+c5-c7) */
204 tmp5
= MULTIPLY(tmp5
, FIX_2_053119869
); /* sqrt(2) * ( c1+c3-c5+c7) */
205 tmp6
= MULTIPLY(tmp6
, FIX_3_072711026
); /* sqrt(2) * ( c1+c3+c5-c7) */
206 tmp7
= MULTIPLY(tmp7
, FIX_1_501321110
); /* sqrt(2) * ( c1+c3-c5-c7) */
207 z1
= MULTIPLY(z1
, - FIX_0_899976223
); /* sqrt(2) * (c7-c3) */
208 z2
= MULTIPLY(z2
, - FIX_2_562915447
); /* sqrt(2) * (-c1-c3) */
209 z3
= MULTIPLY(z3
, - FIX_1_961570560
); /* sqrt(2) * (-c3-c5) */
210 z4
= MULTIPLY(z4
, - FIX_0_390180644
); /* sqrt(2) * (c5-c3) */
215 dataptr
[7] = (DCTELEM
) DESCALE(tmp4
+ z1
+ z3
, CONST_BITS
-PASS1_BITS
);
216 dataptr
[5] = (DCTELEM
) DESCALE(tmp5
+ z2
+ z4
, CONST_BITS
-PASS1_BITS
);
217 dataptr
[3] = (DCTELEM
) DESCALE(tmp6
+ z2
+ z3
, CONST_BITS
-PASS1_BITS
);
218 dataptr
[1] = (DCTELEM
) DESCALE(tmp7
+ z1
+ z4
, CONST_BITS
-PASS1_BITS
);
220 dataptr
+= DCTSIZE
; /* advance pointer to next row */
225 * Perform the forward DCT on one block of samples.
229 ff_jpeg_fdct_islow (DCTELEM
* data
)
231 int_fast32_t tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
;
232 int_fast32_t tmp10
, tmp11
, tmp12
, tmp13
;
233 int_fast32_t z1
, z2
, z3
, z4
, z5
;
240 /* Pass 2: process columns.
241 * We remove the PASS1_BITS scaling, but leave the results scaled up
242 * by an overall factor of 8.
246 for (ctr
= DCTSIZE
-1; ctr
>= 0; ctr
--) {
247 tmp0
= dataptr
[DCTSIZE
*0] + dataptr
[DCTSIZE
*7];
248 tmp7
= dataptr
[DCTSIZE
*0] - dataptr
[DCTSIZE
*7];
249 tmp1
= dataptr
[DCTSIZE
*1] + dataptr
[DCTSIZE
*6];
250 tmp6
= dataptr
[DCTSIZE
*1] - dataptr
[DCTSIZE
*6];
251 tmp2
= dataptr
[DCTSIZE
*2] + dataptr
[DCTSIZE
*5];
252 tmp5
= dataptr
[DCTSIZE
*2] - dataptr
[DCTSIZE
*5];
253 tmp3
= dataptr
[DCTSIZE
*3] + dataptr
[DCTSIZE
*4];
254 tmp4
= dataptr
[DCTSIZE
*3] - dataptr
[DCTSIZE
*4];
256 /* Even part per LL&M figure 1 --- note that published figure is faulty;
257 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
265 dataptr
[DCTSIZE
*0] = (DCTELEM
) DESCALE(tmp10
+ tmp11
, PASS1_BITS
);
266 dataptr
[DCTSIZE
*4] = (DCTELEM
) DESCALE(tmp10
- tmp11
, PASS1_BITS
);
268 z1
= MULTIPLY(tmp12
+ tmp13
, FIX_0_541196100
);
269 dataptr
[DCTSIZE
*2] = (DCTELEM
) DESCALE(z1
+ MULTIPLY(tmp13
, FIX_0_765366865
),
270 CONST_BITS
+PASS1_BITS
);
271 dataptr
[DCTSIZE
*6] = (DCTELEM
) DESCALE(z1
+ MULTIPLY(tmp12
, - FIX_1_847759065
),
272 CONST_BITS
+PASS1_BITS
);
274 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
275 * cK represents cos(K*pi/16).
276 * i0..i3 in the paper are tmp4..tmp7 here.
283 z5
= MULTIPLY(z3
+ z4
, FIX_1_175875602
); /* sqrt(2) * c3 */
285 tmp4
= MULTIPLY(tmp4
, FIX_0_298631336
); /* sqrt(2) * (-c1+c3+c5-c7) */
286 tmp5
= MULTIPLY(tmp5
, FIX_2_053119869
); /* sqrt(2) * ( c1+c3-c5+c7) */
287 tmp6
= MULTIPLY(tmp6
, FIX_3_072711026
); /* sqrt(2) * ( c1+c3+c5-c7) */
288 tmp7
= MULTIPLY(tmp7
, FIX_1_501321110
); /* sqrt(2) * ( c1+c3-c5-c7) */
289 z1
= MULTIPLY(z1
, - FIX_0_899976223
); /* sqrt(2) * (c7-c3) */
290 z2
= MULTIPLY(z2
, - FIX_2_562915447
); /* sqrt(2) * (-c1-c3) */
291 z3
= MULTIPLY(z3
, - FIX_1_961570560
); /* sqrt(2) * (-c3-c5) */
292 z4
= MULTIPLY(z4
, - FIX_0_390180644
); /* sqrt(2) * (c5-c3) */
297 dataptr
[DCTSIZE
*7] = (DCTELEM
) DESCALE(tmp4
+ z1
+ z3
,
298 CONST_BITS
+PASS1_BITS
);
299 dataptr
[DCTSIZE
*5] = (DCTELEM
) DESCALE(tmp5
+ z2
+ z4
,
300 CONST_BITS
+PASS1_BITS
);
301 dataptr
[DCTSIZE
*3] = (DCTELEM
) DESCALE(tmp6
+ z2
+ z3
,
302 CONST_BITS
+PASS1_BITS
);
303 dataptr
[DCTSIZE
*1] = (DCTELEM
) DESCALE(tmp7
+ z1
+ z4
,
304 CONST_BITS
+PASS1_BITS
);
306 dataptr
++; /* advance pointer to next column */
311 * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT
312 * on the rows and then, instead of doing even and odd, part on the colums
313 * you do even part two times.
316 ff_fdct248_islow (DCTELEM
* data
)
318 int_fast32_t tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
;
319 int_fast32_t tmp10
, tmp11
, tmp12
, tmp13
;
327 /* Pass 2: process columns.
328 * We remove the PASS1_BITS scaling, but leave the results scaled up
329 * by an overall factor of 8.
333 for (ctr
= DCTSIZE
-1; ctr
>= 0; ctr
--) {
334 tmp0
= dataptr
[DCTSIZE
*0] + dataptr
[DCTSIZE
*1];
335 tmp1
= dataptr
[DCTSIZE
*2] + dataptr
[DCTSIZE
*3];
336 tmp2
= dataptr
[DCTSIZE
*4] + dataptr
[DCTSIZE
*5];
337 tmp3
= dataptr
[DCTSIZE
*6] + dataptr
[DCTSIZE
*7];
338 tmp4
= dataptr
[DCTSIZE
*0] - dataptr
[DCTSIZE
*1];
339 tmp5
= dataptr
[DCTSIZE
*2] - dataptr
[DCTSIZE
*3];
340 tmp6
= dataptr
[DCTSIZE
*4] - dataptr
[DCTSIZE
*5];
341 tmp7
= dataptr
[DCTSIZE
*6] - dataptr
[DCTSIZE
*7];
348 dataptr
[DCTSIZE
*0] = (DCTELEM
) DESCALE(tmp10
+ tmp11
, PASS1_BITS
);
349 dataptr
[DCTSIZE
*4] = (DCTELEM
) DESCALE(tmp10
- tmp11
, PASS1_BITS
);
351 z1
= MULTIPLY(tmp12
+ tmp13
, FIX_0_541196100
);
352 dataptr
[DCTSIZE
*2] = (DCTELEM
) DESCALE(z1
+ MULTIPLY(tmp13
, FIX_0_765366865
),
353 CONST_BITS
+PASS1_BITS
);
354 dataptr
[DCTSIZE
*6] = (DCTELEM
) DESCALE(z1
+ MULTIPLY(tmp12
, - FIX_1_847759065
),
355 CONST_BITS
+PASS1_BITS
);
362 dataptr
[DCTSIZE
*1] = (DCTELEM
) DESCALE(tmp10
+ tmp11
, PASS1_BITS
);
363 dataptr
[DCTSIZE
*5] = (DCTELEM
) DESCALE(tmp10
- tmp11
, PASS1_BITS
);
365 z1
= MULTIPLY(tmp12
+ tmp13
, FIX_0_541196100
);
366 dataptr
[DCTSIZE
*3] = (DCTELEM
) DESCALE(z1
+ MULTIPLY(tmp13
, FIX_0_765366865
),
367 CONST_BITS
+PASS1_BITS
);
368 dataptr
[DCTSIZE
*7] = (DCTELEM
) DESCALE(z1
+ MULTIPLY(tmp12
, - FIX_1_847759065
),
369 CONST_BITS
+PASS1_BITS
);
371 dataptr
++; /* advance pointer to next column */