4 * Copyright (C) 1991, 1992, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
8 * This file contains the basic inverse-DCT transformation subroutine.
10 * This implementation is based on an algorithm described in
11 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
12 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
13 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
14 * The primary algorithm described there uses 11 multiplies and 29 adds.
15 * We use their alternate method with 12 multiplies and 32 adds.
16 * The advantage of this method is that no data path contains more than one
17 * multiplication; this allows a very simple and accurate implementation in
18 * scaled fixed-point arithmetic, with a minimal number of shifts.
20 * I've made lots of modifications to attempt to take advantage of the
21 * sparse nature of the DCT matrices we're getting. Although the logic
22 * is cumbersome, it's straightforward and the resulting code is much
25 * A better way to do this would be to pass in the DCT block as a sparse
26 * matrix, perhaps with the difference cases encoded.
31 * Independent JPEG Group's LLM idct.
37 #define EIGHT_BIT_SAMPLES
44 #define RIGHT_SHIFT(x, n) ((x) >> (n))
46 typedef DCTELEM DCTBLOCK
[DCTSIZE2
];
51 * This routine is specialized to the case DCTSIZE = 8.
55 Sorry
, this code only copes with
8x8 DCTs
. /* deliberate syntax err */
60 * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT
61 * on each column. Direct algorithms are also available, but they are
62 * much more complex and seem not to be any faster when reduced to code.
64 * The poop on this scaling stuff is as follows:
66 * Each 1-D IDCT step produces outputs which are a factor of sqrt(N)
67 * larger than the true IDCT outputs. The final outputs are therefore
68 * a factor of N larger than desired; since N=8 this can be cured by
69 * a simple right shift at the end of the algorithm. The advantage of
70 * this arrangement is that we save two multiplications per 1-D IDCT,
71 * because the y0 and y4 inputs need not be divided by sqrt(N).
73 * We have to do addition and subtraction of the integer inputs, which
74 * is no problem, and multiplication by fractional constants, which is
75 * a problem to do in integer arithmetic. We multiply all the constants
76 * by CONST_SCALE and convert them to integer constants (thus retaining
77 * CONST_BITS bits of precision in the constants). After doing a
78 * multiplication we have to divide the product by CONST_SCALE, with proper
79 * rounding, to produce the correct output. This division can be done
80 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
81 * as long as possible so that partial sums can be added together with
82 * full fractional precision.
84 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
85 * they are represented to better-than-integral precision. These outputs
86 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
87 * with the recommended scaling. (To scale up 12-bit sample data further, an
88 * intermediate int32 array would be needed.)
90 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
91 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
92 * shows that the values given below are the most effective.
95 #ifdef EIGHT_BIT_SAMPLES
98 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
101 #define ONE ((int32_t) 1)
103 #define CONST_SCALE (ONE << CONST_BITS)
105 /* Convert a positive real constant to an integer scaled by CONST_SCALE.
106 * IMPORTANT: if your compiler doesn't do this arithmetic at compile time,
107 * you will pay a significant penalty in run time. In that case, figure
108 * the correct integer constant values and insert them by hand.
111 /* Actually FIX is no longer used, we precomputed them all */
112 #define FIX(x) ((int32_t) ((x) * CONST_SCALE + 0.5))
114 /* Descale and correctly round an int32_t value that's scaled by N bits.
115 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
116 * the fudge factor is correct for either sign of X.
119 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
121 /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result.
122 * For 8-bit samples with the recommended scaling, all the variable
123 * and constant values involved are no more than 16 bits wide, so a
124 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply;
125 * this provides a useful speedup on many machines.
126 * There is no way to specify a 16x16->32 multiply in portable C, but
127 * some C compilers will do the right thing if you provide the correct
128 * combination of casts.
129 * NB: for 12-bit samples, a full 32-bit multiplication will be needed.
132 #ifdef EIGHT_BIT_SAMPLES
133 #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
134 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int16_t) (const)))
136 #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
137 #define MULTIPLY(var,const) (((int16_t) (var)) * ((int32_t) (const)))
141 #ifndef MULTIPLY /* default definition */
142 #define MULTIPLY(var,const) ((var) * (const))
147 Unlike our decoder where we approximate the FIXes, we need to use exact
148 ones here or successive P-frames will drift too much with Reference frame coding
150 #define FIX_0_211164243 1730
151 #define FIX_0_275899380 2260
152 #define FIX_0_298631336 2446
153 #define FIX_0_390180644 3196
154 #define FIX_0_509795579 4176
155 #define FIX_0_541196100 4433
156 #define FIX_0_601344887 4926
157 #define FIX_0_765366865 6270
158 #define FIX_0_785694958 6436
159 #define FIX_0_899976223 7373
160 #define FIX_1_061594337 8697
161 #define FIX_1_111140466 9102
162 #define FIX_1_175875602 9633
163 #define FIX_1_306562965 10703
164 #define FIX_1_387039845 11363
165 #define FIX_1_451774981 11893
166 #define FIX_1_501321110 12299
167 #define FIX_1_662939225 13623
168 #define FIX_1_847759065 15137
169 #define FIX_1_961570560 16069
170 #define FIX_2_053119869 16819
171 #define FIX_2_172734803 17799
172 #define FIX_2_562915447 20995
173 #define FIX_3_072711026 25172
176 * Perform the inverse DCT on one block of coefficients.
179 void j_rev_dct(DCTBLOCK data
)
181 int32_t tmp0
, tmp1
, tmp2
, tmp3
;
182 int32_t tmp10
, tmp11
, tmp12
, tmp13
;
183 int32_t z1
, z2
, z3
, z4
, z5
;
184 int32_t d0
, d1
, d2
, d3
, d4
, d5
, d6
, d7
;
185 register DCTELEM
*dataptr
;
188 /* Pass 1: process rows. */
189 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
190 /* furthermore, we scale the results by 2**PASS1_BITS. */
194 for (rowctr
= DCTSIZE
-1; rowctr
>= 0; rowctr
--) {
195 /* Due to quantization, we will usually find that many of the input
196 * coefficients are zero, especially the AC terms. We can exploit this
197 * by short-circuiting the IDCT calculation for any row in which all
198 * the AC terms are zero. In that case each output is equal to the
199 * DC coefficient (with scale factor as needed).
200 * With typical images and quantization tables, half or more of the
201 * row DCT calculations can be simplified this way.
204 register int *idataptr
= (int*)dataptr
;
206 /* WARNING: we do the same permutation as MMX idct to simplify the
217 if ((d1
| d2
| d3
| d4
| d5
| d6
| d7
) == 0) {
218 /* AC terms all zero */
220 /* Compute a 32 bit value to assign. */
221 DCTELEM dcval
= (DCTELEM
) (d0
<< PASS1_BITS
);
222 register int v
= (dcval
& 0xffff) | ((dcval
<< 16) & 0xffff0000);
230 dataptr
+= DCTSIZE
; /* advance pointer to next row */
234 /* Even part: reverse the even part of the forward DCT. */
235 /* The rotator is sqrt(2)*c(-6). */
239 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
240 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
241 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
242 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
244 tmp0
= (d0
+ d4
) << CONST_BITS
;
245 tmp1
= (d0
- d4
) << CONST_BITS
;
252 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
253 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
254 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
256 tmp0
= (d0
+ d4
) << CONST_BITS
;
257 tmp1
= (d0
- d4
) << CONST_BITS
;
266 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
267 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
268 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
270 tmp0
= (d0
+ d4
) << CONST_BITS
;
271 tmp1
= (d0
- d4
) << CONST_BITS
;
278 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
279 tmp10
= tmp13
= (d0
+ d4
) << CONST_BITS
;
280 tmp11
= tmp12
= (d0
- d4
) << CONST_BITS
;
284 /* Odd part per figure 8; the matrix is unitary and hence its
285 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
292 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
297 z5
= MULTIPLY(z3
+ z4
, FIX_1_175875602
);
299 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
300 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
301 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
302 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
303 z1
= MULTIPLY(-z1
, FIX_0_899976223
);
304 z2
= MULTIPLY(-z2
, FIX_2_562915447
);
305 z3
= MULTIPLY(-z3
, FIX_1_961570560
);
306 z4
= MULTIPLY(-z4
, FIX_0_390180644
);
316 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
319 z5
= MULTIPLY(z3
+ d5
, FIX_1_175875602
);
321 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
322 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
323 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
324 z1
= MULTIPLY(-d7
, FIX_0_899976223
);
325 z2
= MULTIPLY(-z2
, FIX_2_562915447
);
326 z3
= MULTIPLY(-z3
, FIX_1_961570560
);
327 z4
= MULTIPLY(-d5
, FIX_0_390180644
);
339 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
342 z5
= MULTIPLY(d7
+ z4
, FIX_1_175875602
);
344 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
345 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
346 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
347 z1
= MULTIPLY(-z1
, FIX_0_899976223
);
348 z2
= MULTIPLY(-d5
, FIX_2_562915447
);
349 z3
= MULTIPLY(-d7
, FIX_1_961570560
);
350 z4
= MULTIPLY(-z4
, FIX_0_390180644
);
360 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
361 tmp0
= MULTIPLY(-d7
, FIX_0_601344887
);
362 z1
= MULTIPLY(-d7
, FIX_0_899976223
);
363 z3
= MULTIPLY(-d7
, FIX_1_961570560
);
364 tmp1
= MULTIPLY(-d5
, FIX_0_509795579
);
365 z2
= MULTIPLY(-d5
, FIX_2_562915447
);
366 z4
= MULTIPLY(-d5
, FIX_0_390180644
);
367 z5
= MULTIPLY(d5
+ d7
, FIX_1_175875602
);
381 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
384 z5
= MULTIPLY(z3
+ d1
, FIX_1_175875602
);
386 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
387 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
388 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
389 z1
= MULTIPLY(-z1
, FIX_0_899976223
);
390 z2
= MULTIPLY(-d3
, FIX_2_562915447
);
391 z3
= MULTIPLY(-z3
, FIX_1_961570560
);
392 z4
= MULTIPLY(-d1
, FIX_0_390180644
);
402 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
405 tmp0
= MULTIPLY(-d7
, FIX_0_601344887
);
406 z1
= MULTIPLY(-d7
, FIX_0_899976223
);
407 tmp2
= MULTIPLY(d3
, FIX_0_509795579
);
408 z2
= MULTIPLY(-d3
, FIX_2_562915447
);
409 z5
= MULTIPLY(z3
, FIX_1_175875602
);
410 z3
= MULTIPLY(-z3
, FIX_0_785694958
);
419 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
421 z5
= MULTIPLY(z1
, FIX_1_175875602
);
423 z1
= MULTIPLY(z1
, FIX_0_275899380
);
424 z3
= MULTIPLY(-d7
, FIX_1_961570560
);
425 tmp0
= MULTIPLY(-d7
, FIX_1_662939225
);
426 z4
= MULTIPLY(-d1
, FIX_0_390180644
);
427 tmp3
= MULTIPLY(d1
, FIX_1_111140466
);
434 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
435 tmp0
= MULTIPLY(-d7
, FIX_1_387039845
);
436 tmp1
= MULTIPLY(d7
, FIX_1_175875602
);
437 tmp2
= MULTIPLY(-d7
, FIX_0_785694958
);
438 tmp3
= MULTIPLY(d7
, FIX_0_275899380
);
446 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
449 z5
= MULTIPLY(d3
+ z4
, FIX_1_175875602
);
451 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
452 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
453 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
454 z1
= MULTIPLY(-d1
, FIX_0_899976223
);
455 z2
= MULTIPLY(-z2
, FIX_2_562915447
);
456 z3
= MULTIPLY(-d3
, FIX_1_961570560
);
457 z4
= MULTIPLY(-z4
, FIX_0_390180644
);
467 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
470 z5
= MULTIPLY(z2
, FIX_1_175875602
);
471 tmp1
= MULTIPLY(d5
, FIX_1_662939225
);
472 z4
= MULTIPLY(-d5
, FIX_0_390180644
);
473 z2
= MULTIPLY(-z2
, FIX_1_387039845
);
474 tmp2
= MULTIPLY(d3
, FIX_1_111140466
);
475 z3
= MULTIPLY(-d3
, FIX_1_961570560
);
484 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
487 z5
= MULTIPLY(z4
, FIX_1_175875602
);
488 z1
= MULTIPLY(-d1
, FIX_0_899976223
);
489 tmp3
= MULTIPLY(d1
, FIX_0_601344887
);
490 tmp1
= MULTIPLY(-d5
, FIX_0_509795579
);
491 z2
= MULTIPLY(-d5
, FIX_2_562915447
);
492 z4
= MULTIPLY(z4
, FIX_0_785694958
);
499 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
500 tmp0
= MULTIPLY(d5
, FIX_1_175875602
);
501 tmp1
= MULTIPLY(d5
, FIX_0_275899380
);
502 tmp2
= MULTIPLY(-d5
, FIX_1_387039845
);
503 tmp3
= MULTIPLY(d5
, FIX_0_785694958
);
509 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
511 tmp3
= MULTIPLY(d1
, FIX_0_211164243
);
512 tmp2
= MULTIPLY(-d3
, FIX_1_451774981
);
513 z1
= MULTIPLY(d1
, FIX_1_061594337
);
514 z2
= MULTIPLY(-d3
, FIX_2_172734803
);
515 z4
= MULTIPLY(z5
, FIX_0_785694958
);
516 z5
= MULTIPLY(z5
, FIX_1_175875602
);
523 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
524 tmp0
= MULTIPLY(-d3
, FIX_0_785694958
);
525 tmp1
= MULTIPLY(-d3
, FIX_1_387039845
);
526 tmp2
= MULTIPLY(-d3
, FIX_0_275899380
);
527 tmp3
= MULTIPLY(d3
, FIX_1_175875602
);
531 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
532 tmp0
= MULTIPLY(d1
, FIX_0_275899380
);
533 tmp1
= MULTIPLY(d1
, FIX_0_785694958
);
534 tmp2
= MULTIPLY(d1
, FIX_1_175875602
);
535 tmp3
= MULTIPLY(d1
, FIX_1_387039845
);
537 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
538 tmp0
= tmp1
= tmp2
= tmp3
= 0;
544 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
546 dataptr
[0] = (DCTELEM
) DESCALE(tmp10
+ tmp3
, CONST_BITS
-PASS1_BITS
);
547 dataptr
[7] = (DCTELEM
) DESCALE(tmp10
- tmp3
, CONST_BITS
-PASS1_BITS
);
548 dataptr
[1] = (DCTELEM
) DESCALE(tmp11
+ tmp2
, CONST_BITS
-PASS1_BITS
);
549 dataptr
[6] = (DCTELEM
) DESCALE(tmp11
- tmp2
, CONST_BITS
-PASS1_BITS
);
550 dataptr
[2] = (DCTELEM
) DESCALE(tmp12
+ tmp1
, CONST_BITS
-PASS1_BITS
);
551 dataptr
[5] = (DCTELEM
) DESCALE(tmp12
- tmp1
, CONST_BITS
-PASS1_BITS
);
552 dataptr
[3] = (DCTELEM
) DESCALE(tmp13
+ tmp0
, CONST_BITS
-PASS1_BITS
);
553 dataptr
[4] = (DCTELEM
) DESCALE(tmp13
- tmp0
, CONST_BITS
-PASS1_BITS
);
555 dataptr
+= DCTSIZE
; /* advance pointer to next row */
558 /* Pass 2: process columns. */
559 /* Note that we must descale the results by a factor of 8 == 2**3, */
560 /* and also undo the PASS1_BITS scaling. */
563 for (rowctr
= DCTSIZE
-1; rowctr
>= 0; rowctr
--) {
564 /* Columns of zeroes can be exploited in the same way as we did with rows.
565 * However, the row calculation has created many nonzero AC terms, so the
566 * simplification applies less often (typically 5% to 10% of the time).
567 * On machines with very fast multiplication, it's possible that the
568 * test takes more time than it's worth. In that case this section
569 * may be commented out.
572 d0
= dataptr
[DCTSIZE
*0];
573 d1
= dataptr
[DCTSIZE
*1];
574 d2
= dataptr
[DCTSIZE
*2];
575 d3
= dataptr
[DCTSIZE
*3];
576 d4
= dataptr
[DCTSIZE
*4];
577 d5
= dataptr
[DCTSIZE
*5];
578 d6
= dataptr
[DCTSIZE
*6];
579 d7
= dataptr
[DCTSIZE
*7];
581 /* Even part: reverse the even part of the forward DCT. */
582 /* The rotator is sqrt(2)*c(-6). */
585 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
586 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
587 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
588 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
590 tmp0
= (d0
+ d4
) << CONST_BITS
;
591 tmp1
= (d0
- d4
) << CONST_BITS
;
598 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
599 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
600 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
602 tmp0
= (d0
+ d4
) << CONST_BITS
;
603 tmp1
= (d0
- d4
) << CONST_BITS
;
612 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
613 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
614 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
616 tmp0
= (d0
+ d4
) << CONST_BITS
;
617 tmp1
= (d0
- d4
) << CONST_BITS
;
624 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
625 tmp10
= tmp13
= (d0
+ d4
) << CONST_BITS
;
626 tmp11
= tmp12
= (d0
- d4
) << CONST_BITS
;
630 /* Odd part per figure 8; the matrix is unitary and hence its
631 * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively.
637 /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */
642 z5
= MULTIPLY(z3
+ z4
, FIX_1_175875602
);
644 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
645 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
646 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
647 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
648 z1
= MULTIPLY(-z1
, FIX_0_899976223
);
649 z2
= MULTIPLY(-z2
, FIX_2_562915447
);
650 z3
= MULTIPLY(-z3
, FIX_1_961570560
);
651 z4
= MULTIPLY(-z4
, FIX_0_390180644
);
661 /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */
665 z5
= MULTIPLY(z3
+ d5
, FIX_1_175875602
);
667 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
668 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
669 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
670 z1
= MULTIPLY(-d7
, FIX_0_899976223
);
671 z2
= MULTIPLY(-z2
, FIX_2_562915447
);
672 z3
= MULTIPLY(-z3
, FIX_1_961570560
);
673 z4
= MULTIPLY(-d5
, FIX_0_390180644
);
685 /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */
690 z5
= MULTIPLY(z3
+ z4
, FIX_1_175875602
);
692 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
693 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
694 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
695 z1
= MULTIPLY(-z1
, FIX_0_899976223
);
696 z2
= MULTIPLY(-d5
, FIX_2_562915447
);
697 z3
= MULTIPLY(-d7
, FIX_1_961570560
);
698 z4
= MULTIPLY(-z4
, FIX_0_390180644
);
708 /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */
709 tmp0
= MULTIPLY(-d7
, FIX_0_601344887
);
710 z1
= MULTIPLY(-d7
, FIX_0_899976223
);
711 z3
= MULTIPLY(-d7
, FIX_1_961570560
);
712 tmp1
= MULTIPLY(-d5
, FIX_0_509795579
);
713 z2
= MULTIPLY(-d5
, FIX_2_562915447
);
714 z4
= MULTIPLY(-d5
, FIX_0_390180644
);
715 z5
= MULTIPLY(d5
+ d7
, FIX_1_175875602
);
729 /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */
732 z5
= MULTIPLY(z3
+ d1
, FIX_1_175875602
);
734 tmp0
= MULTIPLY(d7
, FIX_0_298631336
);
735 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
736 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
737 z1
= MULTIPLY(-z1
, FIX_0_899976223
);
738 z2
= MULTIPLY(-d3
, FIX_2_562915447
);
739 z3
= MULTIPLY(-z3
, FIX_1_961570560
);
740 z4
= MULTIPLY(-d1
, FIX_0_390180644
);
750 /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */
753 tmp0
= MULTIPLY(-d7
, FIX_0_601344887
);
754 z1
= MULTIPLY(-d7
, FIX_0_899976223
);
755 tmp2
= MULTIPLY(d3
, FIX_0_509795579
);
756 z2
= MULTIPLY(-d3
, FIX_2_562915447
);
757 z5
= MULTIPLY(z3
, FIX_1_175875602
);
758 z3
= MULTIPLY(-z3
, FIX_0_785694958
);
767 /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */
769 z5
= MULTIPLY(z1
, FIX_1_175875602
);
771 z1
= MULTIPLY(z1
, FIX_0_275899380
);
772 z3
= MULTIPLY(-d7
, FIX_1_961570560
);
773 tmp0
= MULTIPLY(-d7
, FIX_1_662939225
);
774 z4
= MULTIPLY(-d1
, FIX_0_390180644
);
775 tmp3
= MULTIPLY(d1
, FIX_1_111140466
);
782 /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */
783 tmp0
= MULTIPLY(-d7
, FIX_1_387039845
);
784 tmp1
= MULTIPLY(d7
, FIX_1_175875602
);
785 tmp2
= MULTIPLY(-d7
, FIX_0_785694958
);
786 tmp3
= MULTIPLY(d7
, FIX_0_275899380
);
794 /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */
797 z5
= MULTIPLY(d3
+ z4
, FIX_1_175875602
);
799 tmp1
= MULTIPLY(d5
, FIX_2_053119869
);
800 tmp2
= MULTIPLY(d3
, FIX_3_072711026
);
801 tmp3
= MULTIPLY(d1
, FIX_1_501321110
);
802 z1
= MULTIPLY(-d1
, FIX_0_899976223
);
803 z2
= MULTIPLY(-z2
, FIX_2_562915447
);
804 z3
= MULTIPLY(-d3
, FIX_1_961570560
);
805 z4
= MULTIPLY(-z4
, FIX_0_390180644
);
815 /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */
818 z5
= MULTIPLY(z2
, FIX_1_175875602
);
819 tmp1
= MULTIPLY(d5
, FIX_1_662939225
);
820 z4
= MULTIPLY(-d5
, FIX_0_390180644
);
821 z2
= MULTIPLY(-z2
, FIX_1_387039845
);
822 tmp2
= MULTIPLY(d3
, FIX_1_111140466
);
823 z3
= MULTIPLY(-d3
, FIX_1_961570560
);
832 /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */
835 z5
= MULTIPLY(z4
, FIX_1_175875602
);
836 z1
= MULTIPLY(-d1
, FIX_0_899976223
);
837 tmp3
= MULTIPLY(d1
, FIX_0_601344887
);
838 tmp1
= MULTIPLY(-d5
, FIX_0_509795579
);
839 z2
= MULTIPLY(-d5
, FIX_2_562915447
);
840 z4
= MULTIPLY(z4
, FIX_0_785694958
);
847 /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */
848 tmp0
= MULTIPLY(d5
, FIX_1_175875602
);
849 tmp1
= MULTIPLY(d5
, FIX_0_275899380
);
850 tmp2
= MULTIPLY(-d5
, FIX_1_387039845
);
851 tmp3
= MULTIPLY(d5
, FIX_0_785694958
);
857 /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */
859 tmp3
= MULTIPLY(d1
, FIX_0_211164243
);
860 tmp2
= MULTIPLY(-d3
, FIX_1_451774981
);
861 z1
= MULTIPLY(d1
, FIX_1_061594337
);
862 z2
= MULTIPLY(-d3
, FIX_2_172734803
);
863 z4
= MULTIPLY(z5
, FIX_0_785694958
);
864 z5
= MULTIPLY(z5
, FIX_1_175875602
);
871 /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */
872 tmp0
= MULTIPLY(-d3
, FIX_0_785694958
);
873 tmp1
= MULTIPLY(-d3
, FIX_1_387039845
);
874 tmp2
= MULTIPLY(-d3
, FIX_0_275899380
);
875 tmp3
= MULTIPLY(d3
, FIX_1_175875602
);
879 /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */
880 tmp0
= MULTIPLY(d1
, FIX_0_275899380
);
881 tmp1
= MULTIPLY(d1
, FIX_0_785694958
);
882 tmp2
= MULTIPLY(d1
, FIX_1_175875602
);
883 tmp3
= MULTIPLY(d1
, FIX_1_387039845
);
885 /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */
886 tmp0
= tmp1
= tmp2
= tmp3
= 0;
892 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
894 dataptr
[DCTSIZE
*0] = (DCTELEM
) DESCALE(tmp10
+ tmp3
,
895 CONST_BITS
+PASS1_BITS
+3);
896 dataptr
[DCTSIZE
*7] = (DCTELEM
) DESCALE(tmp10
- tmp3
,
897 CONST_BITS
+PASS1_BITS
+3);
898 dataptr
[DCTSIZE
*1] = (DCTELEM
) DESCALE(tmp11
+ tmp2
,
899 CONST_BITS
+PASS1_BITS
+3);
900 dataptr
[DCTSIZE
*6] = (DCTELEM
) DESCALE(tmp11
- tmp2
,
901 CONST_BITS
+PASS1_BITS
+3);
902 dataptr
[DCTSIZE
*2] = (DCTELEM
) DESCALE(tmp12
+ tmp1
,
903 CONST_BITS
+PASS1_BITS
+3);
904 dataptr
[DCTSIZE
*5] = (DCTELEM
) DESCALE(tmp12
- tmp1
,
905 CONST_BITS
+PASS1_BITS
+3);
906 dataptr
[DCTSIZE
*3] = (DCTELEM
) DESCALE(tmp13
+ tmp0
,
907 CONST_BITS
+PASS1_BITS
+3);
908 dataptr
[DCTSIZE
*4] = (DCTELEM
) DESCALE(tmp13
- tmp0
,
909 CONST_BITS
+PASS1_BITS
+3);
911 dataptr
++; /* advance pointer to next column */
919 void j_rev_dct4(DCTBLOCK data
)
921 int32_t tmp0
, tmp1
, tmp2
, tmp3
;
922 int32_t tmp10
, tmp11
, tmp12
, tmp13
;
924 int32_t d0
, d2
, d4
, d6
;
925 register DCTELEM
*dataptr
;
928 /* Pass 1: process rows. */
929 /* Note results are scaled up by sqrt(8) compared to a true IDCT; */
930 /* furthermore, we scale the results by 2**PASS1_BITS. */
936 for (rowctr
= DCTSIZE
-1; rowctr
>= 0; rowctr
--) {
937 /* Due to quantization, we will usually find that many of the input
938 * coefficients are zero, especially the AC terms. We can exploit this
939 * by short-circuiting the IDCT calculation for any row in which all
940 * the AC terms are zero. In that case each output is equal to the
941 * DC coefficient (with scale factor as needed).
942 * With typical images and quantization tables, half or more of the
943 * row DCT calculations can be simplified this way.
946 register int *idataptr
= (int*)dataptr
;
953 if ((d2
| d4
| d6
) == 0) {
954 /* AC terms all zero */
956 /* Compute a 32 bit value to assign. */
957 DCTELEM dcval
= (DCTELEM
) (d0
<< PASS1_BITS
);
958 register int v
= (dcval
& 0xffff) | ((dcval
<< 16) & 0xffff0000);
964 dataptr
+= DCTSTRIDE
; /* advance pointer to next row */
968 /* Even part: reverse the even part of the forward DCT. */
969 /* The rotator is sqrt(2)*c(-6). */
972 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
973 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
974 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
975 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
977 tmp0
= (d0
+ d4
) << CONST_BITS
;
978 tmp1
= (d0
- d4
) << CONST_BITS
;
985 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
986 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
987 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
989 tmp0
= (d0
+ d4
) << CONST_BITS
;
990 tmp1
= (d0
- d4
) << CONST_BITS
;
999 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1000 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
1001 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
1003 tmp0
= (d0
+ d4
) << CONST_BITS
;
1004 tmp1
= (d0
- d4
) << CONST_BITS
;
1006 tmp10
= tmp0
+ tmp3
;
1007 tmp13
= tmp0
- tmp3
;
1008 tmp11
= tmp1
+ tmp2
;
1009 tmp12
= tmp1
- tmp2
;
1011 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1012 tmp10
= tmp13
= (d0
+ d4
) << CONST_BITS
;
1013 tmp11
= tmp12
= (d0
- d4
) << CONST_BITS
;
1017 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1019 dataptr
[0] = (DCTELEM
) DESCALE(tmp10
, CONST_BITS
-PASS1_BITS
);
1020 dataptr
[1] = (DCTELEM
) DESCALE(tmp11
, CONST_BITS
-PASS1_BITS
);
1021 dataptr
[2] = (DCTELEM
) DESCALE(tmp12
, CONST_BITS
-PASS1_BITS
);
1022 dataptr
[3] = (DCTELEM
) DESCALE(tmp13
, CONST_BITS
-PASS1_BITS
);
1024 dataptr
+= DCTSTRIDE
; /* advance pointer to next row */
1027 /* Pass 2: process columns. */
1028 /* Note that we must descale the results by a factor of 8 == 2**3, */
1029 /* and also undo the PASS1_BITS scaling. */
1032 for (rowctr
= DCTSIZE
-1; rowctr
>= 0; rowctr
--) {
1033 /* Columns of zeroes can be exploited in the same way as we did with rows.
1034 * However, the row calculation has created many nonzero AC terms, so the
1035 * simplification applies less often (typically 5% to 10% of the time).
1036 * On machines with very fast multiplication, it's possible that the
1037 * test takes more time than it's worth. In that case this section
1038 * may be commented out.
1041 d0
= dataptr
[DCTSTRIDE
*0];
1042 d2
= dataptr
[DCTSTRIDE
*1];
1043 d4
= dataptr
[DCTSTRIDE
*2];
1044 d6
= dataptr
[DCTSTRIDE
*3];
1046 /* Even part: reverse the even part of the forward DCT. */
1047 /* The rotator is sqrt(2)*c(-6). */
1050 /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */
1051 z1
= MULTIPLY(d2
+ d6
, FIX_0_541196100
);
1052 tmp2
= z1
+ MULTIPLY(-d6
, FIX_1_847759065
);
1053 tmp3
= z1
+ MULTIPLY(d2
, FIX_0_765366865
);
1055 tmp0
= (d0
+ d4
) << CONST_BITS
;
1056 tmp1
= (d0
- d4
) << CONST_BITS
;
1058 tmp10
= tmp0
+ tmp3
;
1059 tmp13
= tmp0
- tmp3
;
1060 tmp11
= tmp1
+ tmp2
;
1061 tmp12
= tmp1
- tmp2
;
1063 /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */
1064 tmp2
= MULTIPLY(-d6
, FIX_1_306562965
);
1065 tmp3
= MULTIPLY(d6
, FIX_0_541196100
);
1067 tmp0
= (d0
+ d4
) << CONST_BITS
;
1068 tmp1
= (d0
- d4
) << CONST_BITS
;
1070 tmp10
= tmp0
+ tmp3
;
1071 tmp13
= tmp0
- tmp3
;
1072 tmp11
= tmp1
+ tmp2
;
1073 tmp12
= tmp1
- tmp2
;
1077 /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */
1078 tmp2
= MULTIPLY(d2
, FIX_0_541196100
);
1079 tmp3
= MULTIPLY(d2
, FIX_1_306562965
);
1081 tmp0
= (d0
+ d4
) << CONST_BITS
;
1082 tmp1
= (d0
- d4
) << CONST_BITS
;
1084 tmp10
= tmp0
+ tmp3
;
1085 tmp13
= tmp0
- tmp3
;
1086 tmp11
= tmp1
+ tmp2
;
1087 tmp12
= tmp1
- tmp2
;
1089 /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */
1090 tmp10
= tmp13
= (d0
+ d4
) << CONST_BITS
;
1091 tmp11
= tmp12
= (d0
- d4
) << CONST_BITS
;
1095 /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */
1097 dataptr
[DCTSTRIDE
*0] = tmp10
>> (CONST_BITS
+PASS1_BITS
+3);
1098 dataptr
[DCTSTRIDE
*1] = tmp11
>> (CONST_BITS
+PASS1_BITS
+3);
1099 dataptr
[DCTSTRIDE
*2] = tmp12
>> (CONST_BITS
+PASS1_BITS
+3);
1100 dataptr
[DCTSTRIDE
*3] = tmp13
>> (CONST_BITS
+PASS1_BITS
+3);
1102 dataptr
++; /* advance pointer to next column */
1106 void j_rev_dct2(DCTBLOCK data
){
1107 int d00
, d01
, d10
, d11
;
1110 d00
= data
[0+0*DCTSTRIDE
] + data
[1+0*DCTSTRIDE
];
1111 d01
= data
[0+0*DCTSTRIDE
] - data
[1+0*DCTSTRIDE
];
1112 d10
= data
[0+1*DCTSTRIDE
] + data
[1+1*DCTSTRIDE
];
1113 d11
= data
[0+1*DCTSTRIDE
] - data
[1+1*DCTSTRIDE
];
1115 data
[0+0*DCTSTRIDE
]= (d00
+ d10
)>>3;
1116 data
[1+0*DCTSTRIDE
]= (d01
+ d11
)>>3;
1117 data
[0+1*DCTSTRIDE
]= (d00
- d10
)>>3;
1118 data
[1+1*DCTSTRIDE
]= (d01
- d11
)>>3;
1121 void j_rev_dct1(DCTBLOCK data
){
1122 data
[0] = (data
[0] + 4)>>3;