2 * Copyright (c) 2003 The FFmpeg Project.
4 * This library is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU Lesser General Public
6 * License as published by the Free Software Foundation; either
7 * version 2 of the License, or (at your option) any later version.
9 * This library is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * Lesser General Public License for more details.
14 * You should have received a copy of the GNU Lesser General Public
15 * License along with this library; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * How to use this decoder:
20 * SVQ3 data is transported within Apple Quicktime files. Quicktime files
21 * have stsd atoms to describe media trak properties. A stsd atom for a
22 * video trak contains 1 or more ImageDescription atoms. These atoms begin
23 * with the 4-byte length of the atom followed by the codec fourcc. Some
24 * decoders need information in this atom to operate correctly. Such
25 * is the case with SVQ3. In order to get the best use out of this decoder,
26 * the calling app must make the SVQ3 ImageDescription atom available
27 * via the AVCodecContext's extradata[_size] field:
29 * AVCodecContext.extradata = pointer to ImageDescription, first characters
30 * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
31 * AVCodecContext.extradata_size = size of ImageDescription atom memory
32 * buffer (which will be the same as the ImageDescription atom size field
33 * from the QT file, minus 4 bytes since the length is missing)
35 * You will know you have these parameters passed correctly when the decoder
36 * correctly decodes this file:
37 * ftp://ftp.mplayerhq.hu/MPlayer/samples/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
46 #define FULLPEL_MODE 1
47 #define HALFPEL_MODE 2
48 #define THIRDPEL_MODE 3
49 #define PREDICT_MODE 4
51 /* dual scan (from some older h264 draft)
60 static const uint8_t svq3_scan
[16]={
61 0+0*4, 1+0*4, 2+0*4, 2+1*4,
62 2+2*4, 3+0*4, 3+1*4, 3+2*4,
63 0+1*4, 0+2*4, 1+1*4, 1+2*4,
64 0+3*4, 1+3*4, 2+3*4, 3+3*4,
67 static const uint8_t svq3_pred_0
[25][2] = {
70 { 0, 2 }, { 1, 1 }, { 2, 0 },
71 { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
72 { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
73 { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
74 { 2, 4 }, { 3, 3 }, { 4, 2 },
79 static const int8_t svq3_pred_1
[6][6][5] = {
80 { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
81 { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
82 { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
83 { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
84 { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
85 { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
86 { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
87 { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
88 { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
89 { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
90 { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
91 { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
94 static const struct { uint8_t run
; uint8_t level
; } svq3_dct_tables
[2][16] = {
95 { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
96 { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
97 { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
98 { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
101 static const uint32_t svq3_dequant_coeff
[32] = {
102 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
103 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
104 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
105 61694, 68745, 77615, 89113,100253,109366,126635,141533
109 static void svq3_luma_dc_dequant_idct_c(DCTELEM
*block
, int qp
){
110 const int qmul
= svq3_dequant_coeff
[qp
];
114 static const int x_offset
[4]={0, 1*stride
, 4* stride
, 5*stride
};
115 static const int y_offset
[4]={0, 2*stride
, 8* stride
, 10*stride
};
118 const int offset
= y_offset
[i
];
119 const int z0
= 13*(block
[offset
+stride
*0] + block
[offset
+stride
*4]);
120 const int z1
= 13*(block
[offset
+stride
*0] - block
[offset
+stride
*4]);
121 const int z2
= 7* block
[offset
+stride
*1] - 17*block
[offset
+stride
*5];
122 const int z3
= 17* block
[offset
+stride
*1] + 7*block
[offset
+stride
*5];
131 const int offset
= x_offset
[i
];
132 const int z0
= 13*(temp
[4*0+i
] + temp
[4*2+i
]);
133 const int z1
= 13*(temp
[4*0+i
] - temp
[4*2+i
]);
134 const int z2
= 7* temp
[4*1+i
] - 17*temp
[4*3+i
];
135 const int z3
= 17* temp
[4*1+i
] + 7*temp
[4*3+i
];
137 block
[stride
*0 +offset
]= ((z0
+ z3
)*qmul
+ 0x80000)>>20;
138 block
[stride
*2 +offset
]= ((z1
+ z2
)*qmul
+ 0x80000)>>20;
139 block
[stride
*8 +offset
]= ((z1
- z2
)*qmul
+ 0x80000)>>20;
140 block
[stride
*10+offset
]= ((z0
- z3
)*qmul
+ 0x80000)>>20;
145 static void svq3_add_idct_c (uint8_t *dst
, DCTELEM
*block
, int stride
, int qp
, int dc
){
146 const int qmul
= svq3_dequant_coeff
[qp
];
148 uint8_t *cm
= cropTbl
+ MAX_NEG_CROP
;
151 dc
= 13*13*((dc
== 1) ? 1538*block
[0] : ((qmul
*(block
[0] >> 3)) / 2));
155 for (i
=0; i
< 4; i
++) {
156 const int z0
= 13*(block
[0 + 4*i
] + block
[2 + 4*i
]);
157 const int z1
= 13*(block
[0 + 4*i
] - block
[2 + 4*i
]);
158 const int z2
= 7* block
[1 + 4*i
] - 17*block
[3 + 4*i
];
159 const int z3
= 17* block
[1 + 4*i
] + 7*block
[3 + 4*i
];
161 block
[0 + 4*i
]= z0
+ z3
;
162 block
[1 + 4*i
]= z1
+ z2
;
163 block
[2 + 4*i
]= z1
- z2
;
164 block
[3 + 4*i
]= z0
- z3
;
167 for (i
=0; i
< 4; i
++) {
168 const int z0
= 13*(block
[i
+ 4*0] + block
[i
+ 4*2]);
169 const int z1
= 13*(block
[i
+ 4*0] - block
[i
+ 4*2]);
170 const int z2
= 7* block
[i
+ 4*1] - 17*block
[i
+ 4*3];
171 const int z3
= 17* block
[i
+ 4*1] + 7*block
[i
+ 4*3];
172 const int rr
= (dc
+ 0x80000);
174 dst
[i
+ stride
*0]= cm
[ dst
[i
+ stride
*0] + (((z0
+ z3
)*qmul
+ rr
) >> 20) ];
175 dst
[i
+ stride
*1]= cm
[ dst
[i
+ stride
*1] + (((z1
+ z2
)*qmul
+ rr
) >> 20) ];
176 dst
[i
+ stride
*2]= cm
[ dst
[i
+ stride
*2] + (((z1
- z2
)*qmul
+ rr
) >> 20) ];
177 dst
[i
+ stride
*3]= cm
[ dst
[i
+ stride
*3] + (((z0
- z3
)*qmul
+ rr
) >> 20) ];
181 static void pred4x4_down_left_svq3_c(uint8_t *src
, uint8_t *topright
, int stride
){
184 const __attribute__((unused
)) int unu0
= t0
;
185 const __attribute__((unused
)) int unu1
= l0
;
187 src
[0+0*stride
]=(l1
+ t1
)>>1;
189 src
[0+1*stride
]=(l2
+ t2
)>>1;
202 src
[3+3*stride
]=(l3
+ t3
)>>1;
205 static void pred16x16_plane_svq3_c(uint8_t *src
, int stride
){
206 pred16x16_plane_compat_c(src
, stride
, 1);
209 static inline int svq3_decode_block (GetBitContext
*gb
, DCTELEM
*block
,
210 int index
, const int type
) {
212 static const uint8_t *const scan_patterns
[4] =
213 { luma_dc_zigzag_scan
, zigzag_scan
, svq3_scan
, chroma_dc_scan
};
215 int run
, level
, sign
, vlc
, limit
;
216 const int intra
= (3 * type
) >> 2;
217 const uint8_t *const scan
= scan_patterns
[type
];
219 for (limit
=(16 >> intra
); index
< 16; index
=limit
, limit
+=8) {
220 for (; (vlc
= svq3_get_ue_golomb (gb
)) != 0; index
++) {
222 if (vlc
== INVALID_VLC
)
225 sign
= (vlc
& 0x1) - 1;
226 vlc
= (vlc
+ 1) >> 1;
232 } else if (vlc
< 4) {
237 level
= ((vlc
+ 9) >> 2) - run
;
241 run
= svq3_dct_tables
[intra
][vlc
].run
;
242 level
= svq3_dct_tables
[intra
][vlc
].level
;
245 level
= (vlc
>> 3) + ((run
== 0) ? 8 : ((run
< 2) ? 2 : ((run
< 5) ? 0 : -1)));
248 level
= (vlc
>> 4) + ((run
== 0) ? 4 : ((run
< 3) ? 2 : ((run
< 10) ? 1 : 0)));
252 if ((index
+= run
) >= limit
)
255 block
[scan
[index
]] = (level
^ sign
) - sign
;
266 static inline void svq3_mc_dir_part (MpegEncContext
*s
,
267 int x
, int y
, int width
, int height
,
268 int mx
, int my
, int dxy
,
269 int thirdpel
, int dir
, int avg
) {
271 const Picture
*pic
= (dir
== 0) ? &s
->last_picture
: &s
->next_picture
;
274 int blocksize
= 2 - (width
>>3); //16->0, 8->1, 4->2
279 if (mx
< 0 || mx
>= (s
->h_edge_pos
- width
- 1) ||
280 my
< 0 || my
>= (s
->v_edge_pos
- height
- 1)) {
282 if ((s
->flags
& CODEC_FLAG_EMU_EDGE
)) {
286 mx
= clip (mx
, -16, (s
->h_edge_pos
- width
+ 15));
287 my
= clip (my
, -16, (s
->v_edge_pos
- height
+ 15));
290 /* form component predictions */
291 dest
= s
->current_picture
.data
[0] + x
+ y
*s
->linesize
;
292 src
= pic
->data
[0] + mx
+ my
*s
->linesize
;
295 ff_emulated_edge_mc (s
->edge_emu_buffer
, src
, s
->linesize
, (width
+ 1), (height
+ 1),
296 mx
, my
, s
->h_edge_pos
, s
->v_edge_pos
);
297 src
= s
->edge_emu_buffer
;
300 (avg
? s
->dsp
.avg_tpel_pixels_tab
: s
->dsp
.put_tpel_pixels_tab
)[dxy
](dest
, src
, s
->linesize
, width
, height
);
302 (avg
? s
->dsp
.avg_pixels_tab
: s
->dsp
.put_pixels_tab
)[blocksize
][dxy
](dest
, src
, s
->linesize
, height
);
304 if (!(s
->flags
& CODEC_FLAG_GRAY
)) {
305 mx
= (mx
+ (mx
< (int) x
)) >> 1;
306 my
= (my
+ (my
< (int) y
)) >> 1;
307 width
= (width
>> 1);
308 height
= (height
>> 1);
311 for (i
=1; i
< 3; i
++) {
312 dest
= s
->current_picture
.data
[i
] + (x
>> 1) + (y
>> 1)*s
->uvlinesize
;
313 src
= pic
->data
[i
] + mx
+ my
*s
->uvlinesize
;
316 ff_emulated_edge_mc (s
->edge_emu_buffer
, src
, s
->uvlinesize
, (width
+ 1), (height
+ 1),
317 mx
, my
, (s
->h_edge_pos
>> 1), (s
->v_edge_pos
>> 1));
318 src
= s
->edge_emu_buffer
;
321 (avg
? s
->dsp
.avg_tpel_pixels_tab
: s
->dsp
.put_tpel_pixels_tab
)[dxy
](dest
, src
, s
->uvlinesize
, width
, height
);
323 (avg
? s
->dsp
.avg_pixels_tab
: s
->dsp
.put_pixels_tab
)[blocksize
][dxy
](dest
, src
, s
->uvlinesize
, height
);
328 static inline int svq3_mc_dir (H264Context
*h
, int size
, int mode
, int dir
, int avg
) {
330 int i
, j
, k
, mx
, my
, dx
, dy
, x
, y
;
331 MpegEncContext
*const s
= (MpegEncContext
*) h
;
332 const int part_width
= ((size
& 5) == 4) ? 4 : 16 >> (size
& 1);
333 const int part_height
= 16 >> ((unsigned) (size
+ 1) / 3);
334 const int extra_width
= (mode
== PREDICT_MODE
) ? -16*6 : 0;
335 const int h_edge_pos
= 6*(s
->h_edge_pos
- part_width
) - extra_width
;
336 const int v_edge_pos
= 6*(s
->v_edge_pos
- part_height
) - extra_width
;
338 for (i
=0; i
< 16; i
+=part_height
) {
339 for (j
=0; j
< 16; j
+=part_width
) {
340 const int b_xy
= (4*s
->mb_x
+(j
>>2)) + (4*s
->mb_y
+(i
>>2))*h
->b_stride
;
344 k
= ((j
>>2)&1) + ((i
>>1)&2) + ((j
>>1)&4) + (i
&8);
346 if (mode
!= PREDICT_MODE
) {
347 pred_motion (h
, k
, (part_width
>> 2), dir
, 1, &mx
, &my
);
349 mx
= s
->next_picture
.motion_val
[0][b_xy
][0]<<1;
350 my
= s
->next_picture
.motion_val
[0][b_xy
][1]<<1;
353 mx
= ((mx
* h
->frame_num_offset
) / h
->prev_frame_num_offset
+ 1)>>1;
354 my
= ((my
* h
->frame_num_offset
) / h
->prev_frame_num_offset
+ 1)>>1;
356 mx
= ((mx
* (h
->frame_num_offset
- h
->prev_frame_num_offset
)) / h
->prev_frame_num_offset
+ 1)>>1;
357 my
= ((my
* (h
->frame_num_offset
- h
->prev_frame_num_offset
)) / h
->prev_frame_num_offset
+ 1)>>1;
361 /* clip motion vector prediction to frame border */
362 mx
= clip (mx
, extra_width
- 6*x
, h_edge_pos
- 6*x
);
363 my
= clip (my
, extra_width
- 6*y
, v_edge_pos
- 6*y
);
365 /* get (optional) motion vector differential */
366 if (mode
== PREDICT_MODE
) {
369 dy
= svq3_get_se_golomb (&s
->gb
);
370 dx
= svq3_get_se_golomb (&s
->gb
);
372 if (dx
== INVALID_VLC
|| dy
== INVALID_VLC
) {
373 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "invalid MV vlc\n");
378 /* compute motion vector */
379 if (mode
== THIRDPEL_MODE
) {
381 mx
= ((mx
+ 1)>>1) + dx
;
382 my
= ((my
+ 1)>>1) + dy
;
383 fx
= ((unsigned)(mx
+ 0x3000))/3 - 0x1000;
384 fy
= ((unsigned)(my
+ 0x3000))/3 - 0x1000;
385 dxy
= (mx
- 3*fx
) + 4*(my
- 3*fy
);
387 svq3_mc_dir_part (s
, x
, y
, part_width
, part_height
, fx
, fy
, dxy
, 1, dir
, avg
);
390 } else if (mode
== HALFPEL_MODE
|| mode
== PREDICT_MODE
) {
391 mx
= ((unsigned)(mx
+ 1 + 0x3000))/3 + dx
- 0x1000;
392 my
= ((unsigned)(my
+ 1 + 0x3000))/3 + dy
- 0x1000;
393 dxy
= (mx
&1) + 2*(my
&1);
395 svq3_mc_dir_part (s
, x
, y
, part_width
, part_height
, mx
>>1, my
>>1, dxy
, 0, dir
, avg
);
399 mx
= ((unsigned)(mx
+ 3 + 0x6000))/6 + dx
- 0x1000;
400 my
= ((unsigned)(my
+ 3 + 0x6000))/6 + dy
- 0x1000;
402 svq3_mc_dir_part (s
, x
, y
, part_width
, part_height
, mx
, my
, 0, 0, dir
, avg
);
407 /* update mv_cache */
408 if (mode
!= PREDICT_MODE
) {
409 int32_t mv
= pack16to32(mx
,my
);
411 if (part_height
== 8 && i
< 8) {
412 *(int32_t *) h
->mv_cache
[dir
][scan8
[k
] + 1*8] = mv
;
414 if (part_width
== 8 && j
< 8) {
415 *(int32_t *) h
->mv_cache
[dir
][scan8
[k
] + 1 + 1*8] = mv
;
418 if (part_width
== 8 && j
< 8) {
419 *(int32_t *) h
->mv_cache
[dir
][scan8
[k
] + 1] = mv
;
421 if (part_width
== 4 || part_height
== 4) {
422 *(int32_t *) h
->mv_cache
[dir
][scan8
[k
]] = mv
;
426 /* write back motion vectors */
427 fill_rectangle(s
->current_picture
.motion_val
[dir
][b_xy
], part_width
>>2, part_height
>>2, h
->b_stride
, pack16to32(mx
,my
), 4);
434 static int svq3_decode_mb (H264Context
*h
, unsigned int mb_type
) {
435 int i
, j
, k
, m
, dir
, mode
;
439 MpegEncContext
*const s
= (MpegEncContext
*) h
;
440 const int mb_xy
= s
->mb_x
+ s
->mb_y
*s
->mb_stride
;
441 const int b_xy
= 4*s
->mb_x
+ 4*s
->mb_y
*h
->b_stride
;
443 h
->top_samples_available
= (s
->mb_y
== 0) ? 0x33FF : 0xFFFF;
444 h
->left_samples_available
= (s
->mb_x
== 0) ? 0x5F5F : 0xFFFF;
445 h
->topright_samples_available
= 0xFFFF;
447 if (mb_type
== 0) { /* SKIP */
448 if (s
->pict_type
== P_TYPE
|| s
->next_picture
.mb_type
[mb_xy
] == -1) {
449 svq3_mc_dir_part (s
, 16*s
->mb_x
, 16*s
->mb_y
, 16, 16, 0, 0, 0, 0, 0, 0);
451 if (s
->pict_type
== B_TYPE
) {
452 svq3_mc_dir_part (s
, 16*s
->mb_x
, 16*s
->mb_y
, 16, 16, 0, 0, 0, 0, 1, 1);
455 mb_type
= MB_TYPE_SKIP
;
457 mb_type
= FFMIN(s
->next_picture
.mb_type
[mb_xy
], 6);
458 if(svq3_mc_dir (h
, mb_type
, PREDICT_MODE
, 0, 0) < 0)
460 if(svq3_mc_dir (h
, mb_type
, PREDICT_MODE
, 1, 1) < 0)
463 mb_type
= MB_TYPE_16x16
;
465 } else if (mb_type
< 8) { /* INTER */
466 if (h
->thirdpel_flag
&& h
->halfpel_flag
== !get_bits (&s
->gb
, 1)) {
467 mode
= THIRDPEL_MODE
;
468 } else if (h
->halfpel_flag
&& h
->thirdpel_flag
== !get_bits (&s
->gb
, 1)) {
475 /* note ref_cache should contain here:
484 for (m
=0; m
< 2; m
++) {
485 if (s
->mb_x
> 0 && h
->intra4x4_pred_mode
[mb_xy
- 1][0] != -1) {
486 for (i
=0; i
< 4; i
++) {
487 *(uint32_t *) h
->mv_cache
[m
][scan8
[0] - 1 + i
*8] = *(uint32_t *) s
->current_picture
.motion_val
[m
][b_xy
- 1 + i
*h
->b_stride
];
490 for (i
=0; i
< 4; i
++) {
491 *(uint32_t *) h
->mv_cache
[m
][scan8
[0] - 1 + i
*8] = 0;
495 memcpy (h
->mv_cache
[m
][scan8
[0] - 1*8], s
->current_picture
.motion_val
[m
][b_xy
- h
->b_stride
], 4*2*sizeof(int16_t));
496 memset (&h
->ref_cache
[m
][scan8
[0] - 1*8], (h
->intra4x4_pred_mode
[mb_xy
- s
->mb_stride
][4] == -1) ? PART_NOT_AVAILABLE
: 1, 4);
498 if (s
->mb_x
< (s
->mb_width
- 1)) {
499 *(uint32_t *) h
->mv_cache
[m
][scan8
[0] + 4 - 1*8] = *(uint32_t *) s
->current_picture
.motion_val
[m
][b_xy
- h
->b_stride
+ 4];
500 h
->ref_cache
[m
][scan8
[0] + 4 - 1*8] =
501 (h
->intra4x4_pred_mode
[mb_xy
- s
->mb_stride
+ 1][0] == -1 ||
502 h
->intra4x4_pred_mode
[mb_xy
- s
->mb_stride
][4] == -1) ? PART_NOT_AVAILABLE
: 1;
504 h
->ref_cache
[m
][scan8
[0] + 4 - 1*8] = PART_NOT_AVAILABLE
;
506 *(uint32_t *) h
->mv_cache
[m
][scan8
[0] - 1 - 1*8] = *(uint32_t *) s
->current_picture
.motion_val
[m
][b_xy
- h
->b_stride
- 1];
507 h
->ref_cache
[m
][scan8
[0] - 1 - 1*8] = (h
->intra4x4_pred_mode
[mb_xy
- s
->mb_stride
- 1][3] == -1) ? PART_NOT_AVAILABLE
: 1;
509 h
->ref_cache
[m
][scan8
[0] - 1 - 1*8] = PART_NOT_AVAILABLE
;
511 memset (&h
->ref_cache
[m
][scan8
[0] - 1*8 - 1], PART_NOT_AVAILABLE
, 8);
513 if (s
->pict_type
!= B_TYPE
)
517 /* decode motion vector(s) and form prediction(s) */
518 if (s
->pict_type
== P_TYPE
) {
519 if(svq3_mc_dir (h
, (mb_type
- 1), mode
, 0, 0) < 0)
521 } else { /* B_TYPE */
523 if(svq3_mc_dir (h
, 0, mode
, 0, 0) < 0)
526 for (i
=0; i
< 4; i
++) {
527 memset (s
->current_picture
.motion_val
[0][b_xy
+ i
*h
->b_stride
], 0, 4*2*sizeof(int16_t));
531 if(svq3_mc_dir (h
, 0, mode
, 1, (mb_type
== 3)) < 0)
534 for (i
=0; i
< 4; i
++) {
535 memset (s
->current_picture
.motion_val
[1][b_xy
+ i
*h
->b_stride
], 0, 4*2*sizeof(int16_t));
540 mb_type
= MB_TYPE_16x16
;
541 } else if (mb_type
== 8 || mb_type
== 33) { /* INTRA4x4 */
542 memset (h
->intra4x4_pred_mode_cache
, -1, 8*5*sizeof(int8_t));
546 for (i
=0; i
< 4; i
++) {
547 h
->intra4x4_pred_mode_cache
[scan8
[0] - 1 + i
*8] = h
->intra4x4_pred_mode
[mb_xy
- 1][i
];
549 if (h
->intra4x4_pred_mode_cache
[scan8
[0] - 1] == -1) {
550 h
->left_samples_available
= 0x5F5F;
554 h
->intra4x4_pred_mode_cache
[4+8*0] = h
->intra4x4_pred_mode
[mb_xy
- s
->mb_stride
][4];
555 h
->intra4x4_pred_mode_cache
[5+8*0] = h
->intra4x4_pred_mode
[mb_xy
- s
->mb_stride
][5];
556 h
->intra4x4_pred_mode_cache
[6+8*0] = h
->intra4x4_pred_mode
[mb_xy
- s
->mb_stride
][6];
557 h
->intra4x4_pred_mode_cache
[7+8*0] = h
->intra4x4_pred_mode
[mb_xy
- s
->mb_stride
][3];
559 if (h
->intra4x4_pred_mode_cache
[4+8*0] == -1) {
560 h
->top_samples_available
= 0x33FF;
564 /* decode prediction codes for luma blocks */
565 for (i
=0; i
< 16; i
+=2) {
566 vlc
= svq3_get_ue_golomb (&s
->gb
);
569 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "luma prediction:%d\n", vlc
);
573 left
= &h
->intra4x4_pred_mode_cache
[scan8
[i
] - 1];
574 top
= &h
->intra4x4_pred_mode_cache
[scan8
[i
] - 8];
576 left
[1] = svq3_pred_1
[top
[0] + 1][left
[0] + 1][svq3_pred_0
[vlc
][0]];
577 left
[2] = svq3_pred_1
[top
[1] + 1][left
[1] + 1][svq3_pred_0
[vlc
][1]];
579 if (left
[1] == -1 || left
[2] == -1){
580 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "weird prediction\n");
584 } else { /* mb_type == 33, DC_128_PRED block type */
585 for (i
=0; i
< 4; i
++) {
586 memset (&h
->intra4x4_pred_mode_cache
[scan8
[0] + 8*i
], DC_PRED
, 4);
590 write_back_intra_pred_mode (h
);
593 check_intra4x4_pred_mode (h
);
595 h
->top_samples_available
= (s
->mb_y
== 0) ? 0x33FF : 0xFFFF;
596 h
->left_samples_available
= (s
->mb_x
== 0) ? 0x5F5F : 0xFFFF;
598 for (i
=0; i
< 4; i
++) {
599 memset (&h
->intra4x4_pred_mode_cache
[scan8
[0] + 8*i
], DC_128_PRED
, 4);
602 h
->top_samples_available
= 0x33FF;
603 h
->left_samples_available
= 0x5F5F;
606 mb_type
= MB_TYPE_INTRA4x4
;
607 } else { /* INTRA16x16 */
608 dir
= i_mb_type_info
[mb_type
- 8].pred_mode
;
609 dir
= (dir
>> 1) ^ 3*(dir
& 1) ^ 1;
611 if ((h
->intra16x16_pred_mode
= check_intra_pred_mode (h
, dir
)) == -1){
612 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "check_intra_pred_mode = -1\n");
616 cbp
= i_mb_type_info
[mb_type
- 8].cbp
;
617 mb_type
= MB_TYPE_INTRA16x16
;
620 if (!IS_INTER(mb_type
) && s
->pict_type
!= I_TYPE
) {
621 for (i
=0; i
< 4; i
++) {
622 memset (s
->current_picture
.motion_val
[0][b_xy
+ i
*h
->b_stride
], 0, 4*2*sizeof(int16_t));
624 if (s
->pict_type
== B_TYPE
) {
625 for (i
=0; i
< 4; i
++) {
626 memset (s
->current_picture
.motion_val
[1][b_xy
+ i
*h
->b_stride
], 0, 4*2*sizeof(int16_t));
630 if (!IS_INTRA4x4(mb_type
)) {
631 memset (h
->intra4x4_pred_mode
[mb_xy
], DC_PRED
, 8);
633 if (!IS_SKIP(mb_type
) || s
->pict_type
== B_TYPE
) {
634 memset (h
->non_zero_count_cache
+ 8, 0, 4*9*sizeof(uint8_t));
635 s
->dsp
.clear_blocks(h
->mb
);
638 if (!IS_INTRA16x16(mb_type
) && (!IS_SKIP(mb_type
) || s
->pict_type
== B_TYPE
)) {
639 if ((vlc
= svq3_get_ue_golomb (&s
->gb
)) >= 48){
640 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "cbp_vlc=%d\n", vlc
);
644 cbp
= IS_INTRA(mb_type
) ? golomb_to_intra4x4_cbp
[vlc
] : golomb_to_inter_cbp
[vlc
];
646 if (IS_INTRA16x16(mb_type
) || (s
->pict_type
!= I_TYPE
&& s
->adaptive_quant
&& cbp
)) {
647 s
->qscale
+= svq3_get_se_golomb (&s
->gb
);
650 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "qscale:%d\n", s
->qscale
);
654 if (IS_INTRA16x16(mb_type
)) {
655 if (svq3_decode_block (&s
->gb
, h
->mb
, 0, 0)){
656 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "error while decoding intra luma dc\n");
662 const int index
= IS_INTRA16x16(mb_type
) ? 1 : 0;
663 const int type
= ((s
->qscale
< 24 && IS_INTRA4x4(mb_type
)) ? 2 : 1);
665 for (i
=0; i
< 4; i
++) {
666 if ((cbp
& (1 << i
))) {
667 for (j
=0; j
< 4; j
++) {
668 k
= index
? ((j
&1) + 2*(i
&1) + 2*(j
&2) + 4*(i
&2)) : (4*i
+ j
);
669 h
->non_zero_count_cache
[ scan8
[k
] ] = 1;
671 if (svq3_decode_block (&s
->gb
, &h
->mb
[16*k
], index
, type
)){
672 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "error while decoding block\n");
680 for (i
=0; i
< 2; ++i
) {
681 if (svq3_decode_block (&s
->gb
, &h
->mb
[16*(16 + 4*i
)], 0, 3)){
682 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "error while decoding chroma dc block\n");
688 for (i
=0; i
< 8; i
++) {
689 h
->non_zero_count_cache
[ scan8
[16+i
] ] = 1;
691 if (svq3_decode_block (&s
->gb
, &h
->mb
[16*(16 + i
)], 1, 1)){
692 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "error while decoding chroma ac block\n");
700 s
->current_picture
.mb_type
[mb_xy
] = mb_type
;
702 if (IS_INTRA(mb_type
)) {
703 h
->chroma_pred_mode
= check_intra_pred_mode (h
, DC_PRED8x8
);
709 static int svq3_decode_slice_header (H264Context
*h
) {
710 MpegEncContext
*const s
= (MpegEncContext
*) h
;
711 const int mb_xy
= s
->mb_x
+ s
->mb_y
*s
->mb_stride
;
714 header
= get_bits (&s
->gb
, 8);
716 if (((header
& 0x9F) != 1 && (header
& 0x9F) != 2) || (header
& 0x60) == 0) {
718 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "unsupported slice header (%02X)\n", header
);
721 int length
= (header
>> 5) & 3;
723 h
->next_slice_index
= get_bits_count(&s
->gb
) + 8*show_bits (&s
->gb
, 8*length
) + 8*length
;
725 if (h
->next_slice_index
> s
->gb
.size_in_bits
){
726 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "slice after bitstream end\n");
730 s
->gb
.size_in_bits
= h
->next_slice_index
- 8*(length
- 1);
731 skip_bits(&s
->gb
, 8);
734 memcpy ((uint8_t *) &s
->gb
.buffer
[get_bits_count(&s
->gb
) >> 3],
735 &s
->gb
.buffer
[s
->gb
.size_in_bits
>> 3], (length
- 1));
739 if ((i
= svq3_get_ue_golomb (&s
->gb
)) == INVALID_VLC
|| i
>= 3){
740 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "illegal slice type %d \n", i
);
744 h
->slice_type
= golomb_to_pict_type
[i
];
746 if ((header
& 0x9F) == 2) {
747 i
= (s
->mb_num
< 64) ? 6 : (1 + av_log2 (s
->mb_num
- 1));
748 s
->mb_skip_run
= get_bits (&s
->gb
, i
) - (s
->mb_x
+ (s
->mb_y
* s
->mb_width
));
754 h
->slice_num
= get_bits (&s
->gb
, 8);
755 s
->qscale
= get_bits (&s
->gb
, 5);
756 s
->adaptive_quant
= get_bits1 (&s
->gb
);
761 if (h
->unknown_svq3_flag
) {
766 get_bits (&s
->gb
, 2);
768 while (get_bits1 (&s
->gb
)) {
769 get_bits (&s
->gb
, 8);
772 /* reset intra predictors and invalidate motion vector references */
774 memset (h
->intra4x4_pred_mode
[mb_xy
- 1], -1, 4*sizeof(int8_t));
775 memset (h
->intra4x4_pred_mode
[mb_xy
- s
->mb_x
], -1, 8*sizeof(int8_t)*s
->mb_x
);
778 memset (h
->intra4x4_pred_mode
[mb_xy
- s
->mb_stride
], -1, 8*sizeof(int8_t)*(s
->mb_width
- s
->mb_x
));
781 h
->intra4x4_pred_mode
[mb_xy
- s
->mb_stride
- 1][3] = -1;
788 static int svq3_decode_frame (AVCodecContext
*avctx
,
789 void *data
, int *data_size
,
790 uint8_t *buf
, int buf_size
) {
791 MpegEncContext
*const s
= avctx
->priv_data
;
792 H264Context
*const h
= avctx
->priv_data
;
794 unsigned char *extradata
;
797 s
->flags
= avctx
->flags
;
798 s
->flags2
= avctx
->flags2
;
799 s
->unrestricted_mv
= 1;
801 if (!s
->context_initialized
) {
802 s
->width
= avctx
->width
;
803 s
->height
= avctx
->height
;
804 h
->pred4x4
[DIAG_DOWN_LEFT_PRED
] = pred4x4_down_left_svq3_c
;
805 h
->pred16x16
[PLANE_PRED8x8
] = pred16x16_plane_svq3_c
;
807 h
->thirdpel_flag
= 1;
808 h
->unknown_svq3_flag
= 0;
811 if (MPV_common_init (s
) < 0)
814 h
->b_stride
= 4*s
->mb_width
;
818 /* prowl for the "SEQH" marker in the extradata */
819 extradata
= (unsigned char *)avctx
->extradata
;
820 for (m
= 0; m
< avctx
->extradata_size
; m
++) {
821 if (!memcmp (extradata
, "SEQH", 4))
826 /* if a match was found, parse the extra data */
827 if (!memcmp (extradata
, "SEQH", 4)) {
831 size
= BE_32(&extradata
[4]);
832 init_get_bits (&gb
, extradata
+ 8, size
);
834 /* 'frame size code' and optional 'width, height' */
835 if (get_bits (&gb
, 3) == 7) {
840 h
->halfpel_flag
= get_bits1 (&gb
);
841 h
->thirdpel_flag
= get_bits1 (&gb
);
849 s
->low_delay
= get_bits1 (&gb
);
854 while (get_bits1 (&gb
)) {
858 h
->unknown_svq3_flag
= get_bits1 (&gb
);
859 avctx
->has_b_frames
= !s
->low_delay
;
863 /* special case for last picture */
865 if (s
->next_picture_ptr
&& !s
->low_delay
) {
866 *(AVFrame
*) data
= *(AVFrame
*) &s
->next_picture
;
867 *data_size
= sizeof(AVFrame
);
872 init_get_bits (&s
->gb
, buf
, 8*buf_size
);
874 s
->mb_x
= s
->mb_y
= 0;
876 if (svq3_decode_slice_header (h
))
879 s
->pict_type
= h
->slice_type
;
880 s
->picture_number
= h
->slice_num
;
882 if(avctx
->debug
&FF_DEBUG_PICT_INFO
){
883 av_log(h
->s
.avctx
, AV_LOG_DEBUG
, "%c hpel:%d, tpel:%d aqp:%d qp:%d\n",
884 av_get_pict_type_char(s
->pict_type
), h
->halfpel_flag
, h
->thirdpel_flag
,
885 s
->adaptive_quant
, s
->qscale
889 /* for hurry_up==5 */
890 s
->current_picture
.pict_type
= s
->pict_type
;
891 s
->current_picture
.key_frame
= (s
->pict_type
== I_TYPE
);
893 /* skip b frames if we dont have reference frames */
894 if (s
->last_picture_ptr
== NULL
&& s
->pict_type
== B_TYPE
) return 0;
895 /* skip b frames if we are in a hurry */
896 if (avctx
->hurry_up
&& s
->pict_type
== B_TYPE
) return 0;
897 /* skip everything if we are in a hurry >= 5 */
898 if (avctx
->hurry_up
>= 5) return 0;
899 if( (avctx
->skip_frame
>= AVDISCARD_NONREF
&& s
->pict_type
==B_TYPE
)
900 ||(avctx
->skip_frame
>= AVDISCARD_NONKEY
&& s
->pict_type
!=I_TYPE
)
901 || avctx
->skip_frame
>= AVDISCARD_ALL
)
904 if (s
->next_p_frame_damaged
) {
905 if (s
->pict_type
== B_TYPE
)
908 s
->next_p_frame_damaged
= 0;
913 if (s
->pict_type
== B_TYPE
) {
914 h
->frame_num_offset
= (h
->slice_num
- h
->prev_frame_num
);
916 if (h
->frame_num_offset
< 0) {
917 h
->frame_num_offset
+= 256;
919 if (h
->frame_num_offset
== 0 || h
->frame_num_offset
>= h
->prev_frame_num_offset
) {
920 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "error in B-frame picture id\n");
924 h
->prev_frame_num
= h
->frame_num
;
925 h
->frame_num
= h
->slice_num
;
926 h
->prev_frame_num_offset
= (h
->frame_num
- h
->prev_frame_num
);
928 if (h
->prev_frame_num_offset
< 0) {
929 h
->prev_frame_num_offset
+= 256;
938 h
->ref_cache
[m
][scan8
[0] + 8*i
+ j
]= 1;
939 h
->ref_cache
[m
][scan8
[0] + 8*i
+ j
]= PART_NOT_AVAILABLE
;
943 for (s
->mb_y
=0; s
->mb_y
< s
->mb_height
; s
->mb_y
++) {
944 for (s
->mb_x
=0; s
->mb_x
< s
->mb_width
; s
->mb_x
++) {
946 if ( (get_bits_count(&s
->gb
) + 7) >= s
->gb
.size_in_bits
&&
947 ((get_bits_count(&s
->gb
) & 7) == 0 || show_bits (&s
->gb
, (-get_bits_count(&s
->gb
) & 7)) == 0)) {
949 skip_bits(&s
->gb
, h
->next_slice_index
- get_bits_count(&s
->gb
));
950 s
->gb
.size_in_bits
= 8*buf_size
;
952 if (svq3_decode_slice_header (h
))
955 /* TODO: support s->mb_skip_run */
958 mb_type
= svq3_get_ue_golomb (&s
->gb
);
960 if (s
->pict_type
== I_TYPE
) {
962 } else if (s
->pict_type
== B_TYPE
&& mb_type
>= 4) {
965 if (mb_type
> 33 || svq3_decode_mb (h
, mb_type
)) {
966 av_log(h
->s
.avctx
, AV_LOG_ERROR
, "error while decoding MB %d %d\n", s
->mb_x
, s
->mb_y
);
974 if (s
->pict_type
!= B_TYPE
&& !s
->low_delay
) {
975 s
->current_picture
.mb_type
[s
->mb_x
+ s
->mb_y
*s
->mb_stride
] =
976 (s
->pict_type
== P_TYPE
&& mb_type
< 8) ? (mb_type
- 1) : -1;
980 ff_draw_horiz_band(s
, 16*s
->mb_y
, 16);
985 if (s
->pict_type
== B_TYPE
|| s
->low_delay
) {
986 *(AVFrame
*) data
= *(AVFrame
*) &s
->current_picture
;
988 *(AVFrame
*) data
= *(AVFrame
*) &s
->last_picture
;
991 avctx
->frame_number
= s
->picture_number
- 1;
993 /* dont output the last pic after seeking */
994 if (s
->last_picture_ptr
|| s
->low_delay
) {
995 *data_size
= sizeof(AVFrame
);
1002 AVCodec svq3_decoder
= {
1006 sizeof(H264Context
),
1011 CODEC_CAP_DRAW_HORIZ_BAND
| CODEC_CAP_DR1
| CODEC_CAP_DELAY
,