r125: This commit was manufactured by cvs2svn to create tag 'r1_1_7-last'.
[cinelerra_cv/mob.git] / hvirtual / toolame-02l / fft.c
blob87a89c84986590b8abfce61d1b74298e974a24be
1 /*
2 ** FFT and FHT routines
3 ** Copyright 1988, 1993; Ron Mayer
4 **
5 ** fht(fz,n);
6 ** Does a hartley transform of "n" points in the array "fz".
7 **
8 ** NOTE: This routine uses at least 2 patented algorithms, and may be
9 ** under the restrictions of a bunch of different organizations.
10 ** Although I wrote it completely myself; it is kind of a derivative
11 ** of a routine I once authored and released under the GPL, so it
12 ** may fall under the free software foundation's restrictions;
13 ** it was worked on as a Stanford Univ project, so they claim
14 ** some rights to it; it was further optimized at work here, so
15 ** I think this company claims parts of it. The patents are
16 ** held by R. Bracewell (the FHT algorithm) and O. Buneman (the
17 ** trig generator), both at Stanford Univ.
18 ** If it were up to me, I'd say go do whatever you want with it;
19 ** but it would be polite to give credit to the following people
20 ** if you use this anywhere:
21 ** Euler - probable inventor of the fourier transform.
22 ** Gauss - probable inventor of the FFT.
23 ** Hartley - probable inventor of the hartley transform.
24 ** Buneman - for a really cool trig generator
25 ** Mayer(me) - for authoring this particular version and
26 ** including all the optimizations in one package.
27 ** Thanks,
28 ** Ron Mayer; mayer@acuson.com
31 #include <stdio.h>
32 #include <math.h>
33 #include "common.h"
34 #include "fft.h"
35 #define SQRT2 1.4142135623730951454746218587388284504414
38 static FLOAT costab[20] = {
39 .00000000000000000000000000000000000000000000000000,
40 .70710678118654752440084436210484903928483593768847,
41 .92387953251128675612818318939678828682241662586364,
42 .98078528040323044912618223613423903697393373089333,
43 .99518472667219688624483695310947992157547486872985,
44 .99879545620517239271477160475910069444320361470461,
45 .99969881869620422011576564966617219685006108125772,
46 .99992470183914454092164649119638322435060646880221,
47 .99998117528260114265699043772856771617391725094433,
48 .99999529380957617151158012570011989955298763362218,
49 .99999882345170190992902571017152601904826792288976,
50 .99999970586288221916022821773876567711626389934930,
51 .99999992646571785114473148070738785694820115568892,
52 .99999998161642929380834691540290971450507605124278,
53 .99999999540410731289097193313960614895889430318945,
54 .99999999885102682756267330779455410840053741619428
56 static FLOAT sintab[20] = {
57 1.0000000000000000000000000000000000000000000000000,
58 .70710678118654752440084436210484903928483593768846,
59 .38268343236508977172845998403039886676134456248561,
60 .19509032201612826784828486847702224092769161775195,
61 .09801714032956060199419556388864184586113667316749,
62 .04906767432741801425495497694268265831474536302574,
63 .02454122852291228803173452945928292506546611923944,
64 .01227153828571992607940826195100321214037231959176,
65 .00613588464915447535964023459037258091705788631738,
66 .00306795676296597627014536549091984251894461021344,
67 .00153398018628476561230369715026407907995486457522,
68 .00076699031874270452693856835794857664314091945205,
69 .00038349518757139558907246168118138126339502603495,
70 .00019174759731070330743990956198900093346887403385,
71 .00009587379909597734587051721097647635118706561284,
72 .00004793689960306688454900399049465887274686668768
75 /* This is a simplified version for n an even power of 2 */
76 /* MFC: In the case of LayerII encoding, n==1024 always. */
78 static void fht (FLOAT * fz)
80 int i, k, k1, k2, k3, k4, kx;
81 FLOAT *fi, *fn, *gi;
82 FLOAT t_c, t_s;
84 FLOAT a;
85 static const struct {
86 unsigned short k1, k2;
87 } k1k2tab[8 * 62] = {
89 0x020, 0x010}
90 , {
91 0x040, 0x008}
92 , {
93 0x050, 0x028}
94 , {
95 0x060, 0x018}
96 , {
97 0x068, 0x058}
98 , {
99 0x070, 0x038}
101 0x080, 0x004}
103 0x088, 0x044}
105 0x090, 0x024}
107 0x098, 0x064}
109 0x0a0, 0x014}
111 0x0a4, 0x094}
113 0x0a8, 0x054}
115 0x0b0, 0x034}
117 0x0b8, 0x074}
119 0x0c0, 0x00c}
121 0x0c4, 0x08c}
123 0x0c8, 0x04c}
125 0x0d0, 0x02c}
127 0x0d4, 0x0ac}
129 0x0d8, 0x06c}
131 0x0e0, 0x01c}
133 0x0e4, 0x09c}
135 0x0e8, 0x05c}
137 0x0ec, 0x0dc}
139 0x0f0, 0x03c}
141 0x0f4, 0x0bc}
143 0x0f8, 0x07c}
145 0x100, 0x002}
147 0x104, 0x082}
149 0x108, 0x042}
151 0x10c, 0x0c2}
153 0x110, 0x022}
155 0x114, 0x0a2}
157 0x118, 0x062}
159 0x11c, 0x0e2}
161 0x120, 0x012}
163 0x122, 0x112}
165 0x124, 0x092}
167 0x128, 0x052}
169 0x12c, 0x0d2}
171 0x130, 0x032}
173 0x134, 0x0b2}
175 0x138, 0x072}
177 0x13c, 0x0f2}
179 0x140, 0x00a}
181 0x142, 0x10a}
183 0x144, 0x08a}
185 0x148, 0x04a}
187 0x14c, 0x0ca}
189 0x150, 0x02a}
191 0x152, 0x12a}
193 0x154, 0x0aa}
195 0x158, 0x06a}
197 0x15c, 0x0ea}
199 0x160, 0x01a}
201 0x162, 0x11a}
203 0x164, 0x09a}
205 0x168, 0x05a}
207 0x16a, 0x15a}
209 0x16c, 0x0da}
211 0x170, 0x03a}
213 0x172, 0x13a}
215 0x174, 0x0ba}
217 0x178, 0x07a}
219 0x17c, 0x0fa}
221 0x180, 0x006}
223 0x182, 0x106}
225 0x184, 0x086}
227 0x188, 0x046}
229 0x18a, 0x146}
231 0x18c, 0x0c6}
233 0x190, 0x026}
235 0x192, 0x126}
237 0x194, 0x0a6}
239 0x198, 0x066}
241 0x19a, 0x166}
243 0x19c, 0x0e6}
245 0x1a0, 0x016}
247 0x1a2, 0x116}
249 0x1a4, 0x096}
251 0x1a6, 0x196}
253 0x1a8, 0x056}
255 0x1aa, 0x156}
257 0x1ac, 0x0d6}
259 0x1b0, 0x036}
261 0x1b2, 0x136}
263 0x1b4, 0x0b6}
265 0x1b8, 0x076}
267 0x1ba, 0x176}
269 0x1bc, 0x0f6}
271 0x1c0, 0x00e}
273 0x1c2, 0x10e}
275 0x1c4, 0x08e}
277 0x1c6, 0x18e}
279 0x1c8, 0x04e}
281 0x1ca, 0x14e}
283 0x1cc, 0x0ce}
285 0x1d0, 0x02e}
287 0x1d2, 0x12e}
289 0x1d4, 0x0ae}
291 0x1d6, 0x1ae}
293 0x1d8, 0x06e}
295 0x1da, 0x16e}
297 0x1dc, 0x0ee}
299 0x1e0, 0x01e}
301 0x1e2, 0x11e}
303 0x1e4, 0x09e}
305 0x1e6, 0x19e}
307 0x1e8, 0x05e}
309 0x1ea, 0x15e}
311 0x1ec, 0x0de}
313 0x1ee, 0x1de}
315 0x1f0, 0x03e}
317 0x1f2, 0x13e}
319 0x1f4, 0x0be}
321 0x1f6, 0x1be}
323 0x1f8, 0x07e}
325 0x1fa, 0x17e}
327 0x1fc, 0x0fe}
329 0x200, 0x001}
331 0x202, 0x101}
333 0x204, 0x081}
335 0x206, 0x181}
337 0x208, 0x041}
339 0x20a, 0x141}
341 0x20c, 0x0c1}
343 0x20e, 0x1c1}
345 0x210, 0x021}
347 0x212, 0x121}
349 0x214, 0x0a1}
351 0x216, 0x1a1}
353 0x218, 0x061}
355 0x21a, 0x161}
357 0x21c, 0x0e1}
359 0x21e, 0x1e1}
361 0x220, 0x011}
363 0x221, 0x211}
365 0x222, 0x111}
367 0x224, 0x091}
369 0x226, 0x191}
371 0x228, 0x051}
373 0x22a, 0x151}
375 0x22c, 0x0d1}
377 0x22e, 0x1d1}
379 0x230, 0x031}
381 0x232, 0x131}
383 0x234, 0x0b1}
385 0x236, 0x1b1}
387 0x238, 0x071}
389 0x23a, 0x171}
391 0x23c, 0x0f1}
393 0x23e, 0x1f1}
395 0x240, 0x009}
397 0x241, 0x209}
399 0x242, 0x109}
401 0x244, 0x089}
403 0x246, 0x189}
405 0x248, 0x049}
407 0x24a, 0x149}
409 0x24c, 0x0c9}
411 0x24e, 0x1c9}
413 0x250, 0x029}
415 0x251, 0x229}
417 0x252, 0x129}
419 0x254, 0x0a9}
421 0x256, 0x1a9}
423 0x258, 0x069}
425 0x25a, 0x169}
427 0x25c, 0x0e9}
429 0x25e, 0x1e9}
431 0x260, 0x019}
433 0x261, 0x219}
435 0x262, 0x119}
437 0x264, 0x099}
439 0x266, 0x199}
441 0x268, 0x059}
443 0x269, 0x259}
445 0x26a, 0x159}
447 0x26c, 0x0d9}
449 0x26e, 0x1d9}
451 0x270, 0x039}
453 0x271, 0x239}
455 0x272, 0x139}
457 0x274, 0x0b9}
459 0x276, 0x1b9}
461 0x278, 0x079}
463 0x27a, 0x179}
465 0x27c, 0x0f9}
467 0x27e, 0x1f9}
469 0x280, 0x005}
471 0x281, 0x205}
473 0x282, 0x105}
475 0x284, 0x085}
477 0x286, 0x185}
479 0x288, 0x045}
481 0x289, 0x245}
483 0x28a, 0x145}
485 0x28c, 0x0c5}
487 0x28e, 0x1c5}
489 0x290, 0x025}
491 0x291, 0x225}
493 0x292, 0x125}
495 0x294, 0x0a5}
497 0x296, 0x1a5}
499 0x298, 0x065}
501 0x299, 0x265}
503 0x29a, 0x165}
505 0x29c, 0x0e5}
507 0x29e, 0x1e5}
509 0x2a0, 0x015}
511 0x2a1, 0x215}
513 0x2a2, 0x115}
515 0x2a4, 0x095}
517 0x2a5, 0x295}
519 0x2a6, 0x195}
521 0x2a8, 0x055}
523 0x2a9, 0x255}
525 0x2aa, 0x155}
527 0x2ac, 0x0d5}
529 0x2ae, 0x1d5}
531 0x2b0, 0x035}
533 0x2b1, 0x235}
535 0x2b2, 0x135}
537 0x2b4, 0x0b5}
539 0x2b6, 0x1b5}
541 0x2b8, 0x075}
543 0x2b9, 0x275}
545 0x2ba, 0x175}
547 0x2bc, 0x0f5}
549 0x2be, 0x1f5}
551 0x2c0, 0x00d}
553 0x2c1, 0x20d}
555 0x2c2, 0x10d}
557 0x2c4, 0x08d}
559 0x2c5, 0x28d}
561 0x2c6, 0x18d}
563 0x2c8, 0x04d}
565 0x2c9, 0x24d}
567 0x2ca, 0x14d}
569 0x2cc, 0x0cd}
571 0x2ce, 0x1cd}
573 0x2d0, 0x02d}
575 0x2d1, 0x22d}
577 0x2d2, 0x12d}
579 0x2d4, 0x0ad}
581 0x2d5, 0x2ad}
583 0x2d6, 0x1ad}
585 0x2d8, 0x06d}
587 0x2d9, 0x26d}
589 0x2da, 0x16d}
591 0x2dc, 0x0ed}
593 0x2de, 0x1ed}
595 0x2e0, 0x01d}
597 0x2e1, 0x21d}
599 0x2e2, 0x11d}
601 0x2e4, 0x09d}
603 0x2e5, 0x29d}
605 0x2e6, 0x19d}
607 0x2e8, 0x05d}
609 0x2e9, 0x25d}
611 0x2ea, 0x15d}
613 0x2ec, 0x0dd}
615 0x2ed, 0x2dd}
617 0x2ee, 0x1dd}
619 0x2f0, 0x03d}
621 0x2f1, 0x23d}
623 0x2f2, 0x13d}
625 0x2f4, 0x0bd}
627 0x2f5, 0x2bd}
629 0x2f6, 0x1bd}
631 0x2f8, 0x07d}
633 0x2f9, 0x27d}
635 0x2fa, 0x17d}
637 0x2fc, 0x0fd}
639 0x2fe, 0x1fd}
641 0x300, 0x003}
643 0x301, 0x203}
645 0x302, 0x103}
647 0x304, 0x083}
649 0x305, 0x283}
651 0x306, 0x183}
653 0x308, 0x043}
655 0x309, 0x243}
657 0x30a, 0x143}
659 0x30c, 0x0c3}
661 0x30d, 0x2c3}
663 0x30e, 0x1c3}
665 0x310, 0x023}
667 0x311, 0x223}
669 0x312, 0x123}
671 0x314, 0x0a3}
673 0x315, 0x2a3}
675 0x316, 0x1a3}
677 0x318, 0x063}
679 0x319, 0x263}
681 0x31a, 0x163}
683 0x31c, 0x0e3}
685 0x31d, 0x2e3}
687 0x31e, 0x1e3}
689 0x320, 0x013}
691 0x321, 0x213}
693 0x322, 0x113}
695 0x323, 0x313}
697 0x324, 0x093}
699 0x325, 0x293}
701 0x326, 0x193}
703 0x328, 0x053}
705 0x329, 0x253}
707 0x32a, 0x153}
709 0x32c, 0x0d3}
711 0x32d, 0x2d3}
713 0x32e, 0x1d3}
715 0x330, 0x033}
717 0x331, 0x233}
719 0x332, 0x133}
721 0x334, 0x0b3}
723 0x335, 0x2b3}
725 0x336, 0x1b3}
727 0x338, 0x073}
729 0x339, 0x273}
731 0x33a, 0x173}
733 0x33c, 0x0f3}
735 0x33d, 0x2f3}
737 0x33e, 0x1f3}
739 0x340, 0x00b}
741 0x341, 0x20b}
743 0x342, 0x10b}
745 0x343, 0x30b}
747 0x344, 0x08b}
749 0x345, 0x28b}
751 0x346, 0x18b}
753 0x348, 0x04b}
755 0x349, 0x24b}
757 0x34a, 0x14b}
759 0x34c, 0x0cb}
761 0x34d, 0x2cb}
763 0x34e, 0x1cb}
765 0x350, 0x02b}
767 0x351, 0x22b}
769 0x352, 0x12b}
771 0x353, 0x32b}
773 0x354, 0x0ab}
775 0x355, 0x2ab}
777 0x356, 0x1ab}
779 0x358, 0x06b}
781 0x359, 0x26b}
783 0x35a, 0x16b}
785 0x35c, 0x0eb}
787 0x35d, 0x2eb}
789 0x35e, 0x1eb}
791 0x360, 0x01b}
793 0x361, 0x21b}
795 0x362, 0x11b}
797 0x363, 0x31b}
799 0x364, 0x09b}
801 0x365, 0x29b}
803 0x366, 0x19b}
805 0x368, 0x05b}
807 0x369, 0x25b}
809 0x36a, 0x15b}
811 0x36b, 0x35b}
813 0x36c, 0x0db}
815 0x36d, 0x2db}
817 0x36e, 0x1db}
819 0x370, 0x03b}
821 0x371, 0x23b}
823 0x372, 0x13b}
825 0x373, 0x33b}
827 0x374, 0x0bb}
829 0x375, 0x2bb}
831 0x376, 0x1bb}
833 0x378, 0x07b}
835 0x379, 0x27b}
837 0x37a, 0x17b}
839 0x37c, 0x0fb}
841 0x37d, 0x2fb}
843 0x37e, 0x1fb}
845 0x380, 0x007}
847 0x381, 0x207}
849 0x382, 0x107}
851 0x383, 0x307}
853 0x384, 0x087}
855 0x385, 0x287}
857 0x386, 0x187}
859 0x388, 0x047}
861 0x389, 0x247}
863 0x38a, 0x147}
865 0x38b, 0x347}
867 0x38c, 0x0c7}
869 0x38d, 0x2c7}
871 0x38e, 0x1c7}
873 0x390, 0x027}
875 0x391, 0x227}
877 0x392, 0x127}
879 0x393, 0x327}
881 0x394, 0x0a7}
883 0x395, 0x2a7}
885 0x396, 0x1a7}
887 0x398, 0x067}
889 0x399, 0x267}
891 0x39a, 0x167}
893 0x39b, 0x367}
895 0x39c, 0x0e7}
897 0x39d, 0x2e7}
899 0x39e, 0x1e7}
901 0x3a0, 0x017}
903 0x3a1, 0x217}
905 0x3a2, 0x117}
907 0x3a3, 0x317}
909 0x3a4, 0x097}
911 0x3a5, 0x297}
913 0x3a6, 0x197}
915 0x3a7, 0x397}
917 0x3a8, 0x057}
919 0x3a9, 0x257}
921 0x3aa, 0x157}
923 0x3ab, 0x357}
925 0x3ac, 0x0d7}
927 0x3ad, 0x2d7}
929 0x3ae, 0x1d7}
931 0x3b0, 0x037}
933 0x3b1, 0x237}
935 0x3b2, 0x137}
937 0x3b3, 0x337}
939 0x3b4, 0x0b7}
941 0x3b5, 0x2b7}
943 0x3b6, 0x1b7}
945 0x3b8, 0x077}
947 0x3b9, 0x277}
949 0x3ba, 0x177}
951 0x3bb, 0x377}
953 0x3bc, 0x0f7}
955 0x3bd, 0x2f7}
957 0x3be, 0x1f7}
959 0x3c0, 0x00f}
961 0x3c1, 0x20f}
963 0x3c2, 0x10f}
965 0x3c3, 0x30f}
967 0x3c4, 0x08f}
969 0x3c5, 0x28f}
971 0x3c6, 0x18f}
973 0x3c7, 0x38f}
975 0x3c8, 0x04f}
977 0x3c9, 0x24f}
979 0x3ca, 0x14f}
981 0x3cb, 0x34f}
983 0x3cc, 0x0cf}
985 0x3cd, 0x2cf}
987 0x3ce, 0x1cf}
989 0x3d0, 0x02f}
991 0x3d1, 0x22f}
993 0x3d2, 0x12f}
995 0x3d3, 0x32f}
997 0x3d4, 0x0af}
999 0x3d5, 0x2af}
1001 0x3d6, 0x1af}
1003 0x3d7, 0x3af}
1005 0x3d8, 0x06f}
1007 0x3d9, 0x26f}
1009 0x3da, 0x16f}
1011 0x3db, 0x36f}
1013 0x3dc, 0x0ef}
1015 0x3dd, 0x2ef}
1017 0x3de, 0x1ef}
1019 0x3e0, 0x01f}
1021 0x3e1, 0x21f}
1023 0x3e2, 0x11f}
1025 0x3e3, 0x31f}
1027 0x3e4, 0x09f}
1029 0x3e5, 0x29f}
1031 0x3e6, 0x19f}
1033 0x3e7, 0x39f}
1035 0x3e8, 0x05f}
1037 0x3e9, 0x25f}
1039 0x3ea, 0x15f}
1041 0x3eb, 0x35f}
1043 0x3ec, 0x0df}
1045 0x3ed, 0x2df}
1047 0x3ee, 0x1df}
1049 0x3ef, 0x3df}
1051 0x3f0, 0x03f}
1053 0x3f1, 0x23f}
1055 0x3f2, 0x13f}
1057 0x3f3, 0x33f}
1059 0x3f4, 0x0bf}
1061 0x3f5, 0x2bf}
1063 0x3f6, 0x1bf}
1065 0x3f7, 0x3bf}
1067 0x3f8, 0x07f}
1069 0x3f9, 0x27f}
1071 0x3fa, 0x17f}
1073 0x3fb, 0x37f}
1075 0x3fc, 0x0ff}
1077 0x3fd, 0x2ff}
1079 0x3fe, 0x1ff}
1082 int i;
1083 for (i = 0; i < sizeof k1k2tab / sizeof k1k2tab[0]; ++i) {
1084 k1 = k1k2tab[i].k1;
1085 k2 = k1k2tab[i].k2;
1086 a = fz[k1];
1087 fz[k1] = fz[k2];
1088 fz[k2] = a;
1092 for (fi = fz, fn = fz + 1024; fi < fn; fi += 4) {
1093 FLOAT f0, f1, f2, f3;
1094 f1 = fi[0] - fi[1];
1095 f0 = fi[0] + fi[1];
1096 f3 = fi[2] - fi[3];
1097 f2 = fi[2] + fi[3];
1098 fi[2] = (f0 - f2);
1099 fi[0] = (f0 + f2);
1100 fi[3] = (f1 - f3);
1101 fi[1] = (f1 + f3);
1104 k = 0;
1105 do {
1106 FLOAT s1, c1;
1107 k += 2;
1108 k1 = 1 << k;
1109 k2 = k1 << 1;
1110 k4 = k2 << 1;
1111 k3 = k2 + k1;
1112 kx = k1 >> 1;
1113 fi = fz;
1114 gi = fi + kx;
1115 fn = fz + 1024;
1116 do {
1117 FLOAT g0, f0, f1, g1, f2, g2, f3, g3;
1118 f1 = fi[0] - fi[k1];
1119 f0 = fi[0] + fi[k1];
1120 f3 = fi[k2] - fi[k3];
1121 f2 = fi[k2] + fi[k3];
1122 fi[k2] = f0 - f2;
1123 fi[0] = f0 + f2;
1124 fi[k3] = f1 - f3;
1125 fi[k1] = f1 + f3;
1126 g1 = gi[0] - gi[k1];
1127 g0 = gi[0] + gi[k1];
1128 g3 = SQRT2 * gi[k3];
1129 g2 = SQRT2 * gi[k2];
1130 gi[k2] = g0 - g2;
1131 gi[0] = g0 + g2;
1132 gi[k3] = g1 - g3;
1133 gi[k1] = g1 + g3;
1134 gi += k4;
1135 fi += k4;
1137 while (fi < fn);
1138 t_c = costab[k];
1139 t_s = sintab[k];
1140 c1 = 1;
1141 s1 = 0;
1142 for (i = 1; i < kx; i++) {
1143 FLOAT c2, s2;
1144 FLOAT t = c1;
1145 c1 = t * t_c - s1 * t_s;
1146 s1 = t * t_s + s1 * t_c;
1147 c2 = c1 * c1 - s1 * s1;
1148 s2 = 2 * (c1 * s1);
1149 fn = fz + 1024;
1150 fi = fz + i;
1151 gi = fz + k1 - i;
1152 do {
1153 FLOAT a, b, g0, f0, f1, g1, f2, g2, f3, g3;
1154 b = s2 * fi[k1] - c2 * gi[k1];
1155 a = c2 * fi[k1] + s2 * gi[k1];
1156 f1 = fi[0] - a;
1157 f0 = fi[0] + a;
1158 g1 = gi[0] - b;
1159 g0 = gi[0] + b;
1160 b = s2 * fi[k3] - c2 * gi[k3];
1161 a = c2 * fi[k3] + s2 * gi[k3];
1162 f3 = fi[k2] - a;
1163 f2 = fi[k2] + a;
1164 g3 = gi[k2] - b;
1165 g2 = gi[k2] + b;
1166 b = s1 * f2 - c1 * g3;
1167 a = c1 * f2 + s1 * g3;
1168 fi[k2] = f0 - a;
1169 fi[0] = f0 + a;
1170 gi[k3] = g1 - b;
1171 gi[k1] = g1 + b;
1172 b = c1 * g2 - s1 * f3;
1173 a = s1 * g2 + c1 * f3;
1174 gi[k2] = g0 - a;
1175 gi[0] = g0 + a;
1176 fi[k3] = f1 - b;
1177 fi[k1] = f1 + b;
1178 gi += k4;
1179 fi += k4;
1181 while (fi < fn);
1184 while (k4 < 1024);
1187 #ifdef NEWATAN
1188 #define ATANSIZE 2000
1189 #define ATANSCALE 50.0
1190 static FLOAT atan_t[ATANSIZE];
1192 INLINE FLOAT atan_table(FLOAT y, FLOAT x) {
1193 int index;
1195 index = (int)(ATANSCALE * fabs(y/x));
1196 if (index>=ATANSIZE)
1197 index = ATANSIZE-1;
1199 if (y>0 && x<0)
1200 return( PI - atan_t[index] );
1202 if (y<0 && x>0)
1203 return( -atan_t[index] );
1205 if (y<0 && x<0)
1206 return( atan_t[index] - PI );
1208 return(atan_t[index]);
1211 void atan_table_init(void) {
1212 int i;
1213 for (i=0;i<ATANSIZE;i++)
1214 atan_t[i] = atan((double)i/ATANSCALE);
1217 #endif //NEWATAN
1219 /* For variations on psycho model 2:
1220 N always equals 1024
1221 BUT in the returned values, no energy/phi is used at or above an index of 513 */
1222 void psycho_2_fft (FLOAT * x_real, FLOAT * energy, FLOAT * phi)
1223 /* got rid of size "N" argument as it is always 1024 for layerII */
1225 FLOAT a, b;
1226 int i, j;
1227 #ifdef NEWATAN
1228 static int init=0;
1230 if (!init) {
1231 atan_table_init();
1232 init++;
1234 #endif
1237 fht (x_real);
1240 energy[0] = x_real[0] * x_real[0];
1242 for (i = 1, j = 1023; i < 512; i++, j--) {
1243 a = x_real[i];
1244 b = x_real[j];
1245 /* MFC FIXME Mar03 Why is this divided by 2.0?
1246 if a and b are the real and imaginary components then
1247 r = sqrt(a^2 + b^2),
1248 but, back in the psycho2 model, they calculate r=sqrt(energy),
1249 which, if you look at the original equation below is different */
1250 energy[i] = (a * a + b * b) / 2.0;
1251 if (energy[i] < 0.0005) {
1252 energy[i] = 0.0005;
1253 phi[i] = 0;
1254 } else
1255 #ifdef NEWATAN
1257 phi[i] = atan_table(-a, b) + PI/4;
1259 #else
1261 phi[i] = atan2(-(double)a, (double)b) + PI/4;
1263 #endif
1265 energy[512] = x_real[512] * x_real[512];
1266 phi[512] = atan2 (0.0, (double) x_real[512]);
1270 void psycho_1_fft (FLOAT * x_real, FLOAT * energy, int N)
1272 FLOAT a, b;
1273 int i, j;
1275 fht (x_real);
1277 energy[0] = x_real[0] * x_real[0];
1279 for (i = 1, j = N - 1; i < N / 2; i++, j--) {
1280 a = x_real[i];
1281 b = x_real[j];
1282 energy[i] = (a * a + b * b) / 2.0;
1284 energy[N / 2] = x_real[N / 2] * x_real[N / 2];