* Restored the '(none)' and '(nothing)' displays in the summary screen when the Tasks...
[citadel.git] / citadel / md5.c
blob6e50570cc2fa659644c85b362bd5c515bd3f69d4
1 /*
2 * This code implements the MD5 message-digest algorithm.
3 * The algorithm is due to Ron Rivest. This code was
4 * written by Colin Plumb in 1993, no copyright is claimed.
5 * This code is in the public domain; do with it what you wish.
7 * Equivalent code is available from RSA Data Security, Inc.
8 * This code has been tested against that, and is equivalent,
9 * except that you don't need to include two pages of legalese
10 * with every copy.
12 * To compute the message digest of a chunk of bytes, declare an
13 * MD5Context structure, pass it to MD5Init, call MD5Update as
14 * needed on buffers full of bytes, and then call MD5Final, which
15 * will fill a supplied 16-byte array with the digest.
18 #include <stdio.h>
19 #include <sys/types.h>
20 #include <ctype.h>
21 #include <string.h> /* for memcpy() */
22 #include "md5.h"
24 #ifndef HIGHFIRST
25 #define byteReverse(buf, len) /* Nothing */
26 #else
27 void byteReverse(unsigned char *buf, unsigned longs);
29 #ifndef ASM_MD5
31 * Note: this code is harmless on little-endian machines.
33 void byteReverse(unsigned char *buf, unsigned longs)
35 cit_uint32_t t;
36 do {
37 t = (cit_uint32_t) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
38 ((unsigned) buf[1] << 8 | buf[0]);
39 *(cit_uint32_t *) buf = t;
40 buf += 4;
41 } while (--longs);
43 #endif
44 #endif
49 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
50 * initialization constants.
52 void MD5Init(struct MD5Context *ctx)
54 ctx->buf[0] = 0x67452301;
55 ctx->buf[1] = 0xefcdab89;
56 ctx->buf[2] = 0x98badcfe;
57 ctx->buf[3] = 0x10325476;
59 ctx->bits[0] = 0;
60 ctx->bits[1] = 0;
64 * Update context to reflect the concatenation of another buffer full
65 * of bytes.
67 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
69 cit_uint32_t t;
71 /* Update bitcount */
73 t = ctx->bits[0];
74 if ((ctx->bits[0] = t + ((cit_uint32_t) len << 3)) < t)
75 ctx->bits[1]++; /* Carry from low to high */
76 ctx->bits[1] += len >> 29;
78 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
80 /* Handle any leading odd-sized chunks */
82 if (t) {
83 unsigned char *p = (unsigned char *) ctx->in + t;
85 t = 64 - t;
86 if (len < t) {
87 memcpy(p, buf, len);
88 return;
90 memcpy(p, buf, t);
91 byteReverse(ctx->in, 16);
92 MD5Transform(ctx->buf, ctx->in);
93 buf += t;
94 len -= t;
96 /* Process data in 64-byte chunks */
98 while (len >= 64) {
99 memcpy(ctx->in, buf, 64);
100 byteReverse(ctx->in, 16);
101 MD5Transform(ctx->buf, ctx->in);
102 buf += 64;
103 len -= 64;
106 /* Handle any remaining bytes of data. */
108 memcpy(ctx->in, buf, len);
112 * Final wrapup - pad to 64-byte boundary with the bit pattern
113 * 1 0* (64-bit count of bits processed, MSB-first)
115 void MD5Final(unsigned char digest[16], struct MD5Context *ctx)
117 unsigned count;
118 unsigned char *p;
120 /* Compute number of bytes mod 64 */
121 count = (ctx->bits[0] >> 3) & 0x3F;
123 /* Set the first char of padding to 0x80. This is safe since there is
124 always at least one byte free */
125 p = ((unsigned char*)ctx->in) + count;
126 *p++ = 0x80;
128 /* Bytes of padding needed to make 64 bytes */
129 count = 64 - 1 - count;
131 /* Pad out to 56 mod 64 */
132 if (count < 8) {
133 /* Two lots of padding: Pad the first block to 64 bytes */
134 memset(p, 0, count);
135 byteReverse(ctx->in, 16);
136 MD5Transform(ctx->buf, ctx->in);
138 /* Now fill the next block with 56 bytes */
139 memset(ctx->in, 0, 56);
140 } else {
141 /* Pad block to 56 bytes */
142 memset(p, 0, count - 8);
144 byteReverse(ctx->in, 14);
146 /* Append length in bits and transform */
147 ((cit_uint32_t *) ctx->in)[14] = ctx->bits[0];
148 ((cit_uint32_t *) ctx->in)[15] = ctx->bits[1];
150 MD5Transform(ctx->buf, (cit_uint32_t *) ctx->in);
151 byteReverse((unsigned char *) ctx->buf, 4);
152 memcpy(digest, ctx->buf, 16);
153 memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
156 #ifndef ASM_MD5
158 /* The four core functions - F1 is optimized somewhat */
160 /* #define F1(x, y, z) (x & y | ~x & z) */
161 #define F1(x, y, z) (z ^ (x & (y ^ z)))
162 #define F2(x, y, z) F1(z, x, y)
163 #define F3(x, y, z) (x ^ y ^ z)
164 #define F4(x, y, z) (y ^ (x | ~z))
166 /* This is the central step in the MD5 algorithm. */
167 #ifdef __PUREC__
168 #define MD5STEP(f, w, x, y, z, data, s) \
169 ( w += f /*(x, y, z)*/ + data, w = w<<s | w>>(32-s), w += x )
170 #else
171 #define MD5STEP(f, w, x, y, z, data, s) \
172 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
173 #endif
176 * The core of the MD5 algorithm, this alters an existing MD5 hash to
177 * reflect the addition of 16 longwords of new data. MD5Update blocks
178 * the data and converts bytes into longwords for this routine.
180 void MD5Transform(cit_uint32_t buf[4], cit_uint32_t const in[16])
182 register cit_uint32_t a, b, c, d;
184 a = buf[0];
185 b = buf[1];
186 c = buf[2];
187 d = buf[3];
189 #ifdef __PUREC__ /* PureC Weirdness... (GG) */
190 MD5STEP(F1(b,c,d), a, b, c, d, in[0] + 0xd76aa478L, 7);
191 MD5STEP(F1(a,b,c), d, a, b, c, in[1] + 0xe8c7b756L, 12);
192 MD5STEP(F1(d,a,b), c, d, a, b, in[2] + 0x242070dbL, 17);
193 MD5STEP(F1(c,d,a), b, c, d, a, in[3] + 0xc1bdceeeL, 22);
194 MD5STEP(F1(b,c,d), a, b, c, d, in[4] + 0xf57c0fafL, 7);
195 MD5STEP(F1(a,b,c), d, a, b, c, in[5] + 0x4787c62aL, 12);
196 MD5STEP(F1(d,a,b), c, d, a, b, in[6] + 0xa8304613L, 17);
197 MD5STEP(F1(c,d,a), b, c, d, a, in[7] + 0xfd469501L, 22);
198 MD5STEP(F1(b,c,d), a, b, c, d, in[8] + 0x698098d8L, 7);
199 MD5STEP(F1(a,b,c), d, a, b, c, in[9] + 0x8b44f7afL, 12);
200 MD5STEP(F1(d,a,b), c, d, a, b, in[10] + 0xffff5bb1L, 17);
201 MD5STEP(F1(c,d,a), b, c, d, a, in[11] + 0x895cd7beL, 22);
202 MD5STEP(F1(b,c,d), a, b, c, d, in[12] + 0x6b901122L, 7);
203 MD5STEP(F1(a,b,c), d, a, b, c, in[13] + 0xfd987193L, 12);
204 MD5STEP(F1(d,a,b), c, d, a, b, in[14] + 0xa679438eL, 17);
205 MD5STEP(F1(c,d,a), b, c, d, a, in[15] + 0x49b40821L, 22);
207 MD5STEP(F2(b,c,d), a, b, c, d, in[1] + 0xf61e2562L, 5);
208 MD5STEP(F2(a,b,c), d, a, b, c, in[6] + 0xc040b340L, 9);
209 MD5STEP(F2(d,a,b), c, d, a, b, in[11] + 0x265e5a51L, 14);
210 MD5STEP(F2(c,d,a), b, c, d, a, in[0] + 0xe9b6c7aaL, 20);
211 MD5STEP(F2(b,c,d), a, b, c, d, in[5] + 0xd62f105dL, 5);
212 MD5STEP(F2(a,b,c), d, a, b, c, in[10] + 0x02441453L, 9);
213 MD5STEP(F2(d,a,b), c, d, a, b, in[15] + 0xd8a1e681L, 14);
214 MD5STEP(F2(c,d,a), b, c, d, a, in[4] + 0xe7d3fbc8L, 20);
215 MD5STEP(F2(b,c,d), a, b, c, d, in[9] + 0x21e1cde6L, 5);
216 MD5STEP(F2(a,b,c), d, a, b, c, in[14] + 0xc33707d6L, 9);
217 MD5STEP(F2(d,a,b), c, d, a, b, in[3] + 0xf4d50d87L, 14);
218 MD5STEP(F2(c,d,a), b, c, d, a, in[8] + 0x455a14edL, 20);
219 MD5STEP(F2(b,c,d), a, b, c, d, in[13] + 0xa9e3e905L, 5);
220 MD5STEP(F2(a,b,c), d, a, b, c, in[2] + 0xfcefa3f8L, 9);
221 MD5STEP(F2(d,a,b), c, d, a, b, in[7] + 0x676f02d9L, 14);
222 MD5STEP(F2(c,d,a), b, c, d, a, in[12] + 0x8d2a4c8aL, 20);
224 MD5STEP(F3(b,c,d), a, b, c, d, in[5] + 0xfffa3942L, 4);
225 MD5STEP(F3(a,b,c), d, a, b, c, in[8] + 0x8771f681L, 11);
226 MD5STEP(F3(d,a,b), c, d, a, b, in[11] + 0x6d9d6122L, 16);
227 MD5STEP(F3(c,d,a), b, c, d, a, in[14] + 0xfde5380cL, 23);
228 MD5STEP(F3(b,c,d), a, b, c, d, in[1] + 0xa4beea44L, 4);
229 MD5STEP(F3(a,b,c), d, a, b, c, in[4] + 0x4bdecfa9L, 11);
230 MD5STEP(F3(d,a,b), c, d, a, b, in[7] + 0xf6bb4b60L, 16);
231 MD5STEP(F3(c,d,a), b, c, d, a, in[10] + 0xbebfbc70L, 23);
232 MD5STEP(F3(b,c,d), a, b, c, d, in[13] + 0x289b7ec6L, 4);
233 MD5STEP(F3(a,b,c), d, a, b, c, in[0] + 0xeaa127faL, 11);
234 MD5STEP(F3(d,a,b), c, d, a, b, in[3] + 0xd4ef3085L, 16);
235 MD5STEP(F3(c,d,a), b, c, d, a, in[6] + 0x04881d05L, 23);
236 MD5STEP(F3(b,c,d), a, b, c, d, in[9] + 0xd9d4d039L, 4);
237 MD5STEP(F3(a,b,c), d, a, b, c, in[12] + 0xe6db99e5L, 11);
238 MD5STEP(F3(d,a,b), c, d, a, b, in[15] + 0x1fa27cf8L, 16);
239 MD5STEP(F3(c,d,a), b, c, d, a, in[2] + 0xc4ac5665L, 23);
241 MD5STEP(F4(b,c,d), a, b, c, d, in[0] + 0xf4292244L, 6);
242 MD5STEP(F4(a,b,c), d, a, b, c, in[7] + 0x432aff97L, 10);
243 MD5STEP(F4(d,a,b), c, d, a, b, in[14] + 0xab9423a7L, 15);
244 MD5STEP(F4(c,d,a), b, c, d, a, in[5] + 0xfc93a039L, 21);
245 MD5STEP(F4(b,c,d), a, b, c, d, in[12] + 0x655b59c3L, 6);
246 MD5STEP(F4(a,b,c), d, a, b, c, in[3] + 0x8f0ccc92L, 10);
247 MD5STEP(F4(d,a,b), c, d, a, b, in[10] + 0xffeff47dL, 15);
248 MD5STEP(F4(c,d,a), b, c, d, a, in[1] + 0x85845dd1L, 21);
249 MD5STEP(F4(b,c,d), a, b, c, d, in[8] + 0x6fa87e4fL, 6);
250 MD5STEP(F4(a,b,c), d, a, b, c, in[15] + 0xfe2ce6e0L, 10);
251 MD5STEP(F4(d,a,b), c, d, a, b, in[6] + 0xa3014314L, 15);
252 MD5STEP(F4(c,d,a), b, c, d, a, in[13] + 0x4e0811a1L, 21);
253 MD5STEP(F4(b,c,d), a, b, c, d, in[4] + 0xf7537e82L, 6);
254 MD5STEP(F4(a,b,c), d, a, b, c, in[11] + 0xbd3af235L, 10);
255 MD5STEP(F4(d,a,b), c, d, a, b, in[2] + 0x2ad7d2bbL, 15);
256 MD5STEP(F4(c,d,a), b, c, d, a, in[9] + 0xeb86d391L, 21);
257 #else
258 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
259 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
260 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
261 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
262 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
263 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
264 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
265 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
266 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
267 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
268 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
269 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
270 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
271 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
272 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
273 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
275 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
276 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
277 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
278 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
279 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
280 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
281 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
282 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
283 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
284 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
285 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
286 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
287 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
288 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
289 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
290 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
292 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
293 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
294 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
295 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
296 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
297 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
298 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
299 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
300 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
301 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
302 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
303 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
304 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
305 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
306 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
307 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
309 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
310 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
311 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
312 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
313 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
314 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
315 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
316 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
317 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
318 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
319 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
320 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
321 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
322 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
323 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
324 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
325 #endif
327 buf[0] += a;
328 buf[1] += b;
329 buf[2] += c;
330 buf[3] += d;
334 * This part was added by Brian Costello <btx@calyx.net>
335 * For citadel's APOP auth - makes a lower case (as per APOP RFC)
336 * md5 string
339 char *make_apop_string(char *realpass, char *nonce, char *buffer, size_t n)
341 struct MD5Context ctx;
342 u_char rawdigest[MD5_DIGEST_LEN];
343 int i;
345 MD5Init(&ctx);
346 MD5Update(&ctx, (u_char*)nonce, strlen(nonce));
347 MD5Update(&ctx, (u_char*)realpass, strlen(realpass));
348 MD5Final(rawdigest, &ctx);
349 for (i=0; i<MD5_DIGEST_LEN; i++)
351 snprintf(&buffer[i*2], n - i*2, "%02X", (unsigned char) (rawdigest[i] & 0xff));
352 buffer[i*2] = tolower(buffer[i*2]);
353 buffer[(i*2)+1] = tolower(buffer[(i*2)+1]);
355 return buffer;
359 #endif