Fix thinko.
[clang/acc.git] / lib / CodeGen / CGStmt.cpp
blob4e6ec82eb5288ace85b461d7dfcbed9d5e2fdcf4
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
12 //===----------------------------------------------------------------------===//
14 #include "CGDebugInfo.h"
15 #include "CodeGenModule.h"
16 #include "CodeGenFunction.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "clang/Basic/PrettyStackTrace.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/InlineAsm.h"
22 #include "llvm/Intrinsics.h"
23 #include "llvm/Target/TargetData.h"
24 using namespace clang;
25 using namespace CodeGen;
27 //===----------------------------------------------------------------------===//
28 // Statement Emission
29 //===----------------------------------------------------------------------===//
31 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
32 if (CGDebugInfo *DI = getDebugInfo()) {
33 DI->setLocation(S->getLocStart());
34 DI->EmitStopPoint(CurFn, Builder);
38 void CodeGenFunction::EmitStmt(const Stmt *S) {
39 assert(S && "Null statement?");
41 // Check if we can handle this without bothering to generate an
42 // insert point or debug info.
43 if (EmitSimpleStmt(S))
44 return;
46 // Check if we are generating unreachable code.
47 if (!HaveInsertPoint()) {
48 // If so, and the statement doesn't contain a label, then we do not need to
49 // generate actual code. This is safe because (1) the current point is
50 // unreachable, so we don't need to execute the code, and (2) we've already
51 // handled the statements which update internal data structures (like the
52 // local variable map) which could be used by subsequent statements.
53 if (!ContainsLabel(S)) {
54 // Verify that any decl statements were handled as simple, they may be in
55 // scope of subsequent reachable statements.
56 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
57 return;
60 // Otherwise, make a new block to hold the code.
61 EnsureInsertPoint();
64 // Generate a stoppoint if we are emitting debug info.
65 EmitStopPoint(S);
67 switch (S->getStmtClass()) {
68 default:
69 // Must be an expression in a stmt context. Emit the value (to get
70 // side-effects) and ignore the result.
71 if (const Expr *E = dyn_cast<Expr>(S)) {
72 EmitAnyExpr(E, 0, false, true);
73 } else {
74 ErrorUnsupported(S, "statement");
76 break;
77 case Stmt::IndirectGotoStmtClass:
78 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
80 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break;
81 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S)); break;
82 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S)); break;
83 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S)); break;
85 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break;
87 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break;
88 case Stmt::AsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break;
90 case Stmt::ObjCAtTryStmtClass:
91 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
92 break;
93 case Stmt::ObjCAtCatchStmtClass:
94 assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt");
95 break;
96 case Stmt::ObjCAtFinallyStmtClass:
97 assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt");
98 break;
99 case Stmt::ObjCAtThrowStmtClass:
100 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
101 break;
102 case Stmt::ObjCAtSynchronizedStmtClass:
103 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
104 break;
105 case Stmt::ObjCForCollectionStmtClass:
106 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
107 break;
111 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
112 switch (S->getStmtClass()) {
113 default: return false;
114 case Stmt::NullStmtClass: break;
115 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
116 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break;
117 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break;
118 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break;
119 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break;
120 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
121 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break;
122 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break;
125 return true;
128 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true,
129 /// this captures the expression result of the last sub-statement and returns it
130 /// (for use by the statement expression extension).
131 RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
132 llvm::Value *AggLoc, bool isAggVol) {
133 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
134 "LLVM IR generation of compound statement ('{}')");
136 CGDebugInfo *DI = getDebugInfo();
137 if (DI) {
138 EnsureInsertPoint();
139 DI->setLocation(S.getLBracLoc());
140 // FIXME: The llvm backend is currently not ready to deal with region_end
141 // for block scoping. In the presence of always_inline functions it gets so
142 // confused that it doesn't emit any debug info. Just disable this for now.
143 //DI->EmitRegionStart(CurFn, Builder);
146 // Keep track of the current cleanup stack depth.
147 size_t CleanupStackDepth = CleanupEntries.size();
148 bool OldDidCallStackSave = DidCallStackSave;
149 DidCallStackSave = false;
151 for (CompoundStmt::const_body_iterator I = S.body_begin(),
152 E = S.body_end()-GetLast; I != E; ++I)
153 EmitStmt(*I);
155 if (DI) {
156 EnsureInsertPoint();
157 DI->setLocation(S.getRBracLoc());
159 // FIXME: The llvm backend is currently not ready to deal with region_end
160 // for block scoping. In the presence of always_inline functions it gets so
161 // confused that it doesn't emit any debug info. Just disable this for now.
162 //DI->EmitRegionEnd(CurFn, Builder);
165 RValue RV;
166 if (!GetLast)
167 RV = RValue::get(0);
168 else {
169 // We have to special case labels here. They are statements, but when put
170 // at the end of a statement expression, they yield the value of their
171 // subexpression. Handle this by walking through all labels we encounter,
172 // emitting them before we evaluate the subexpr.
173 const Stmt *LastStmt = S.body_back();
174 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
175 EmitLabel(*LS);
176 LastStmt = LS->getSubStmt();
179 EnsureInsertPoint();
181 RV = EmitAnyExpr(cast<Expr>(LastStmt), AggLoc);
184 DidCallStackSave = OldDidCallStackSave;
186 EmitCleanupBlocks(CleanupStackDepth);
188 return RV;
191 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
192 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
194 // If there is a cleanup stack, then we it isn't worth trying to
195 // simplify this block (we would need to remove it from the scope map
196 // and cleanup entry).
197 if (!CleanupEntries.empty())
198 return;
200 // Can only simplify direct branches.
201 if (!BI || !BI->isUnconditional())
202 return;
204 BB->replaceAllUsesWith(BI->getSuccessor(0));
205 BI->eraseFromParent();
206 BB->eraseFromParent();
209 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
210 // Fall out of the current block (if necessary).
211 EmitBranch(BB);
213 if (IsFinished && BB->use_empty()) {
214 delete BB;
215 return;
218 // If necessary, associate the block with the cleanup stack size.
219 if (!CleanupEntries.empty()) {
220 // Check if the basic block has already been inserted.
221 BlockScopeMap::iterator I = BlockScopes.find(BB);
222 if (I != BlockScopes.end()) {
223 assert(I->second == CleanupEntries.size() - 1);
224 } else {
225 BlockScopes[BB] = CleanupEntries.size() - 1;
226 CleanupEntries.back().Blocks.push_back(BB);
230 CurFn->getBasicBlockList().push_back(BB);
231 Builder.SetInsertPoint(BB);
234 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
235 // Emit a branch from the current block to the target one if this
236 // was a real block. If this was just a fall-through block after a
237 // terminator, don't emit it.
238 llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
240 if (!CurBB || CurBB->getTerminator()) {
241 // If there is no insert point or the previous block is already
242 // terminated, don't touch it.
243 } else {
244 // Otherwise, create a fall-through branch.
245 Builder.CreateBr(Target);
248 Builder.ClearInsertionPoint();
251 void CodeGenFunction::EmitLabel(const LabelStmt &S) {
252 EmitBlock(getBasicBlockForLabel(&S));
256 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
257 EmitLabel(S);
258 EmitStmt(S.getSubStmt());
261 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
262 // If this code is reachable then emit a stop point (if generating
263 // debug info). We have to do this ourselves because we are on the
264 // "simple" statement path.
265 if (HaveInsertPoint())
266 EmitStopPoint(&S);
268 EmitBranchThroughCleanup(getBasicBlockForLabel(S.getLabel()));
271 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
272 // Emit initial switch which will be patched up later by
273 // EmitIndirectSwitches(). We need a default dest, so we use the
274 // current BB, but this is overwritten.
275 llvm::Value *V = Builder.CreatePtrToInt(EmitScalarExpr(S.getTarget()),
276 llvm::Type::Int32Ty,
277 "addr");
278 llvm::SwitchInst *I = Builder.CreateSwitch(V, Builder.GetInsertBlock());
279 IndirectSwitches.push_back(I);
281 // Clear the insertion point to indicate we are in unreachable code.
282 Builder.ClearInsertionPoint();
285 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
286 // C99 6.8.4.1: The first substatement is executed if the expression compares
287 // unequal to 0. The condition must be a scalar type.
289 // If the condition constant folds and can be elided, try to avoid emitting
290 // the condition and the dead arm of the if/else.
291 if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) {
292 // Figure out which block (then or else) is executed.
293 const Stmt *Executed = S.getThen(), *Skipped = S.getElse();
294 if (Cond == -1) // Condition false?
295 std::swap(Executed, Skipped);
297 // If the skipped block has no labels in it, just emit the executed block.
298 // This avoids emitting dead code and simplifies the CFG substantially.
299 if (!ContainsLabel(Skipped)) {
300 if (Executed)
301 EmitStmt(Executed);
302 return;
306 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit
307 // the conditional branch.
308 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
309 llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
310 llvm::BasicBlock *ElseBlock = ContBlock;
311 if (S.getElse())
312 ElseBlock = createBasicBlock("if.else");
313 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
315 // Emit the 'then' code.
316 EmitBlock(ThenBlock);
317 EmitStmt(S.getThen());
318 EmitBranch(ContBlock);
320 // Emit the 'else' code if present.
321 if (const Stmt *Else = S.getElse()) {
322 EmitBlock(ElseBlock);
323 EmitStmt(Else);
324 EmitBranch(ContBlock);
327 // Emit the continuation block for code after the if.
328 EmitBlock(ContBlock, true);
331 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
332 // Emit the header for the loop, insert it, which will create an uncond br to
333 // it.
334 llvm::BasicBlock *LoopHeader = createBasicBlock("while.cond");
335 EmitBlock(LoopHeader);
337 // Create an exit block for when the condition fails, create a block for the
338 // body of the loop.
339 llvm::BasicBlock *ExitBlock = createBasicBlock("while.end");
340 llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
342 // Store the blocks to use for break and continue.
343 BreakContinueStack.push_back(BreakContinue(ExitBlock, LoopHeader));
345 // Evaluate the conditional in the while header. C99 6.8.5.1: The
346 // evaluation of the controlling expression takes place before each
347 // execution of the loop body.
348 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
350 // while(1) is common, avoid extra exit blocks. Be sure
351 // to correctly handle break/continue though.
352 bool EmitBoolCondBranch = true;
353 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
354 if (C->isOne())
355 EmitBoolCondBranch = false;
357 // As long as the condition is true, go to the loop body.
358 if (EmitBoolCondBranch)
359 Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
361 // Emit the loop body.
362 EmitBlock(LoopBody);
363 EmitStmt(S.getBody());
365 BreakContinueStack.pop_back();
367 // Cycle to the condition.
368 EmitBranch(LoopHeader);
370 // Emit the exit block.
371 EmitBlock(ExitBlock, true);
373 // The LoopHeader typically is just a branch if we skipped emitting
374 // a branch, try to erase it.
375 if (!EmitBoolCondBranch)
376 SimplifyForwardingBlocks(LoopHeader);
379 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
380 // Emit the body for the loop, insert it, which will create an uncond br to
381 // it.
382 llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
383 llvm::BasicBlock *AfterDo = createBasicBlock("do.end");
384 EmitBlock(LoopBody);
386 llvm::BasicBlock *DoCond = createBasicBlock("do.cond");
388 // Store the blocks to use for break and continue.
389 BreakContinueStack.push_back(BreakContinue(AfterDo, DoCond));
391 // Emit the body of the loop into the block.
392 EmitStmt(S.getBody());
394 BreakContinueStack.pop_back();
396 EmitBlock(DoCond);
398 // C99 6.8.5.2: "The evaluation of the controlling expression takes place
399 // after each execution of the loop body."
401 // Evaluate the conditional in the while header.
402 // C99 6.8.5p2/p4: The first substatement is executed if the expression
403 // compares unequal to 0. The condition must be a scalar type.
404 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
406 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure
407 // to correctly handle break/continue though.
408 bool EmitBoolCondBranch = true;
409 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
410 if (C->isZero())
411 EmitBoolCondBranch = false;
413 // As long as the condition is true, iterate the loop.
414 if (EmitBoolCondBranch)
415 Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo);
417 // Emit the exit block.
418 EmitBlock(AfterDo);
420 // The DoCond block typically is just a branch if we skipped
421 // emitting a branch, try to erase it.
422 if (!EmitBoolCondBranch)
423 SimplifyForwardingBlocks(DoCond);
426 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
427 // FIXME: What do we do if the increment (f.e.) contains a stmt expression,
428 // which contains a continue/break?
430 // Evaluate the first part before the loop.
431 if (S.getInit())
432 EmitStmt(S.getInit());
434 // Start the loop with a block that tests the condition.
435 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
436 llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
438 EmitBlock(CondBlock);
440 // Evaluate the condition if present. If not, treat it as a
441 // non-zero-constant according to 6.8.5.3p2, aka, true.
442 if (S.getCond()) {
443 // As long as the condition is true, iterate the loop.
444 llvm::BasicBlock *ForBody = createBasicBlock("for.body");
446 // C99 6.8.5p2/p4: The first substatement is executed if the expression
447 // compares unequal to 0. The condition must be a scalar type.
448 EmitBranchOnBoolExpr(S.getCond(), ForBody, AfterFor);
450 EmitBlock(ForBody);
451 } else {
452 // Treat it as a non-zero constant. Don't even create a new block for the
453 // body, just fall into it.
456 // If the for loop doesn't have an increment we can just use the
457 // condition as the continue block.
458 llvm::BasicBlock *ContinueBlock;
459 if (S.getInc())
460 ContinueBlock = createBasicBlock("for.inc");
461 else
462 ContinueBlock = CondBlock;
464 // Store the blocks to use for break and continue.
465 BreakContinueStack.push_back(BreakContinue(AfterFor, ContinueBlock));
467 // If the condition is true, execute the body of the for stmt.
468 EmitStmt(S.getBody());
470 BreakContinueStack.pop_back();
472 // If there is an increment, emit it next.
473 if (S.getInc()) {
474 EmitBlock(ContinueBlock);
475 EmitStmt(S.getInc());
478 // Finally, branch back up to the condition for the next iteration.
479 EmitBranch(CondBlock);
481 // Emit the fall-through block.
482 EmitBlock(AfterFor, true);
485 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
486 if (RV.isScalar()) {
487 Builder.CreateStore(RV.getScalarVal(), ReturnValue);
488 } else if (RV.isAggregate()) {
489 EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
490 } else {
491 StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
493 EmitBranchThroughCleanup(ReturnBlock);
496 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
497 /// if the function returns void, or may be missing one if the function returns
498 /// non-void. Fun stuff :).
499 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
500 // Emit the result value, even if unused, to evalute the side effects.
501 const Expr *RV = S.getRetValue();
503 // FIXME: Clean this up by using an LValue for ReturnTemp,
504 // EmitStoreThroughLValue, and EmitAnyExpr.
505 if (!ReturnValue) {
506 // Make sure not to return anything, but evaluate the expression
507 // for side effects.
508 if (RV)
509 EmitAnyExpr(RV);
510 } else if (RV == 0) {
511 // Do nothing (return value is left uninitialized)
512 } else if (FnRetTy->isReferenceType()) {
513 // If this function returns a reference, take the address of the expression
514 // rather than the value.
515 Builder.CreateStore(EmitLValue(RV).getAddress(), ReturnValue);
516 } else if (!hasAggregateLLVMType(RV->getType())) {
517 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
518 } else if (RV->getType()->isAnyComplexType()) {
519 EmitComplexExprIntoAddr(RV, ReturnValue, false);
520 } else {
521 EmitAggExpr(RV, ReturnValue, false);
524 EmitBranchThroughCleanup(ReturnBlock);
527 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
528 // As long as debug info is modeled with instructions, we have to ensure we
529 // have a place to insert here and write the stop point here.
530 if (getDebugInfo()) {
531 EnsureInsertPoint();
532 EmitStopPoint(&S);
535 for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
536 I != E; ++I)
537 EmitDecl(**I);
540 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
541 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
543 // If this code is reachable then emit a stop point (if generating
544 // debug info). We have to do this ourselves because we are on the
545 // "simple" statement path.
546 if (HaveInsertPoint())
547 EmitStopPoint(&S);
549 llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock;
550 EmitBranchThroughCleanup(Block);
553 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
554 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
556 // If this code is reachable then emit a stop point (if generating
557 // debug info). We have to do this ourselves because we are on the
558 // "simple" statement path.
559 if (HaveInsertPoint())
560 EmitStopPoint(&S);
562 llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock;
563 EmitBranchThroughCleanup(Block);
566 /// EmitCaseStmtRange - If case statement range is not too big then
567 /// add multiple cases to switch instruction, one for each value within
568 /// the range. If range is too big then emit "if" condition check.
569 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
570 assert(S.getRHS() && "Expected RHS value in CaseStmt");
572 llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext());
573 llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext());
575 // Emit the code for this case. We do this first to make sure it is
576 // properly chained from our predecessor before generating the
577 // switch machinery to enter this block.
578 EmitBlock(createBasicBlock("sw.bb"));
579 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
580 EmitStmt(S.getSubStmt());
582 // If range is empty, do nothing.
583 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
584 return;
586 llvm::APInt Range = RHS - LHS;
587 // FIXME: parameters such as this should not be hardcoded.
588 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
589 // Range is small enough to add multiple switch instruction cases.
590 for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
591 SwitchInsn->addCase(VMContext.getConstantInt(LHS), CaseDest);
592 LHS++;
594 return;
597 // The range is too big. Emit "if" condition into a new block,
598 // making sure to save and restore the current insertion point.
599 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
601 // Push this test onto the chain of range checks (which terminates
602 // in the default basic block). The switch's default will be changed
603 // to the top of this chain after switch emission is complete.
604 llvm::BasicBlock *FalseDest = CaseRangeBlock;
605 CaseRangeBlock = createBasicBlock("sw.caserange");
607 CurFn->getBasicBlockList().push_back(CaseRangeBlock);
608 Builder.SetInsertPoint(CaseRangeBlock);
610 // Emit range check.
611 llvm::Value *Diff =
612 Builder.CreateSub(SwitchInsn->getCondition(), VMContext.getConstantInt(LHS),
613 "tmp");
614 llvm::Value *Cond =
615 Builder.CreateICmpULE(Diff, VMContext.getConstantInt(Range), "tmp");
616 Builder.CreateCondBr(Cond, CaseDest, FalseDest);
618 // Restore the appropriate insertion point.
619 if (RestoreBB)
620 Builder.SetInsertPoint(RestoreBB);
621 else
622 Builder.ClearInsertionPoint();
625 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
626 if (S.getRHS()) {
627 EmitCaseStmtRange(S);
628 return;
631 EmitBlock(createBasicBlock("sw.bb"));
632 llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
633 llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext());
634 SwitchInsn->addCase(VMContext.getConstantInt(CaseVal), CaseDest);
636 // Recursively emitting the statement is acceptable, but is not wonderful for
637 // code where we have many case statements nested together, i.e.:
638 // case 1:
639 // case 2:
640 // case 3: etc.
641 // Handling this recursively will create a new block for each case statement
642 // that falls through to the next case which is IR intensive. It also causes
643 // deep recursion which can run into stack depth limitations. Handle
644 // sequential non-range case statements specially.
645 const CaseStmt *CurCase = &S;
646 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
648 // Otherwise, iteratively add consequtive cases to this switch stmt.
649 while (NextCase && NextCase->getRHS() == 0) {
650 CurCase = NextCase;
651 CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext());
652 SwitchInsn->addCase(VMContext.getConstantInt(CaseVal), CaseDest);
654 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
657 // Normal default recursion for non-cases.
658 EmitStmt(CurCase->getSubStmt());
661 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
662 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
663 assert(DefaultBlock->empty() &&
664 "EmitDefaultStmt: Default block already defined?");
665 EmitBlock(DefaultBlock);
666 EmitStmt(S.getSubStmt());
669 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
670 llvm::Value *CondV = EmitScalarExpr(S.getCond());
672 // Handle nested switch statements.
673 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
674 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
676 // Create basic block to hold stuff that comes after switch
677 // statement. We also need to create a default block now so that
678 // explicit case ranges tests can have a place to jump to on
679 // failure.
680 llvm::BasicBlock *NextBlock = createBasicBlock("sw.epilog");
681 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
682 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
683 CaseRangeBlock = DefaultBlock;
685 // Clear the insertion point to indicate we are in unreachable code.
686 Builder.ClearInsertionPoint();
688 // All break statements jump to NextBlock. If BreakContinueStack is non empty
689 // then reuse last ContinueBlock.
690 llvm::BasicBlock *ContinueBlock = 0;
691 if (!BreakContinueStack.empty())
692 ContinueBlock = BreakContinueStack.back().ContinueBlock;
694 // Ensure any vlas created between there and here, are undone
695 BreakContinueStack.push_back(BreakContinue(NextBlock, ContinueBlock));
697 // Emit switch body.
698 EmitStmt(S.getBody());
700 BreakContinueStack.pop_back();
702 // Update the default block in case explicit case range tests have
703 // been chained on top.
704 SwitchInsn->setSuccessor(0, CaseRangeBlock);
706 // If a default was never emitted then reroute any jumps to it and
707 // discard.
708 if (!DefaultBlock->getParent()) {
709 DefaultBlock->replaceAllUsesWith(NextBlock);
710 delete DefaultBlock;
713 // Emit continuation.
714 EmitBlock(NextBlock, true);
716 SwitchInsn = SavedSwitchInsn;
717 CaseRangeBlock = SavedCRBlock;
720 static std::string
721 SimplifyConstraint(const char *Constraint, TargetInfo &Target,
722 llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
723 std::string Result;
725 while (*Constraint) {
726 switch (*Constraint) {
727 default:
728 Result += Target.convertConstraint(*Constraint);
729 break;
730 // Ignore these
731 case '*':
732 case '?':
733 case '!':
734 break;
735 case 'g':
736 Result += "imr";
737 break;
738 case '[': {
739 assert(OutCons &&
740 "Must pass output names to constraints with a symbolic name");
741 unsigned Index;
742 bool result = Target.resolveSymbolicName(Constraint,
743 &(*OutCons)[0],
744 OutCons->size(), Index);
745 assert(result && "Could not resolve symbolic name"); result=result;
746 Result += llvm::utostr(Index);
747 break;
751 Constraint++;
754 return Result;
757 llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
758 const TargetInfo::ConstraintInfo &Info,
759 const Expr *InputExpr,
760 std::string &ConstraintStr) {
761 llvm::Value *Arg;
762 if (Info.allowsRegister() || !Info.allowsMemory()) {
763 const llvm::Type *Ty = ConvertType(InputExpr->getType());
765 if (Ty->isSingleValueType()) {
766 Arg = EmitScalarExpr(InputExpr);
767 } else {
768 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
769 LValue Dest = EmitLValue(InputExpr);
771 uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
772 if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
773 Ty = llvm::IntegerType::get(Size);
774 Ty = llvm::PointerType::getUnqual(Ty);
776 Arg = Builder.CreateLoad(Builder.CreateBitCast(Dest.getAddress(), Ty));
777 } else {
778 Arg = Dest.getAddress();
779 ConstraintStr += '*';
782 } else {
783 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
784 LValue Dest = EmitLValue(InputExpr);
785 Arg = Dest.getAddress();
786 ConstraintStr += '*';
789 return Arg;
792 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
793 // Analyze the asm string to decompose it into its pieces. We know that Sema
794 // has already done this, so it is guaranteed to be successful.
795 llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
796 unsigned DiagOffs;
797 S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
799 // Assemble the pieces into the final asm string.
800 std::string AsmString;
801 for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
802 if (Pieces[i].isString())
803 AsmString += Pieces[i].getString();
804 else if (Pieces[i].getModifier() == '\0')
805 AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
806 else
807 AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
808 Pieces[i].getModifier() + '}';
811 // Get all the output and input constraints together.
812 llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
813 llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
815 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
816 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
817 S.getOutputName(i));
818 bool result = Target.validateOutputConstraint(Info);
819 assert(result && "Failed to parse output constraint"); result=result;
820 OutputConstraintInfos.push_back(Info);
823 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
824 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
825 S.getInputName(i));
826 bool result = Target.validateInputConstraint(OutputConstraintInfos.data(),
827 S.getNumOutputs(),
828 Info); result=result;
829 assert(result && "Failed to parse input constraint");
830 InputConstraintInfos.push_back(Info);
833 std::string Constraints;
835 std::vector<LValue> ResultRegDests;
836 std::vector<QualType> ResultRegQualTys;
837 std::vector<const llvm::Type *> ResultRegTypes;
838 std::vector<const llvm::Type *> ResultTruncRegTypes;
839 std::vector<const llvm::Type*> ArgTypes;
840 std::vector<llvm::Value*> Args;
842 // Keep track of inout constraints.
843 std::string InOutConstraints;
844 std::vector<llvm::Value*> InOutArgs;
845 std::vector<const llvm::Type*> InOutArgTypes;
847 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
848 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
850 // Simplify the output constraint.
851 std::string OutputConstraint(S.getOutputConstraint(i));
852 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
854 const Expr *OutExpr = S.getOutputExpr(i);
855 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
857 LValue Dest = EmitLValue(OutExpr);
858 if (!Constraints.empty())
859 Constraints += ',';
861 // If this is a register output, then make the inline asm return it
862 // by-value. If this is a memory result, return the value by-reference.
863 if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
864 Constraints += "=" + OutputConstraint;
865 ResultRegQualTys.push_back(OutExpr->getType());
866 ResultRegDests.push_back(Dest);
867 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
868 ResultTruncRegTypes.push_back(ResultRegTypes.back());
870 // If this output is tied to an input, and if the input is larger, then
871 // we need to set the actual result type of the inline asm node to be the
872 // same as the input type.
873 if (Info.hasMatchingInput()) {
874 unsigned InputNo;
875 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
876 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
877 if (Input.hasTiedOperand() &&
878 Input.getTiedOperand() == i)
879 break;
881 assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
883 QualType InputTy = S.getInputExpr(InputNo)->getType();
884 QualType OutputTy = OutExpr->getType();
886 uint64_t InputSize = getContext().getTypeSize(InputTy);
887 if (getContext().getTypeSize(OutputTy) < InputSize) {
888 // Form the asm to return the value as a larger integer type.
889 ResultRegTypes.back() = llvm::IntegerType::get((unsigned)InputSize);
893 } else {
894 ArgTypes.push_back(Dest.getAddress()->getType());
895 Args.push_back(Dest.getAddress());
896 Constraints += "=*";
897 Constraints += OutputConstraint;
900 if (Info.isReadWrite()) {
901 InOutConstraints += ',';
903 const Expr *InputExpr = S.getOutputExpr(i);
904 llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, InOutConstraints);
906 if (Info.allowsRegister())
907 InOutConstraints += llvm::utostr(i);
908 else
909 InOutConstraints += OutputConstraint;
911 InOutArgTypes.push_back(Arg->getType());
912 InOutArgs.push_back(Arg);
916 unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
918 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
919 const Expr *InputExpr = S.getInputExpr(i);
921 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
923 if (!Constraints.empty())
924 Constraints += ',';
926 // Simplify the input constraint.
927 std::string InputConstraint(S.getInputConstraint(i));
928 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
929 &OutputConstraintInfos);
931 llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
933 // If this input argument is tied to a larger output result, extend the
934 // input to be the same size as the output. The LLVM backend wants to see
935 // the input and output of a matching constraint be the same size. Note
936 // that GCC does not define what the top bits are here. We use zext because
937 // that is usually cheaper, but LLVM IR should really get an anyext someday.
938 if (Info.hasTiedOperand()) {
939 unsigned Output = Info.getTiedOperand();
940 QualType OutputTy = S.getOutputExpr(Output)->getType();
941 QualType InputTy = InputExpr->getType();
943 if (getContext().getTypeSize(OutputTy) >
944 getContext().getTypeSize(InputTy)) {
945 // Use ptrtoint as appropriate so that we can do our extension.
946 if (isa<llvm::PointerType>(Arg->getType()))
947 Arg = Builder.CreatePtrToInt(Arg,
948 llvm::IntegerType::get(LLVMPointerWidth));
949 unsigned OutputSize = (unsigned)getContext().getTypeSize(OutputTy);
950 Arg = Builder.CreateZExt(Arg, llvm::IntegerType::get(OutputSize));
955 ArgTypes.push_back(Arg->getType());
956 Args.push_back(Arg);
957 Constraints += InputConstraint;
960 // Append the "input" part of inout constraints last.
961 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
962 ArgTypes.push_back(InOutArgTypes[i]);
963 Args.push_back(InOutArgs[i]);
965 Constraints += InOutConstraints;
967 // Clobbers
968 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
969 std::string Clobber(S.getClobber(i)->getStrData(),
970 S.getClobber(i)->getByteLength());
972 Clobber = Target.getNormalizedGCCRegisterName(Clobber.c_str());
974 if (i != 0 || NumConstraints != 0)
975 Constraints += ',';
977 Constraints += "~{";
978 Constraints += Clobber;
979 Constraints += '}';
982 // Add machine specific clobbers
983 std::string MachineClobbers = Target.getClobbers();
984 if (!MachineClobbers.empty()) {
985 if (!Constraints.empty())
986 Constraints += ',';
987 Constraints += MachineClobbers;
990 const llvm::Type *ResultType;
991 if (ResultRegTypes.empty())
992 ResultType = llvm::Type::VoidTy;
993 else if (ResultRegTypes.size() == 1)
994 ResultType = ResultRegTypes[0];
995 else
996 ResultType = llvm::StructType::get(ResultRegTypes);
998 const llvm::FunctionType *FTy =
999 llvm::FunctionType::get(ResultType, ArgTypes, false);
1001 llvm::InlineAsm *IA =
1002 llvm::InlineAsm::get(FTy, AsmString, Constraints,
1003 S.isVolatile() || S.getNumOutputs() == 0);
1004 llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end());
1005 Result->addAttribute(~0, llvm::Attribute::NoUnwind);
1008 // Extract all of the register value results from the asm.
1009 std::vector<llvm::Value*> RegResults;
1010 if (ResultRegTypes.size() == 1) {
1011 RegResults.push_back(Result);
1012 } else {
1013 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1014 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1015 RegResults.push_back(Tmp);
1019 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1020 llvm::Value *Tmp = RegResults[i];
1022 // If the result type of the LLVM IR asm doesn't match the result type of
1023 // the expression, do the conversion.
1024 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1025 const llvm::Type *TruncTy = ResultTruncRegTypes[i];
1026 // Truncate the integer result to the right size, note that
1027 // ResultTruncRegTypes can be a pointer.
1028 uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
1029 Tmp = Builder.CreateTrunc(Tmp, llvm::IntegerType::get((unsigned)ResSize));
1031 if (Tmp->getType() != TruncTy) {
1032 assert(isa<llvm::PointerType>(TruncTy));
1033 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1037 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i],
1038 ResultRegQualTys[i]);