missing project/build files
[client-tools.git] / src / external / 3rd / library / libxml / trionan.c
blob659e1c005e9ca01aa501b4ba616a72eacf3b41c8
1 /*************************************************************************
3 * $Id: trionan.c,v 1.10 2002/10/22 17:35:33 veillard Exp $
5 * Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
12 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
13 * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
14 * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
16 ************************************************************************
18 * Functions to handle special quantities in floating-point numbers
19 * (that is, NaNs and infinity). They provide the capability to detect
20 * and fabricate special quantities.
22 * Although written to be as portable as possible, it can never be
23 * guaranteed to work on all platforms, as not all hardware supports
24 * special quantities.
26 * The approach used here (approximately) is to:
28 * 1. Use C99 functionality when available.
29 * 2. Use IEEE 754 bit-patterns if possible.
30 * 3. Use platform-specific techniques.
32 ************************************************************************/
35 * TODO:
36 * o Put all the magic into trio_fpclassify_and_signbit(), and use this from
37 * trio_isnan() etc.
40 /*************************************************************************
41 * Include files
43 #include "triodef.h"
44 #include "trionan.h"
46 #include <math.h>
47 #include <string.h>
48 #include <limits.h>
49 #include <float.h>
50 #if defined(TRIO_PLATFORM_UNIX)
51 # include <signal.h>
52 #endif
53 #if defined(TRIO_COMPILER_DECC)
54 # include <fp_class.h>
55 #endif
56 #include <assert.h>
58 #if defined(TRIO_DOCUMENTATION)
59 # include "doc/doc_nan.h"
60 #endif
61 /** @addtogroup SpecialQuantities
65 /*************************************************************************
66 * Definitions
69 #define TRIO_TRUE (1 == 1)
70 #define TRIO_FALSE (0 == 1)
72 /* We must enable IEEE floating-point on Alpha */
73 #if defined(__alpha) && !defined(_IEEE_FP)
74 # if defined(TRIO_COMPILER_DECC)
75 # if defined(TRIO_PLATFORM_VMS)
76 # error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
77 # else
78 # if !defined(_CFE)
79 # error "Must be compiled with option -ieee"
80 # endif
81 # endif
82 # elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
83 # error "Must be compiled with option -mieee"
84 # endif
85 #endif /* __alpha && ! _IEEE_FP */
88 * In ANSI/IEEE 754-1985 64-bits double format numbers have the
89 * following properties (amoungst others)
91 * o FLT_RADIX == 2: binary encoding
92 * o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
93 * to indicate special numbers (e.g. NaN and Infinity), so the
94 * maximum exponent is 10 bits wide (2^10 == 1024).
95 * o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
96 * numbers are normalized the initial binary 1 is represented
97 * implicitly (the so-called "hidden bit"), which leaves us with
98 * the ability to represent 53 bits wide mantissa.
100 #if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
101 # define USE_IEEE_754
102 #endif
105 /*************************************************************************
106 * Constants
109 static TRIO_CONST char rcsid[] = "@(#)$Id: trionan.c,v 1.10 2002/10/22 17:35:33 veillard Exp $";
111 #if defined(USE_IEEE_754)
114 * Endian-agnostic indexing macro.
116 * The value of internalEndianMagic, when converted into a 64-bit
117 * integer, becomes 0x0706050403020100 (we could have used a 64-bit
118 * integer value instead of a double, but not all platforms supports
119 * that type). The value is automatically encoded with the correct
120 * endianess by the compiler, which means that we can support any
121 * kind of endianess. The individual bytes are then used as an index
122 * for the IEEE 754 bit-patterns and masks.
124 #define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])
126 static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275;
128 /* Mask for the exponent */
129 static TRIO_CONST unsigned char ieee_754_exponent_mask[] = {
130 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
133 /* Mask for the mantissa */
134 static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = {
135 0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
138 /* Mask for the sign bit */
139 static TRIO_CONST unsigned char ieee_754_sign_mask[] = {
140 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
143 /* Bit-pattern for negative zero */
144 static TRIO_CONST unsigned char ieee_754_negzero_array[] = {
145 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
148 /* Bit-pattern for infinity */
149 static TRIO_CONST unsigned char ieee_754_infinity_array[] = {
150 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
153 /* Bit-pattern for quiet NaN */
154 static TRIO_CONST unsigned char ieee_754_qnan_array[] = {
155 0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
159 /*************************************************************************
160 * Functions
164 * trio_make_double
166 TRIO_PRIVATE double
167 trio_make_double
168 TRIO_ARGS1((values),
169 TRIO_CONST unsigned char *values)
171 TRIO_VOLATILE double result;
172 int i;
174 for (i = 0; i < (int)sizeof(double); i++) {
175 ((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i];
177 return result;
181 * trio_is_special_quantity
183 TRIO_PRIVATE int
184 trio_is_special_quantity
185 TRIO_ARGS2((number, has_mantissa),
186 double number,
187 int *has_mantissa)
189 unsigned int i;
190 unsigned char current;
191 int is_special_quantity = TRIO_TRUE;
193 *has_mantissa = 0;
195 for (i = 0; i < (unsigned int)sizeof(double); i++) {
196 current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)];
197 is_special_quantity
198 &= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]);
199 *has_mantissa |= (current & ieee_754_mantissa_mask[i]);
201 return is_special_quantity;
205 * trio_is_negative
207 TRIO_PRIVATE int
208 trio_is_negative
209 TRIO_ARGS1((number),
210 double number)
212 unsigned int i;
213 int is_negative = TRIO_FALSE;
215 for (i = 0; i < (unsigned int)sizeof(double); i++) {
216 is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]
217 & ieee_754_sign_mask[i]);
219 return is_negative;
222 #endif /* USE_IEEE_754 */
226 Generate negative zero.
228 @return Floating-point representation of negative zero.
230 TRIO_PUBLIC double
231 trio_nzero(TRIO_NOARGS)
233 #if defined(USE_IEEE_754)
234 return trio_make_double(ieee_754_negzero_array);
235 #else
236 TRIO_VOLATILE double zero = 0.0;
238 return -zero;
239 #endif
243 Generate positive infinity.
245 @return Floating-point representation of positive infinity.
247 TRIO_PUBLIC double
248 trio_pinf(TRIO_NOARGS)
250 /* Cache the result */
251 static double result = 0.0;
253 if (result == 0.0) {
255 #if defined(INFINITY) && defined(__STDC_IEC_559__)
256 result = (double)INFINITY;
258 #elif defined(USE_IEEE_754)
259 result = trio_make_double(ieee_754_infinity_array);
261 #else
263 * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
264 * as infinity. Otherwise we have to resort to an overflow
265 * operation to generate infinity.
267 # if defined(TRIO_PLATFORM_UNIX)
268 void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
269 # endif
271 result = HUGE_VAL;
272 if (HUGE_VAL == DBL_MAX) {
273 /* Force overflow */
274 result += HUGE_VAL;
277 # if defined(TRIO_PLATFORM_UNIX)
278 signal(SIGFPE, signal_handler);
279 # endif
281 #endif
283 return result;
287 Generate negative infinity.
289 @return Floating-point value of negative infinity.
291 TRIO_PUBLIC double
292 trio_ninf(TRIO_NOARGS)
294 static double result = 0.0;
296 if (result == 0.0) {
298 * Negative infinity is calculated by negating positive infinity,
299 * which can be done because it is legal to do calculations on
300 * infinity (for example, 1 / infinity == 0).
302 result = -trio_pinf();
304 return result;
308 Generate NaN.
310 @return Floating-point representation of NaN.
312 TRIO_PUBLIC double
313 trio_nan(TRIO_NOARGS)
315 /* Cache the result */
316 static double result = 0.0;
318 if (result == 0.0) {
320 #if defined(TRIO_COMPILER_SUPPORTS_C99)
321 result = nan("");
323 #elif defined(NAN) && defined(__STDC_IEC_559__)
324 result = (double)NAN;
326 #elif defined(USE_IEEE_754)
327 result = trio_make_double(ieee_754_qnan_array);
329 #else
331 * There are several ways to generate NaN. The one used here is
332 * to divide infinity by infinity. I would have preferred to add
333 * negative infinity to positive infinity, but that yields wrong
334 * result (infinity) on FreeBSD.
336 * This may fail if the hardware does not support NaN, or if
337 * the Invalid Operation floating-point exception is unmasked.
339 # if defined(TRIO_PLATFORM_UNIX)
340 void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
341 # endif
343 result = trio_pinf() / trio_pinf();
345 # if defined(TRIO_PLATFORM_UNIX)
346 signal(SIGFPE, signal_handler);
347 # endif
349 #endif
351 return result;
355 Check for NaN.
357 @param number An arbitrary floating-point number.
358 @return Boolean value indicating whether or not the number is a NaN.
360 TRIO_PUBLIC int
361 trio_isnan
362 TRIO_ARGS1((number),
363 double number)
365 #if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \
366 || defined(TRIO_COMPILER_SUPPORTS_UNIX95)
368 * C99 defines isnan() as a macro. UNIX95 defines isnan() as a
369 * function. This function was already present in XPG4, but this
370 * is a bit tricky to detect with compiler defines, so we choose
371 * the conservative approach and only use it for UNIX95.
373 return isnan(number);
375 #elif defined(TRIO_COMPILER_MSVC)
377 * MSVC has an _isnan() function
379 return _isnan(number);
381 #elif defined(USE_IEEE_754)
383 * Examine IEEE 754 bit-pattern. A NaN must have a special exponent
384 * pattern, and a non-empty mantissa.
386 int has_mantissa;
387 int is_special_quantity;
389 is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
391 return (is_special_quantity && has_mantissa);
393 #else
395 * Fallback solution
397 int status;
398 double integral, fraction;
400 # if defined(TRIO_PLATFORM_UNIX)
401 void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
402 # endif
404 status = (/*
405 * NaN is the only number which does not compare to itself
407 ((TRIO_VOLATILE double)number != (TRIO_VOLATILE double)number) ||
409 * Fallback solution if NaN compares to NaN
411 ((number != 0.0) &&
412 (fraction = modf(number, &integral),
413 integral == fraction)));
415 # if defined(TRIO_PLATFORM_UNIX)
416 signal(SIGFPE, signal_handler);
417 # endif
419 return status;
421 #endif
425 Check for infinity.
427 @param number An arbitrary floating-point number.
428 @return 1 if positive infinity, -1 if negative infinity, 0 otherwise.
430 TRIO_PUBLIC int
431 trio_isinf
432 TRIO_ARGS1((number),
433 double number)
435 #if defined(TRIO_COMPILER_DECC)
437 * DECC has an isinf() macro, but it works differently than that
438 * of C99, so we use the fp_class() function instead.
440 return ((fp_class(number) == FP_POS_INF)
442 : ((fp_class(number) == FP_NEG_INF) ? -1 : 0));
444 #elif defined(isinf)
446 * C99 defines isinf() as a macro.
448 return isinf(number)
449 ? ((number > 0.0) ? 1 : -1)
450 : 0;
452 #elif defined(TRIO_COMPILER_MSVC)
454 * MSVC has an _fpclass() function that can be used to detect infinity.
456 return ((_fpclass(number) == _FPCLASS_PINF)
458 : ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0));
460 #elif defined(USE_IEEE_754)
462 * Examine IEEE 754 bit-pattern. Infinity must have a special exponent
463 * pattern, and an empty mantissa.
465 int has_mantissa;
466 int is_special_quantity;
468 is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
470 return (is_special_quantity && !has_mantissa)
471 ? ((number < 0.0) ? -1 : 1)
472 : 0;
474 #else
476 * Fallback solution.
478 int status;
480 # if defined(TRIO_PLATFORM_UNIX)
481 void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
482 # endif
484 double infinity = trio_pinf();
486 status = ((number == infinity)
488 : ((number == -infinity) ? -1 : 0));
490 # if defined(TRIO_PLATFORM_UNIX)
491 signal(SIGFPE, signal_handler);
492 # endif
494 return status;
496 #endif
501 Check for finity.
503 @param number An arbitrary floating-point number.
504 @return Boolean value indicating whether or not the number is a finite.
506 TRIO_PUBLIC int
507 trio_isfinite
508 TRIO_ARGS1((number),
509 double number)
511 #if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite)
513 * C99 defines isfinite() as a macro.
515 return isfinite(number);
517 #elif defined(TRIO_COMPILER_MSVC)
519 * MSVC uses _finite().
521 return _finite(number);
523 #elif defined(USE_IEEE_754)
525 * Examine IEEE 754 bit-pattern. For finity we do not care about the
526 * mantissa.
528 int dummy;
530 return (! trio_is_special_quantity(number, &dummy));
532 #else
534 * Fallback solution.
536 return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0));
538 #endif
542 * The sign of NaN is always false
544 TRIO_PUBLIC int
545 trio_fpclassify_and_signbit
546 TRIO_ARGS2((number, is_negative),
547 double number,
548 int *is_negative)
550 #if defined(fpclassify) && defined(signbit)
552 * C99 defines fpclassify() and signbit() as a macros
554 *is_negative = signbit(number);
555 switch (fpclassify(number)) {
556 case FP_NAN:
557 return TRIO_FP_NAN;
558 case FP_INFINITE:
559 return TRIO_FP_INFINITE;
560 case FP_SUBNORMAL:
561 return TRIO_FP_SUBNORMAL;
562 case FP_ZERO:
563 return TRIO_FP_ZERO;
564 default:
565 return TRIO_FP_NORMAL;
568 #elif defined(TRIO_COMPILER_DECC)
570 * DECC has an fp_class() function.
572 switch (fp_class(number)) {
573 case FP_QNAN:
574 case FP_SNAN:
575 *is_negative = TRIO_FALSE; /* NaN has no sign */
576 return TRIO_FP_NAN;
577 case FP_POS_INF:
578 *is_negative = TRIO_FALSE;
579 return TRIO_FP_INFINITE;
580 case FP_NEG_INF:
581 *is_negative = TRIO_TRUE;
582 return TRIO_FP_INFINITE;
583 case FP_POS_DENORM:
584 *is_negative = TRIO_FALSE;
585 return TRIO_FP_SUBNORMAL;
586 case FP_NEG_DENORM:
587 *is_negative = TRIO_TRUE;
588 return TRIO_FP_SUBNORMAL;
589 case FP_POS_ZERO:
590 *is_negative = TRIO_FALSE;
591 return TRIO_FP_ZERO;
592 case FP_NEG_ZERO:
593 *is_negative = TRIO_TRUE;
594 return TRIO_FP_ZERO;
595 case FP_POS_NORM:
596 *is_negative = TRIO_FALSE;
597 return TRIO_FP_NORMAL;
598 case FP_NEG_NORM:
599 *is_negative = TRIO_TRUE;
600 return TRIO_FP_NORMAL;
601 default:
602 /* Just in case... */
603 *is_negative = (number < 0.0);
604 return TRIO_FP_NORMAL;
607 #elif defined(TRIO_COMPILER_MSVC)
609 * MSVC has an _fpclass() function.
611 switch (_fpclass(number)) {
612 case _FPCLASS_QNAN:
613 case _FPCLASS_SNAN:
614 *is_negative = TRIO_FALSE;
615 return TRIO_FP_NAN;
616 case _FPCLASS_PINF:
617 *is_negative = TRIO_FALSE;
618 return TRIO_FP_INFINITE;
619 case _FPCLASS_NINF:
620 *is_negative = TRIO_TRUE;
621 return TRIO_FP_INFINITE;
622 case _FPCLASS_PD:
623 *is_negative = TRIO_FALSE;
624 return TRIO_FP_SUBNORMAL;
625 case _FPCLASS_ND:
626 *is_negative = TRIO_TRUE;
627 return TRIO_FP_SUBNORMAL;
628 case _FPCLASS_PZ:
629 *is_negative = TRIO_FALSE;
630 return TRIO_FP_ZERO;
631 case _FPCLASS_NZ:
632 *is_negative = TRIO_TRUE;
633 return TRIO_FP_ZERO;
634 case _FPCLASS_PN:
635 *is_negative = TRIO_FALSE;
636 return TRIO_FP_NORMAL;
637 case _FPCLASS_NN:
638 *is_negative = TRIO_TRUE;
639 return TRIO_FP_NORMAL;
640 default:
641 /* Just in case... */
642 *is_negative = (number < 0.0);
643 return TRIO_FP_NORMAL;
646 #elif defined(FP_PLUS_NORM) || defined(__hpux)
649 * HP-UX 9.x and 10.x have an fpclassify() function, that is different
650 * from the C99 fpclassify() macro supported on HP-UX 11.x.
652 switch (fpclassify(number)) {
653 case FP_QNAN:
654 case FP_SNAN:
655 *is_negative = TRIO_FALSE;
656 return TRIO_FP_NAN;
657 case FP_PLUS_INF:
658 *is_negative = TRIO_FALSE;
659 return TRIO_FP_INFINITE;
660 case FP_MINUS_INF:
661 *is_negative = TRIO_TRUE;
662 return TRIO_FP_INFINITE;
663 case FP_PLUS_DENORM:
664 *is_negative = TRIO_FALSE;
665 return TRIO_FP_SUBNORMAL;
666 case FP_MINUS_DENORM:
667 *is_negative = TRIO_TRUE;
668 return TRIO_FP_SUBNORMAL;
669 case FP_PLUS_ZERO:
670 *is_negative = TRIO_FALSE;
671 return TRIO_FP_ZERO;
672 case FP_MINUS_ZERO:
673 *is_negative = TRIO_TRUE;
674 return TRIO_FP_ZERO;
675 case FP_PLUS_NORM:
676 *is_negative = TRIO_FALSE;
677 return TRIO_FP_NORMAL;
678 case FP_MINUS_NORM:
679 *is_negative = TRIO_TRUE;
680 return TRIO_FP_NORMAL;
681 default:
682 assert(0);
685 #else
687 * Fallback solution.
689 int rc;
691 if (number == 0.0) {
693 * In IEEE 754 the sign of zero is ignored in comparisons, so we
694 * have to handle this as a special case by examining the sign bit
695 * directly.
697 #if defined(USE_IEEE_754)
698 *is_negative = trio_is_negative(number);
699 #else
700 *is_negative = TRIO_FALSE; /* FIXME */
701 #endif
702 return TRIO_FP_ZERO;
704 if (trio_isnan(number)) {
705 *is_negative = TRIO_FALSE;
706 return TRIO_FP_NAN;
708 if ((rc = trio_isinf(number))) {
709 *is_negative = (rc == -1);
710 return TRIO_FP_INFINITE;
712 if ((number > 0.0) && (number < DBL_MIN)) {
713 *is_negative = TRIO_FALSE;
714 return TRIO_FP_SUBNORMAL;
716 if ((number < 0.0) && (number > -DBL_MIN)) {
717 *is_negative = TRIO_TRUE;
718 return TRIO_FP_SUBNORMAL;
720 *is_negative = (number < 0.0);
721 return TRIO_FP_NORMAL;
723 #endif
727 Examine the sign of a number.
729 @param number An arbitrary floating-point number.
730 @return Boolean value indicating whether or not the number has the
731 sign bit set (i.e. is negative).
733 TRIO_PUBLIC int
734 trio_signbit
735 TRIO_ARGS1((number),
736 double number)
738 int is_negative;
740 (void)trio_fpclassify_and_signbit(number, &is_negative);
741 return is_negative;
745 Examine the class of a number.
747 @param number An arbitrary floating-point number.
748 @return Enumerable value indicating the class of @p number
750 TRIO_PUBLIC int
751 trio_fpclassify
752 TRIO_ARGS1((number),
753 double number)
755 int dummy;
757 return trio_fpclassify_and_signbit(number, &dummy);
761 /** @} SpecialQuantities */
763 /*************************************************************************
764 * For test purposes.
766 * Add the following compiler option to include this test code.
768 * Unix : -DSTANDALONE
769 * VMS : /DEFINE=(STANDALONE)
771 #if defined(STANDALONE)
772 # include <stdio.h>
774 static TRIO_CONST char *
775 getClassification
776 TRIO_ARGS1((type),
777 int type)
779 switch (type) {
780 case TRIO_FP_INFINITE:
781 return "FP_INFINITE";
782 case TRIO_FP_NAN:
783 return "FP_NAN";
784 case TRIO_FP_NORMAL:
785 return "FP_NORMAL";
786 case TRIO_FP_SUBNORMAL:
787 return "FP_SUBNORMAL";
788 case TRIO_FP_ZERO:
789 return "FP_ZERO";
790 default:
791 return "FP_UNKNOWN";
795 static void
796 print_class
797 TRIO_ARGS2((prefix, number),
798 TRIO_CONST char *prefix,
799 double number)
801 printf("%-6s: %s %-15s %g\n",
802 prefix,
803 trio_signbit(number) ? "-" : "+",
804 getClassification(trio_fpclassify(number)),
805 number);
808 int main(TRIO_NOARGS)
810 double my_nan;
811 double my_pinf;
812 double my_ninf;
813 # if defined(TRIO_PLATFORM_UNIX)
814 void (*signal_handler) TRIO_PROTO((int));
815 # endif
817 my_nan = trio_nan();
818 my_pinf = trio_pinf();
819 my_ninf = trio_ninf();
821 print_class("Nan", my_nan);
822 print_class("PInf", my_pinf);
823 print_class("NInf", my_ninf);
824 print_class("PZero", 0.0);
825 print_class("NZero", -0.0);
826 print_class("PNorm", 1.0);
827 print_class("NNorm", -1.0);
828 print_class("PSub", 1.01e-307 - 1.00e-307);
829 print_class("NSub", 1.00e-307 - 1.01e-307);
831 printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
832 my_nan,
833 ((unsigned char *)&my_nan)[0],
834 ((unsigned char *)&my_nan)[1],
835 ((unsigned char *)&my_nan)[2],
836 ((unsigned char *)&my_nan)[3],
837 ((unsigned char *)&my_nan)[4],
838 ((unsigned char *)&my_nan)[5],
839 ((unsigned char *)&my_nan)[6],
840 ((unsigned char *)&my_nan)[7],
841 trio_isnan(my_nan), trio_isinf(my_nan));
842 printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
843 my_pinf,
844 ((unsigned char *)&my_pinf)[0],
845 ((unsigned char *)&my_pinf)[1],
846 ((unsigned char *)&my_pinf)[2],
847 ((unsigned char *)&my_pinf)[3],
848 ((unsigned char *)&my_pinf)[4],
849 ((unsigned char *)&my_pinf)[5],
850 ((unsigned char *)&my_pinf)[6],
851 ((unsigned char *)&my_pinf)[7],
852 trio_isnan(my_pinf), trio_isinf(my_pinf));
853 printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
854 my_ninf,
855 ((unsigned char *)&my_ninf)[0],
856 ((unsigned char *)&my_ninf)[1],
857 ((unsigned char *)&my_ninf)[2],
858 ((unsigned char *)&my_ninf)[3],
859 ((unsigned char *)&my_ninf)[4],
860 ((unsigned char *)&my_ninf)[5],
861 ((unsigned char *)&my_ninf)[6],
862 ((unsigned char *)&my_ninf)[7],
863 trio_isnan(my_ninf), trio_isinf(my_ninf));
865 # if defined(TRIO_PLATFORM_UNIX)
866 signal_handler = signal(SIGFPE, SIG_IGN);
867 # endif
869 my_pinf = DBL_MAX + DBL_MAX;
870 my_ninf = -my_pinf;
871 my_nan = my_pinf / my_pinf;
873 # if defined(TRIO_PLATFORM_UNIX)
874 signal(SIGFPE, signal_handler);
875 # endif
877 printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
878 my_nan,
879 ((unsigned char *)&my_nan)[0],
880 ((unsigned char *)&my_nan)[1],
881 ((unsigned char *)&my_nan)[2],
882 ((unsigned char *)&my_nan)[3],
883 ((unsigned char *)&my_nan)[4],
884 ((unsigned char *)&my_nan)[5],
885 ((unsigned char *)&my_nan)[6],
886 ((unsigned char *)&my_nan)[7],
887 trio_isnan(my_nan), trio_isinf(my_nan));
888 printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
889 my_pinf,
890 ((unsigned char *)&my_pinf)[0],
891 ((unsigned char *)&my_pinf)[1],
892 ((unsigned char *)&my_pinf)[2],
893 ((unsigned char *)&my_pinf)[3],
894 ((unsigned char *)&my_pinf)[4],
895 ((unsigned char *)&my_pinf)[5],
896 ((unsigned char *)&my_pinf)[6],
897 ((unsigned char *)&my_pinf)[7],
898 trio_isnan(my_pinf), trio_isinf(my_pinf));
899 printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
900 my_ninf,
901 ((unsigned char *)&my_ninf)[0],
902 ((unsigned char *)&my_ninf)[1],
903 ((unsigned char *)&my_ninf)[2],
904 ((unsigned char *)&my_ninf)[3],
905 ((unsigned char *)&my_ninf)[4],
906 ((unsigned char *)&my_ninf)[5],
907 ((unsigned char *)&my_ninf)[6],
908 ((unsigned char *)&my_ninf)[7],
909 trio_isnan(my_ninf), trio_isinf(my_ninf));
911 return 0;
913 #endif