1 /*************************************************************************
3 * $Id: trionan.c,v 1.10 2002/10/22 17:35:33 veillard Exp $
5 * Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
12 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
13 * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
14 * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
16 ************************************************************************
18 * Functions to handle special quantities in floating-point numbers
19 * (that is, NaNs and infinity). They provide the capability to detect
20 * and fabricate special quantities.
22 * Although written to be as portable as possible, it can never be
23 * guaranteed to work on all platforms, as not all hardware supports
26 * The approach used here (approximately) is to:
28 * 1. Use C99 functionality when available.
29 * 2. Use IEEE 754 bit-patterns if possible.
30 * 3. Use platform-specific techniques.
32 ************************************************************************/
36 * o Put all the magic into trio_fpclassify_and_signbit(), and use this from
40 /*************************************************************************
50 #if defined(TRIO_PLATFORM_UNIX)
53 #if defined(TRIO_COMPILER_DECC)
54 # include <fp_class.h>
58 #if defined(TRIO_DOCUMENTATION)
59 # include "doc/doc_nan.h"
61 /** @addtogroup SpecialQuantities
65 /*************************************************************************
69 #define TRIO_TRUE (1 == 1)
70 #define TRIO_FALSE (0 == 1)
72 /* We must enable IEEE floating-point on Alpha */
73 #if defined(__alpha) && !defined(_IEEE_FP)
74 # if defined(TRIO_COMPILER_DECC)
75 # if defined(TRIO_PLATFORM_VMS)
76 # error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
79 # error "Must be compiled with option -ieee"
82 # elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
83 # error "Must be compiled with option -mieee"
85 #endif /* __alpha && ! _IEEE_FP */
88 * In ANSI/IEEE 754-1985 64-bits double format numbers have the
89 * following properties (amoungst others)
91 * o FLT_RADIX == 2: binary encoding
92 * o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
93 * to indicate special numbers (e.g. NaN and Infinity), so the
94 * maximum exponent is 10 bits wide (2^10 == 1024).
95 * o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
96 * numbers are normalized the initial binary 1 is represented
97 * implicitly (the so-called "hidden bit"), which leaves us with
98 * the ability to represent 53 bits wide mantissa.
100 #if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
101 # define USE_IEEE_754
105 /*************************************************************************
109 static TRIO_CONST
char rcsid
[] = "@(#)$Id: trionan.c,v 1.10 2002/10/22 17:35:33 veillard Exp $";
111 #if defined(USE_IEEE_754)
114 * Endian-agnostic indexing macro.
116 * The value of internalEndianMagic, when converted into a 64-bit
117 * integer, becomes 0x0706050403020100 (we could have used a 64-bit
118 * integer value instead of a double, but not all platforms supports
119 * that type). The value is automatically encoded with the correct
120 * endianess by the compiler, which means that we can support any
121 * kind of endianess. The individual bytes are then used as an index
122 * for the IEEE 754 bit-patterns and masks.
124 #define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])
126 static TRIO_CONST
double internalEndianMagic
= 7.949928895127363e-275;
128 /* Mask for the exponent */
129 static TRIO_CONST
unsigned char ieee_754_exponent_mask
[] = {
130 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
133 /* Mask for the mantissa */
134 static TRIO_CONST
unsigned char ieee_754_mantissa_mask
[] = {
135 0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
138 /* Mask for the sign bit */
139 static TRIO_CONST
unsigned char ieee_754_sign_mask
[] = {
140 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
143 /* Bit-pattern for negative zero */
144 static TRIO_CONST
unsigned char ieee_754_negzero_array
[] = {
145 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
148 /* Bit-pattern for infinity */
149 static TRIO_CONST
unsigned char ieee_754_infinity_array
[] = {
150 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
153 /* Bit-pattern for quiet NaN */
154 static TRIO_CONST
unsigned char ieee_754_qnan_array
[] = {
155 0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
159 /*************************************************************************
169 TRIO_CONST
unsigned char *values
)
171 TRIO_VOLATILE
double result
;
174 for (i
= 0; i
< (int)sizeof(double); i
++) {
175 ((TRIO_VOLATILE
unsigned char *)&result
)[TRIO_DOUBLE_INDEX(i
)] = values
[i
];
181 * trio_is_special_quantity
184 trio_is_special_quantity
185 TRIO_ARGS2((number
, has_mantissa
),
190 unsigned char current
;
191 int is_special_quantity
= TRIO_TRUE
;
195 for (i
= 0; i
< (unsigned int)sizeof(double); i
++) {
196 current
= ((unsigned char *)&number
)[TRIO_DOUBLE_INDEX(i
)];
198 &= ((current
& ieee_754_exponent_mask
[i
]) == ieee_754_exponent_mask
[i
]);
199 *has_mantissa
|= (current
& ieee_754_mantissa_mask
[i
]);
201 return is_special_quantity
;
213 int is_negative
= TRIO_FALSE
;
215 for (i
= 0; i
< (unsigned int)sizeof(double); i
++) {
216 is_negative
|= (((unsigned char *)&number
)[TRIO_DOUBLE_INDEX(i
)]
217 & ieee_754_sign_mask
[i
]);
222 #endif /* USE_IEEE_754 */
226 Generate negative zero.
228 @return Floating-point representation of negative zero.
231 trio_nzero(TRIO_NOARGS
)
233 #if defined(USE_IEEE_754)
234 return trio_make_double(ieee_754_negzero_array
);
236 TRIO_VOLATILE
double zero
= 0.0;
243 Generate positive infinity.
245 @return Floating-point representation of positive infinity.
248 trio_pinf(TRIO_NOARGS
)
250 /* Cache the result */
251 static double result
= 0.0;
255 #if defined(INFINITY) && defined(__STDC_IEC_559__)
256 result
= (double)INFINITY
;
258 #elif defined(USE_IEEE_754)
259 result
= trio_make_double(ieee_754_infinity_array
);
263 * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
264 * as infinity. Otherwise we have to resort to an overflow
265 * operation to generate infinity.
267 # if defined(TRIO_PLATFORM_UNIX)
268 void (*signal_handler
)(int) = signal(SIGFPE
, SIG_IGN
);
272 if (HUGE_VAL
== DBL_MAX
) {
277 # if defined(TRIO_PLATFORM_UNIX)
278 signal(SIGFPE
, signal_handler
);
287 Generate negative infinity.
289 @return Floating-point value of negative infinity.
292 trio_ninf(TRIO_NOARGS
)
294 static double result
= 0.0;
298 * Negative infinity is calculated by negating positive infinity,
299 * which can be done because it is legal to do calculations on
300 * infinity (for example, 1 / infinity == 0).
302 result
= -trio_pinf();
310 @return Floating-point representation of NaN.
313 trio_nan(TRIO_NOARGS
)
315 /* Cache the result */
316 static double result
= 0.0;
320 #if defined(TRIO_COMPILER_SUPPORTS_C99)
323 #elif defined(NAN) && defined(__STDC_IEC_559__)
324 result
= (double)NAN
;
326 #elif defined(USE_IEEE_754)
327 result
= trio_make_double(ieee_754_qnan_array
);
331 * There are several ways to generate NaN. The one used here is
332 * to divide infinity by infinity. I would have preferred to add
333 * negative infinity to positive infinity, but that yields wrong
334 * result (infinity) on FreeBSD.
336 * This may fail if the hardware does not support NaN, or if
337 * the Invalid Operation floating-point exception is unmasked.
339 # if defined(TRIO_PLATFORM_UNIX)
340 void (*signal_handler
)(int) = signal(SIGFPE
, SIG_IGN
);
343 result
= trio_pinf() / trio_pinf();
345 # if defined(TRIO_PLATFORM_UNIX)
346 signal(SIGFPE
, signal_handler
);
357 @param number An arbitrary floating-point number.
358 @return Boolean value indicating whether or not the number is a NaN.
365 #if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \
366 || defined(TRIO_COMPILER_SUPPORTS_UNIX95)
368 * C99 defines isnan() as a macro. UNIX95 defines isnan() as a
369 * function. This function was already present in XPG4, but this
370 * is a bit tricky to detect with compiler defines, so we choose
371 * the conservative approach and only use it for UNIX95.
373 return isnan(number
);
375 #elif defined(TRIO_COMPILER_MSVC)
377 * MSVC has an _isnan() function
379 return _isnan(number
);
381 #elif defined(USE_IEEE_754)
383 * Examine IEEE 754 bit-pattern. A NaN must have a special exponent
384 * pattern, and a non-empty mantissa.
387 int is_special_quantity
;
389 is_special_quantity
= trio_is_special_quantity(number
, &has_mantissa
);
391 return (is_special_quantity
&& has_mantissa
);
398 double integral
, fraction
;
400 # if defined(TRIO_PLATFORM_UNIX)
401 void (*signal_handler
)(int) = signal(SIGFPE
, SIG_IGN
);
405 * NaN is the only number which does not compare to itself
407 ((TRIO_VOLATILE
double)number
!= (TRIO_VOLATILE
double)number
) ||
409 * Fallback solution if NaN compares to NaN
412 (fraction
= modf(number
, &integral
),
413 integral
== fraction
)));
415 # if defined(TRIO_PLATFORM_UNIX)
416 signal(SIGFPE
, signal_handler
);
427 @param number An arbitrary floating-point number.
428 @return 1 if positive infinity, -1 if negative infinity, 0 otherwise.
435 #if defined(TRIO_COMPILER_DECC)
437 * DECC has an isinf() macro, but it works differently than that
438 * of C99, so we use the fp_class() function instead.
440 return ((fp_class(number
) == FP_POS_INF
)
442 : ((fp_class(number
) == FP_NEG_INF
) ? -1 : 0));
446 * C99 defines isinf() as a macro.
449 ? ((number
> 0.0) ? 1 : -1)
452 #elif defined(TRIO_COMPILER_MSVC)
454 * MSVC has an _fpclass() function that can be used to detect infinity.
456 return ((_fpclass(number
) == _FPCLASS_PINF
)
458 : ((_fpclass(number
) == _FPCLASS_NINF
) ? -1 : 0));
460 #elif defined(USE_IEEE_754)
462 * Examine IEEE 754 bit-pattern. Infinity must have a special exponent
463 * pattern, and an empty mantissa.
466 int is_special_quantity
;
468 is_special_quantity
= trio_is_special_quantity(number
, &has_mantissa
);
470 return (is_special_quantity
&& !has_mantissa
)
471 ? ((number
< 0.0) ? -1 : 1)
480 # if defined(TRIO_PLATFORM_UNIX)
481 void (*signal_handler
)(int) = signal(SIGFPE
, SIG_IGN
);
484 double infinity
= trio_pinf();
486 status
= ((number
== infinity
)
488 : ((number
== -infinity
) ? -1 : 0));
490 # if defined(TRIO_PLATFORM_UNIX)
491 signal(SIGFPE
, signal_handler
);
503 @param number An arbitrary floating-point number.
504 @return Boolean value indicating whether or not the number is a finite.
511 #if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite)
513 * C99 defines isfinite() as a macro.
515 return isfinite(number
);
517 #elif defined(TRIO_COMPILER_MSVC)
519 * MSVC uses _finite().
521 return _finite(number
);
523 #elif defined(USE_IEEE_754)
525 * Examine IEEE 754 bit-pattern. For finity we do not care about the
530 return (! trio_is_special_quantity(number
, &dummy
));
536 return ((trio_isinf(number
) == 0) && (trio_isnan(number
) == 0));
542 * The sign of NaN is always false
545 trio_fpclassify_and_signbit
546 TRIO_ARGS2((number
, is_negative
),
550 #if defined(fpclassify) && defined(signbit)
552 * C99 defines fpclassify() and signbit() as a macros
554 *is_negative
= signbit(number
);
555 switch (fpclassify(number
)) {
559 return TRIO_FP_INFINITE
;
561 return TRIO_FP_SUBNORMAL
;
565 return TRIO_FP_NORMAL
;
568 #elif defined(TRIO_COMPILER_DECC)
570 * DECC has an fp_class() function.
572 switch (fp_class(number
)) {
575 *is_negative
= TRIO_FALSE
; /* NaN has no sign */
578 *is_negative
= TRIO_FALSE
;
579 return TRIO_FP_INFINITE
;
581 *is_negative
= TRIO_TRUE
;
582 return TRIO_FP_INFINITE
;
584 *is_negative
= TRIO_FALSE
;
585 return TRIO_FP_SUBNORMAL
;
587 *is_negative
= TRIO_TRUE
;
588 return TRIO_FP_SUBNORMAL
;
590 *is_negative
= TRIO_FALSE
;
593 *is_negative
= TRIO_TRUE
;
596 *is_negative
= TRIO_FALSE
;
597 return TRIO_FP_NORMAL
;
599 *is_negative
= TRIO_TRUE
;
600 return TRIO_FP_NORMAL
;
602 /* Just in case... */
603 *is_negative
= (number
< 0.0);
604 return TRIO_FP_NORMAL
;
607 #elif defined(TRIO_COMPILER_MSVC)
609 * MSVC has an _fpclass() function.
611 switch (_fpclass(number
)) {
614 *is_negative
= TRIO_FALSE
;
617 *is_negative
= TRIO_FALSE
;
618 return TRIO_FP_INFINITE
;
620 *is_negative
= TRIO_TRUE
;
621 return TRIO_FP_INFINITE
;
623 *is_negative
= TRIO_FALSE
;
624 return TRIO_FP_SUBNORMAL
;
626 *is_negative
= TRIO_TRUE
;
627 return TRIO_FP_SUBNORMAL
;
629 *is_negative
= TRIO_FALSE
;
632 *is_negative
= TRIO_TRUE
;
635 *is_negative
= TRIO_FALSE
;
636 return TRIO_FP_NORMAL
;
638 *is_negative
= TRIO_TRUE
;
639 return TRIO_FP_NORMAL
;
641 /* Just in case... */
642 *is_negative
= (number
< 0.0);
643 return TRIO_FP_NORMAL
;
646 #elif defined(FP_PLUS_NORM) || defined(__hpux)
649 * HP-UX 9.x and 10.x have an fpclassify() function, that is different
650 * from the C99 fpclassify() macro supported on HP-UX 11.x.
652 switch (fpclassify(number
)) {
655 *is_negative
= TRIO_FALSE
;
658 *is_negative
= TRIO_FALSE
;
659 return TRIO_FP_INFINITE
;
661 *is_negative
= TRIO_TRUE
;
662 return TRIO_FP_INFINITE
;
664 *is_negative
= TRIO_FALSE
;
665 return TRIO_FP_SUBNORMAL
;
666 case FP_MINUS_DENORM
:
667 *is_negative
= TRIO_TRUE
;
668 return TRIO_FP_SUBNORMAL
;
670 *is_negative
= TRIO_FALSE
;
673 *is_negative
= TRIO_TRUE
;
676 *is_negative
= TRIO_FALSE
;
677 return TRIO_FP_NORMAL
;
679 *is_negative
= TRIO_TRUE
;
680 return TRIO_FP_NORMAL
;
693 * In IEEE 754 the sign of zero is ignored in comparisons, so we
694 * have to handle this as a special case by examining the sign bit
697 #if defined(USE_IEEE_754)
698 *is_negative
= trio_is_negative(number
);
700 *is_negative
= TRIO_FALSE
; /* FIXME */
704 if (trio_isnan(number
)) {
705 *is_negative
= TRIO_FALSE
;
708 if ((rc
= trio_isinf(number
))) {
709 *is_negative
= (rc
== -1);
710 return TRIO_FP_INFINITE
;
712 if ((number
> 0.0) && (number
< DBL_MIN
)) {
713 *is_negative
= TRIO_FALSE
;
714 return TRIO_FP_SUBNORMAL
;
716 if ((number
< 0.0) && (number
> -DBL_MIN
)) {
717 *is_negative
= TRIO_TRUE
;
718 return TRIO_FP_SUBNORMAL
;
720 *is_negative
= (number
< 0.0);
721 return TRIO_FP_NORMAL
;
727 Examine the sign of a number.
729 @param number An arbitrary floating-point number.
730 @return Boolean value indicating whether or not the number has the
731 sign bit set (i.e. is negative).
740 (void)trio_fpclassify_and_signbit(number
, &is_negative
);
745 Examine the class of a number.
747 @param number An arbitrary floating-point number.
748 @return Enumerable value indicating the class of @p number
757 return trio_fpclassify_and_signbit(number
, &dummy
);
761 /** @} SpecialQuantities */
763 /*************************************************************************
766 * Add the following compiler option to include this test code.
768 * Unix : -DSTANDALONE
769 * VMS : /DEFINE=(STANDALONE)
771 #if defined(STANDALONE)
774 static TRIO_CONST
char *
780 case TRIO_FP_INFINITE
:
781 return "FP_INFINITE";
786 case TRIO_FP_SUBNORMAL
:
787 return "FP_SUBNORMAL";
797 TRIO_ARGS2((prefix
, number
),
798 TRIO_CONST
char *prefix
,
801 printf("%-6s: %s %-15s %g\n",
803 trio_signbit(number
) ? "-" : "+",
804 getClassification(trio_fpclassify(number
)),
808 int main(TRIO_NOARGS
)
813 # if defined(TRIO_PLATFORM_UNIX)
814 void (*signal_handler
) TRIO_PROTO((int));
818 my_pinf
= trio_pinf();
819 my_ninf
= trio_ninf();
821 print_class("Nan", my_nan
);
822 print_class("PInf", my_pinf
);
823 print_class("NInf", my_ninf
);
824 print_class("PZero", 0.0);
825 print_class("NZero", -0.0);
826 print_class("PNorm", 1.0);
827 print_class("NNorm", -1.0);
828 print_class("PSub", 1.01e-307 - 1.00e-307);
829 print_class("NSub", 1.00e-307 - 1.01e-307);
831 printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
833 ((unsigned char *)&my_nan
)[0],
834 ((unsigned char *)&my_nan
)[1],
835 ((unsigned char *)&my_nan
)[2],
836 ((unsigned char *)&my_nan
)[3],
837 ((unsigned char *)&my_nan
)[4],
838 ((unsigned char *)&my_nan
)[5],
839 ((unsigned char *)&my_nan
)[6],
840 ((unsigned char *)&my_nan
)[7],
841 trio_isnan(my_nan
), trio_isinf(my_nan
));
842 printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
844 ((unsigned char *)&my_pinf
)[0],
845 ((unsigned char *)&my_pinf
)[1],
846 ((unsigned char *)&my_pinf
)[2],
847 ((unsigned char *)&my_pinf
)[3],
848 ((unsigned char *)&my_pinf
)[4],
849 ((unsigned char *)&my_pinf
)[5],
850 ((unsigned char *)&my_pinf
)[6],
851 ((unsigned char *)&my_pinf
)[7],
852 trio_isnan(my_pinf
), trio_isinf(my_pinf
));
853 printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
855 ((unsigned char *)&my_ninf
)[0],
856 ((unsigned char *)&my_ninf
)[1],
857 ((unsigned char *)&my_ninf
)[2],
858 ((unsigned char *)&my_ninf
)[3],
859 ((unsigned char *)&my_ninf
)[4],
860 ((unsigned char *)&my_ninf
)[5],
861 ((unsigned char *)&my_ninf
)[6],
862 ((unsigned char *)&my_ninf
)[7],
863 trio_isnan(my_ninf
), trio_isinf(my_ninf
));
865 # if defined(TRIO_PLATFORM_UNIX)
866 signal_handler
= signal(SIGFPE
, SIG_IGN
);
869 my_pinf
= DBL_MAX
+ DBL_MAX
;
871 my_nan
= my_pinf
/ my_pinf
;
873 # if defined(TRIO_PLATFORM_UNIX)
874 signal(SIGFPE
, signal_handler
);
877 printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
879 ((unsigned char *)&my_nan
)[0],
880 ((unsigned char *)&my_nan
)[1],
881 ((unsigned char *)&my_nan
)[2],
882 ((unsigned char *)&my_nan
)[3],
883 ((unsigned char *)&my_nan
)[4],
884 ((unsigned char *)&my_nan
)[5],
885 ((unsigned char *)&my_nan
)[6],
886 ((unsigned char *)&my_nan
)[7],
887 trio_isnan(my_nan
), trio_isinf(my_nan
));
888 printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
890 ((unsigned char *)&my_pinf
)[0],
891 ((unsigned char *)&my_pinf
)[1],
892 ((unsigned char *)&my_pinf
)[2],
893 ((unsigned char *)&my_pinf
)[3],
894 ((unsigned char *)&my_pinf
)[4],
895 ((unsigned char *)&my_pinf
)[5],
896 ((unsigned char *)&my_pinf
)[6],
897 ((unsigned char *)&my_pinf
)[7],
898 trio_isnan(my_pinf
), trio_isinf(my_pinf
));
899 printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
901 ((unsigned char *)&my_ninf
)[0],
902 ((unsigned char *)&my_ninf
)[1],
903 ((unsigned char *)&my_ninf
)[2],
904 ((unsigned char *)&my_ninf
)[3],
905 ((unsigned char *)&my_ninf
)[4],
906 ((unsigned char *)&my_ninf
)[5],
907 ((unsigned char *)&my_ninf
)[6],
908 ((unsigned char *)&my_ninf
)[7],
909 trio_isnan(my_ninf
), trio_isinf(my_ninf
));