1 % Copyright (C) 2008, 2009, 2010 Bert Burgemeister
3 % Permission is granted to copy, distribute and/or modify this
4 % document under the terms of the GNU Free Documentation License,
5 % Version 1.2 or any later version published by the Free Software
6 % Foundation; with no Invariant Sections, no Front-Cover Texts and
7 % no Back-Cover Texts. For details see file COPYING.
10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15 \subsection{Predicates
}
16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 \IT{\arrGOO{(
\FU*
{=
}\RP{\VAR{
22 (
\FU*
{/=
}\RP{\VAR{ number
}})
}{.
}}
24 \retval{\T} if all
\VAR{number
}s, or
25 none, respectively, are equal in value.
28 \IT{\arrGOO{(
\FU{\boldmath$>$
}\RP{\VAR{
29 number
}})\\(
\FU{\boldmath$>$=
}\RP{\VAR{
30 number
}})\\(
\FU{\boldmath$<$
}\RP{\VAR{
31 number
}})\\(
\FU{\boldmath$<$=
}\RP{\VAR{ number
}})
}{.
}}
37 Return
\retval{\T} if
\VAR{number
}s are
38 monotonically decreasing, monotonically non-increasing,
39 monotonically increasing, or monotonically non-decreasing, respectively.
42 \IT{\arrGOO{(
\FU*
{MINUSP
} \VAR{ a
})\\
43 (
\FU*
{ZEROP
} \VAR{ a
})\\
45 \VAR{ a
})
}{.
}\qquad\qquad}
47 \retval{\T} if $a <
0$, $a =
0$, or $a >
0$, respectively.
50 \IT{\arrGOO{(
\FU*
{EVENP
} \VAR{integer
})\\
51 (
\FU*
{ODDP
} \VAR{integer
})
}{.
}}
53 \retval{\T} if
\VAR{integer
} is even or odd, respectively.
56 \IT{\arrGOO{(
\FU*
{NUMBERP
} \VAR{ foo
})\\
57 (
\FU*
{REALP
} \VAR{ foo
})\\
58 (
\FU*
{RATIONALP
} \VAR{ foo
})\\
59 (
\FU*
{FLOATP
} \VAR{ foo
})\\
60 (
\FU*
{INTEGERP
} \VAR{ foo
})\\
61 (
\FU*
{COMPLEXP
} \VAR{ foo
})\\
62 (
\FU*
{RANDOM-STATE-P
} \VAR{ foo
})
65 \retval{\T} if
\VAR{foo
} is of
71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
72 \subsection[Numeric~Functns
]{Numeric Functions
}
73 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
77 \IT{\arrGOO{(
\FU*
{+
} \OPn{\VAR{ a
}\DF{\LIT{0}}})\\
78 (
\FU{\A} \OPn{\VAR{ a
}\DF{\LIT{1}}})
}{.
}}
80 Return
\retval{$
\sum{a
}$
} or
\retval{$
\prod{a
}$
}, respectively.
83 \IT{\arrGOO{(
\FU*
{--
} \VAR{ a
}\OPn{\VAR{ b
}})\\
87 Return
\retval{$a-
\sum{b
}$
} or
\retval{$a/
\prod{b
}$
}, respectively. Without any
88 \VAR{b
}s, return
\retval{$-a$
} or
\retval{$
1/a$
}, respectively.
91 \IT{\arrGOO{(
\FU*
{1+
} \VAR{ a
})\\(
\FU*
{1--
} \VAR{ a
})
}{.
}}
92 {Return
\retval{$a+
1$
} or
93 \retval{$a-
1$
}, respectively.
96 \IT{(
\xorGOO{\MC*
{INCF
}\\
97 \MC*
{DECF
}}{\
}} \DES{\VAR{place
}}
98 \Op{\VAR{delta
}\DF{\LIT{1}}})
}
100 Increment or decrement the value of
\VAR{place
} by
\VAR{delta
}. Return
\retval{new value
}.
104 (
\FU*
{EXP
} \VAR{p
})\\
105 (
\FU*
{EXPT
} \VAR{b
} \VAR{p
})
}{.
}}
107 Return
\retval{$
\mbox{e
}^p$
} or
\retval{$b^p$
}, respectively.
110 \IT{(
\FU*
{LOG
} \VAR{a
} \Op{\VAR{b
}})
}
112 Return
\retval{$
\log_b a$
} or,
113 without
\VAR{b
},
\retval{$
\ln a$
}.
116 \IT{\arrGOO{(
\FU*
{SQRT
} \VAR{ n
})\\
117 (
\FU*
{ISQRT
} \VAR{ n
})
}{.
}}
119 \retval{$
\sqrt{n
}$
} in complex or natural numbers, respectively.
122 \IT{\arrGOO{(
\FU*
{LCM
} \OPn{\VAR{ integer
}}\DF{\LIT{1}})\\
123 (
\FU*
{GCD
} \OPn{\VAR{ integer
}})
}{.
}}
125 \retval{Least common multiple
} or
\retval{greatest common
126 de\-no\-mi\-na\-tor
}, respectively, of
\VAR{integer
}s. (
\kwd{gcd
})
132 \kwd{long-float
} approximation of $
\pi$, Ludolph's number.
135 \IT{\arrGOO{(
\FU*
{SIN
} \VAR{ a
})\\
136 (
\FU*
{COS
} \VAR{ a
})\\
137 (
\FU*
{TAN
} \VAR{ a
})
}{.
}}
139 \retval{$
\sin a$
},
\retval{$
\cos
140 a$
}, or
\retval{$
\tan a$
}, respectively. (
\VAR{a
} in radians.)
143 \IT{\arrGOO{(
\FU*
{ASIN
} \VAR{ a
})\\
144 (
\FU*
{ACOS
} \VAR{ a
})
}{.
}}
146 \retval{$
\arcsin a$
} or
\retval{$
\arccos
147 a$
}, respectively, in radians.
150 \IT{(
\FU*
{ATAN
} \VAR{a
} \Op{\VAR{b
}\DF{\LIT{1}}})
}
152 \retval{$
\arctan \frac{a
}{b
}$
} in radians.
155 \IT{\arrGOO{(
\FU*
{SINH
} \VAR{ a
})\\(
\FU*
{COSH
} \VAR{ a
})\\(
\FU*
{TANH
}
158 \retval{$
\sinh a$
},
\retval{$
\cosh
159 a$
}, or
\retval{$
\tanh a$
}, respectively.
162 \IT{\arrGOO{(
\FU*
{ASINH
} \VAR{ a
})\\
163 (
\FU*
{ACOSH
} \VAR{ a
})
164 \\(
\FU*
{ATANH
} \VAR{ a
})
}{.
}}
166 \retval{$
\operatorname{asinh
} a$
},
\retval{$
\operatorname{acosh
}
167 a$
}, or
\retval{$
\operatorname{atanh
} a$
}, respectively.
170 \IT{(
\FU*
{CIS
} \VAR{a
})
\qquad\qquad}
173 \retval{$
\operatorname{e
}^
{\operatorname{i
} a
}$
} $=$
\retval{$
\cos a +
174 \operatorname{i
}\sin a$
}.
177 \IT{(
\FU*
{CONJUGATE
} \VAR{a
})
}
179 Return complex
\retval{conjugate of
\VAR{a
}}.
182 \IT{\arrGOO{(
\FU*
{MAX
} \RP{\VAR{num
}})\\
183 (
\FU*
{MIN
} \RP{\VAR{num
}})
}{.
}}
185 \retval{Greatest
} or
\retval{least
}, respectively, of
\VAR{num
}s.
189 \Goo{\FU*
{ROUND
}\XOR\FU*
{FROUND
}}\\
190 \Goo{\FU*
{FLOOR
}\XOR\FU*
{FFLOOR
}}\\
191 \Goo{\FU*
{CEILING
}\XOR\FU*
{FCEILING
}}\\
192 \Goo{\FU*
{TRUNCATE
}\XOR\FU*
{FTRUNCATE
}}}{\
}}
193 \VAR{n
} \Op{\VAR{d
}\DF{\LIT{1}}})
}
195 Return as
\kwd{integer
} or
\kwd{float
}, respectively,
\retval{$n/d$
}
196 rounded, or rounded towards $-
\infty$, $+
\infty$, or $
0$,
197 respectively; and
\retvalii{re\-main\-der
}.
200 \IT{(
\xorGOO{\FU*
{MOD
}\\
201 \FU*
{REM
}}{\
}} \VAR{n
} \VAR{d
})
}
202 {Same as
\FU{floor
} or
203 \FU{truncate
}, respectively, but return
\retval{re\-main\-der
} only.
206 \IT{(
\FU*
{RANDOM
} \VAR{limit
} \Op{\VAR{state
}\DF{\V{\A random-state
\A}}})
}
208 Return non-negative
\retval{random number
} less than
\VAR{limit
},
209 and of the same type.
212 \IT{(
\FU*
{MAKE-RANDOM-STATE
} \OP{\Goo{\VAR{state
}\XOR\NIL\XOR\T}\DF{\NIL}})
}
214 \retval{Copy
} of
\kwd{random-state
} object
\VAR{state
} or of
215 the current random state; or a randomly initialized fresh
\retval{random
219 \IT{\V{\A random-state
\A}}
220 {\index{*RANDOM-STATE*@
\A RANDOM-STATE
\A}
221 Current random state.
224 \IT{(
\FU*
{FLOAT-SIGN
} \VAR{num-a
} \Op{\VAR{num-b
}\DF{\LIT{1}}})
}
226 \retval{\VAR{num-b
}} with
\VAR{num-a
}'s sign.
229 \IT{(
\FU*
{SIGNUM
} \VAR{n
})
}
230 {\retval{Number
} of magnitude
1
231 representing sign or phase of
\VAR{n
}.
234 \IT{\arrGOO{(
\FU*
{NUMERATOR
} \VAR{ rational
})\\
235 (
\FU*
{DENOMINATOR
} \VAR{ rational
})
}{.
}}
237 \retval{Numerator
} or
\retval{denominator
}, respectively, of
238 \VAR{rational
}'s canonical form.
241 \IT{\arrGOO{(
\FU*
{REALPART
} \VAR{ number
})\\
242 (
\FU*
{IMAGPART
} \VAR{ number
})
}{.
}}
244 \retval{Real part
} or
\retval{imaginary part
}, respectively, of
\VAR{number
}.
247 \IT{(
\FU*
{COMPLEX
} \VAR{real
} \Op{\VAR{imag
}\DF{\LIT{0}}})
}
248 {Make a
\retval{complex number
}.
251 \IT{(
\FU*
{PHASE
} \VAR{number
})
}
252 {\retval{Angle
} of
\VAR{number
}'s polar representation.
255 \IT{(
\FU*
{ABS
} \VAR{n
})
}
257 Return
\retval{$|n|$
}.
260 \IT{\arrGOO{(
\FU*
{RATIONAL
} \VAR{ real
})\\
261 (
\FU*
{RATIONALIZE
} \VAR{ real
})
}{.
}}
263 Convert
\VAR{real
} to
\retval{rational
}. Assume complete/limited accuracy for
\VAR{real
}.
266 \IT{(
\FU*
{FLOAT
} \VAR{real
}
267 \Op{\VAR{prototype
}\DF{\LIT{0.0F0
}}})
}
269 Convert
\VAR{real
} into
\retval{float
} with type of
\VAR{prototype
}.
275 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
276 \subsection{Logic Functions
}
277 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
278 \label{section:Logic Functions
}
279 Negative integers are used in
280 two's complement representation.
284 \IT{(
\FU*
{BOOLE
} \VAR{operation
} \VAR{int-a
} \VAR{int-b
})
}
287 \retval{value
} of bitwise logical
\VAR{operation
}.
\VAR{operation
}s
292 \IT{\CNS*
{BOOLE-
1}\qquad\qquad} {\retval{\VAR{int-a
}}.
}
293 \IT{\CNS*
{BOOLE-
2}\qquad\qquad} {\retval{\VAR{int-b
}}.
}
294 \IT{\CNS*
{BOOLE-C1
}\qquad\qquad} {\retval{$
\lnot\text{\VAR{int-a
}}$
}.
}
295 \IT{\CNS*
{BOOLE-C2
}\qquad\qquad} {\retval{$
\lnot\text{\VAR{int-b
}}$
}.
}
296 \IT{\CNS*
{BOOLE-SET
}\qquad\qquad} {\retval{All bits set
}.
}
297 \IT{\CNS*
{BOOLE-CLR
}\qquad\qquad} {\retval{All bits zero
}.
}
298 \IT{\CNS*
{BOOLE-EQV
}\qquad\qquad} {\retval{$
\text{\VAR{int-a
}} \equiv \text{\VAR{int-b
}}$
}.
}
299 \IT{\CNS*
{BOOLE-AND
}\qquad\qquad} {\retval{$
\text{\VAR{int-a
}}\land\text{\VAR{int-b
}}$
}.
}
300 \IT{\CNS*
{BOOLE-ANDC1
}} {\retval{$
\lnot \text{\VAR{int-a
}} \land \text{\VAR{int-b
}}$
}.
}
301 \IT{\CNS*
{BOOLE-ANDC2
}} {\retval{$
\text{\VAR{int-a
}} \land \lnot\text{\VAR{int-b
}}$
}.
}
302 \IT{\CNS*
{BOOLE-NAND
}} {\retval{$
\lnot(
\text{\VAR{int-a
}} \land \text{\VAR{int-b
}})$
}.
}
303 \IT{\CNS*
{BOOLE-IOR
}\qquad\qquad} {\retval{$
\text{\VAR{int-a
}} \lor \text{\VAR{int-b
}}$
}.
}
304 \IT{\CNS*
{BOOLE-ORC1
}\qquad\qquad} {\retval{$
\lnot \text{\VAR{int-a
}} \lor \text{\VAR{int-b
}}$
}.
}
305 \IT{\CNS*
{BOOLE-ORC2
}\qquad\qquad} {\retval{$
\text{\VAR{int-a
}} \lor \lnot\text{\VAR{int-b
}}$
}.
}
306 \IT{\CNS*
{BOOLE-XOR
}\qquad\qquad} {\retval{$
\lnot(
\text{\VAR{int-a
}} \equiv \text{\VAR{int-b
}})$
}.
}
307 \IT{\CNS*
{BOOLE-NOR
}\qquad\qquad} {\retval{$
\lnot(
\text{\VAR{int-a
}} \lor \text{\VAR{int-b
}})$
}.
}
310 \IT{(
\FU*
{LOGNOT
}\VAR{ integer
})
}
312 \retval{$
\lnot\text{\VAR{integer
}}$
}.
315 \IT{\arrGOO{(
\FU*
{LOGEQV
} \OPn{\VAR{ integer
}})\\
316 (
\FU*
{LOGAND
} \OPn{\VAR{ integer
}})
}{.
}}
318 Return
\retval{value of exclusive-nored or anded
\VAR{integer
}s
},
319 respectively. Without any
\VAR{integer
}, return
\retval{$-
1$
}.
322 \IT{(
\FU*
{LOGANDC1
} \VAR{int-a
} \VAR{int-b
})
}
324 \retval{$
\lnot \text{\VAR{int-a
}} \land \text{\VAR{int-b
}}$
}.
327 \IT{(
\FU*
{LOGANDC2
} \VAR{int-a
} \VAR{int-b
})
}
329 \retval{$
\text{\VAR{int-a
}} \land \lnot\text{\VAR{int-b
}}$
}.
332 \IT{(
\FU*
{LOGNAND
} \VAR{int-a
} \VAR{int-b
})
\qquad}
334 \retval{$
\lnot(
\text{\VAR{int-a
}} \land \text{\VAR{int-b
}})$
}.
337 \IT{\arrGOO{(
\FU*
{LOGXOR
} \OPn{\VAR{ integer
}})\\
338 (
\FU*
{LOGIOR
} \OPn{\VAR{ integer
}})
}{.
}}
340 Return
\retval{value of exclusive-ored or ored
\VAR{integer
}s
},
341 respectively. Without any
\VAR{integer
}, return
\retval{0}.
344 \IT{(
\FU*
{LOGORC1
} \VAR{int-a
} \VAR{int-b
})
}
346 \retval{$
\lnot \text{\VAR{int-a
}} \lor \text{\VAR{int-b
}}$
}.
349 \IT{(
\FU*
{LOGORC2
} \VAR{int-a
} \VAR{int-b
})
}
351 \retval{$
\text{\VAR{int-a
}} \lor \lnot\text{\VAR{int-b
}}$
}.
354 \IT{(
\FU*
{LOGNOR
} \VAR{int-a
} \VAR{int-b
})
}
356 \retval{$
\lnot(
\text{\VAR{int-a
}} \lor \text{\VAR{int-b
}})$
}.
359 \IT{(
\FU*
{LOGBITP
} \VAR{i
} \VAR{integer
})
}
361 \retval{\T} if zero-indexed
\VAR{i
}th bit of
\VAR{integer
} is set.
364 \IT{(
\FU*
{LOGTEST
} \VAR{int-a
} \VAR{int-b
})
}
365 {Return
\retval{\T} if
366 there is any bit set in
\VAR{int-a
} which is set in
\VAR{int-b
} as well.
369 \IT{(
\FU*
{LOGCOUNT
} \VAR{int
})
}
371 \retval{Number of
1 bits
} in $
\text{\VAR{int
}}\ge 0$,
372 \retval{number of
0 bits
} in $
\text{\VAR{int
}}<
0$.
378 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
379 \subsection{Integer Functions
}
380 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
383 \IT{(
\FU*
{INTEGER-LENGTH
} \VAR{integer
})
}
385 \retval{Number of bits
} necessary to represent
\VAR{integer
}.
388 \IT{(
\FU*
{LDB-TEST
} \VAR{byte-spec
} \VAR{integer
})
}
390 Return
\retval{\T} if any bit specified by
\VAR{byte-spec
} in
391 \VAR{integer
} is set.
394 \IT{(
\FU*
{ASH
} \VAR{integer
} \VAR{count
})
}
396 Return copy of
\retval{\VAR{integer
}} arithmetically shifted left by
397 \VAR{count
} adding zeros
398 at the right, or, for $
\VAR{count
}<
0$, shifted right discarding
402 \IT{(
\FU*
{LDB
} \VAR{byte-spec
} \VAR{integer
})
}
404 Extract
\retval{byte
} denoted by
\VAR{byte-spec
} from
405 \VAR{integer
}.
\kwd{setf
}able.
408 \IT{(
\xorGOO{\FU*
{DEPOSIT-FIELD
}\\
410 \VAR{int-a
} \VAR{byte-spec
} \VAR{int-b
})
}
412 Return
\retval{\VAR{int-b
}} with bits denoted by
\VAR{byte-spec
} replaced
413 by corresponding bits of
\VAR{int-a
}, or by the low (
\FU{byte-size
}
414 \VAR{byte-spec
}) bits of
\VAR{int-a
}, respectively.
417 \IT{(
\FU*
{MASK-FIELD
} \VAR{byte-spec
} \VAR{integer
})
}
419 Return copy of
\retval{\VAR{integer
}} with all bits unset but those denoted by
420 \VAR{byte-spec
}.
\kwd{setf
}able.
423 \IT{(
\FU*
{BYTE
} \VAR{size
} \VAR{position
})
}
425 \retval{Byte specifier
} for a byte of
\VAR{size
} bits starting at a
426 weight of $
2^
{\VAR{position
}}$.
429 \IT{\arrGOO{(
\FU*
{BYTE-SIZE
} \VAR{ byte-spec
})\\
430 (
\FU*
{BYTE-POSITION
} \VAR{ byte-spec
})
}{.
}}
432 \retval{Size
} or
\retval{position
}, respectively, of
\VAR{byte-spec
}.
438 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
439 \subsection[Implementation- Dependent
]{Implementation-Dependent
}
440 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
443 \IT{\arrGOO{\CNS{SHORT-FLOAT
}\\
446 \CNS{LONG-FLOAT
}}{\
}}\kwd{-
}%
447 \xorGOO{\kwd{EPSILON
}\\
448 \kwd{NEGATIVE-EPSILON
}}{.
}}
450 \index{SHORT-FLOAT-EPSILON
}%
451 \index{SINGLE-FLOAT-EPSILON
}%
452 \index{DOUBLE-FLOAT-EPSILON
}%
453 \index{LONG-FLOAT-EPSILON
}%
454 \index{SHORT-FLOAT-NEGATIVE-EPSILON
}%
455 \index{SINGLE-FLOAT-NEGATIVE-EPSILON
}%
456 \index{DOUBLE-FLOAT-NEGATIVE-EPSILON
}%
457 \index{LONG-FLOAT-NEGATIVE-EPSILON
}%
458 Smallest possible number making a difference when added or subtracted, respectively.
462 \CNS{LEAST-NEGATIVE
}\\
463 \CNS{LEAST-NEGATIVE-NORMALIZED
}\\
464 \CNS{LEAST-POSITIVE
}\\
465 \CNS{LEAST-POSITIVE-NORMALIZED
}}{\
}}%
471 \kwd{LONG-FLOAT
}}{.
}}
473 \index{LEAST-NEGATIVE-SHORT-FLOAT
}%
474 \index{LEAST-NEGATIVE-NORMALIZED-SHORT-FLOAT
}%
475 \index{LEAST-NEGATIVE-SINGLE-FLOAT
}%
476 \index{LEAST-NEGATIVE-NORMALIZED-SINGLE-FLOAT
}%
477 \index{LEAST-NEGATIVE-DOUBLE-FLOAT
}%
478 \index{LEAST-NEGATIVE-NORMALIZED-DOUBLE-FLOAT
}%
479 \index{LEAST-NEGATIVE-LONG-FLOAT
}%
480 \index{LEAST-NEGATIVE-NORMALIZED-LONG-FLOAT
}%
481 \index{LEAST-POSITIVE-SHORT-FLOAT
}%
482 \index{LEAST-POSITIVE-NORMALIZED-SHORT-FLOAT
}%
483 \index{LEAST-POSITIVE-SINGLE-FLOAT
}%
484 \index{LEAST-POSITIVE-NORMALIZED-SINGLE-FLOAT
}%
485 \index{LEAST-POSITIVE-DOUBLE-FLOAT
}%
486 \index{LEAST-POSITIVE-NORMALIZED-DOUBLE-FLOAT
}%
487 \index{LEAST-POSITIVE-LONG-FLOAT
}%
488 \index{LEAST-POSITIVE-NORMALIZED-LONG-FLOAT
}%
489 Available numbers closest to $-
0$ or $+
0$, respectively.
492 \IT{\arrGOO{\CNS{MOST-NEGATIVE
}\\
493 \CNS{MOST-POSITIVE
}}{\
}}%
502 \index{MOST-NEGATIVE-DOUBLE-FLOAT
}%
503 \index{MOST-NEGATIVE-LONG-FLOAT
}%
504 \index{MOST-NEGATIVE-SHORT-FLOAT
}%
505 \index{MOST-NEGATIVE-SINGLE-FLOAT
}%
506 \index{MOST-NEGATIVE-FIXNUM
}%
507 \index{MOST-POSITIVE-DOUBLE-FLOAT
}%
508 \index{MOST-POSITIVE-LONG-FLOAT
}%
509 \index{MOST-POSITIVE-SHORT-FLOAT
}%
510 \index{MOST-POSITIVE-SINGLE-FLOAT
}%
511 \index{MOST-POSITIVE-FIXNUM
}%
512 Available numbers closest to $-
\infty$ or $+
\infty$, respectively.
515 \IT{\arrGOO{(
\FU*
{DECODE-FLOAT
} \VAR{ n
})\\
516 (
\FU*
{INTEGER-DECODE-FLOAT
} \VAR{ n
})
}{.
}}
518 Return
\retval{significand
},
\retvalii{exponent
}, and
519 \retvaliii{sign
} of
\kwd{float
} \VAR{n
}.
522 \IT{(
\FU*
{SCALE-FLOAT
} \VAR{n
} \Op{\VAR{i
}})
}
524 With
\VAR{n
}'s radix $b$, return $n b^
{i
}$.
528 (
\FU*
{FLOAT-RADIX
} \VAR{ n
})\\
529 (
\FU*
{FLOAT-DIGITS
} \VAR{ n
})\\
530 (
\FU*
{FLOAT-PRECISION
} \VAR{ n
})
}{.
}}
532 \retval{Radix
},
\retval{number of digits
} in that radix, or
533 \retval{precision
} in that radix, respectively, of float
\VAR{n
}.
536 \IT{(
\FU*
{UPGRADED-COMPLEX-PART-TYPE
} \VAR{foo
} \Op{\VAR{environment
}\DF{\NIL}})
}
537 {\retval{Type
} of most specialized
\kwd{complex
} number able to hold
538 parts of type
\VAR{foo
}.
544 % LocalWords: de na der nored ored
548 %%% TeX-master: "clqr"