Clean up RPM spec for newer distributions
[clumanager.git] / librhcm / md5.c
blobd66d869e68ed636e784c2871ef5a1736d8498028
1 /**
2 * This code implements the MD5 message-digest algorithm.
3 * The algorithm is due to Ron Rivest. This code was
4 * written by Colin Plumb in 1993, no copyright is claimed.
5 * This code is in the public domain; do with it what you wish.
7 * Equivalent code is available from RSA Data Security, Inc.
8 * This code has been tested against that, and is equivalent,
9 * except that you don't need to include two pages of legalese
10 * with every copy.
12 * To compute the message digest of a chunk of bytes, declare an
13 * MD5Context structure, pass it to MD5Init, call MD5Update as
14 * needed on buffers full of bytes, and then call MD5Final, which
15 * will fill a supplied 16-byte array with the digest.
17 * Modified - lhh at redhat.com for Red Hat Cluster Manager
19 #include <string.h> /* for memcpy() */
20 #include <platform.h>
22 #include "md5.h"
24 #if __BYTE_ORDER == __LITTLE_ENDIAN
25 #define uint32_Reverse(buf, len)
26 /* Nothing */
27 #else
28 void uint32_Reverse(uint32_t *buf, unsigned longs);
31 * Note: this code is harmless on little-endian machines.
33 void
34 uint32_Reverse(uint32_t *buf, unsigned longs)
36 do {
37 *buf = le_swap32(*buf);
38 buf++;
39 } while (--longs);
41 #endif
44 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
45 * initialization constants.
47 void
48 MD5Init(struct MD5Context *ctx)
50 ctx->buf[0] = 0x67452301;
51 ctx->buf[1] = 0xefcdab89;
52 ctx->buf[2] = 0x98badcfe;
53 ctx->buf[3] = 0x10325476;
55 ctx->bits[0] = 0;
56 ctx->bits[1] = 0;
60 * Update context to reflect the concatenation of another buffer full
61 * of bytes.
63 void
64 MD5Update(struct MD5Context *ctx, uint8_t const *buf, unsigned len)
66 uint32_t t;
68 /* Update bitcount */
69 t = ctx->bits[0];
70 if ((ctx->bits[0] = t + ((uint32_t) len << 3)) < t)
71 ctx->bits[1]++;
73 /* Carry from low to high */
74 ctx->bits[1] += len >> 29;
75 t = (t >> 3) & 0x3f;
76 /* Bytes already in shsInfo->data */
78 /* Handle any leading odd-sized chunks */
79 if (t) {
80 uint8_t *p = (uint8_t *) ctx->in + t;
82 t = 64 - t;
83 if (len < t) {
84 memcpy(p, buf, len);
85 return;
88 memcpy(p, buf, t);
89 uint32_Reverse((uint32_t *)(ctx->in), 16);
90 MD5Transform(ctx->buf, (uint32_t *) ctx->in);
91 buf += t;
92 len -= t;
94 /* Process data in 64-byte chunks */
96 while (len >= 64) {
97 memcpy(ctx->in, buf, 64);
98 uint32_Reverse((uint32_t *)(ctx->in), 16);
99 MD5Transform(ctx->buf, (uint32_t *) ctx->in);
100 buf += 64;
101 len -= 64;
104 /* Handle any remaining bytes of data. */
106 memcpy(ctx->in, buf, len);
111 * Final wrapup - pad to 64-byte boundary with the bit pattern
112 * 1 0* (64-bit count of bits processed, MSB-first)
114 void
115 MD5Final(uint8_t digest[16], struct MD5Context *ctx)
117 unsigned count;
118 uint8_t *p;
120 /* Compute number of bytes mod 64 */
121 count = (ctx->bits[0] >> 3) & 0x3F;
123 /* Set the first char of padding to 0x80. This is safe since there is
124 always at least one byte free */
125 p = ctx->in + count;
126 *p++ = 0x80;
128 /* Bytes of padding needed to make 64 bytes */
129 count = 64 - 1 - count;
131 /* Pad out to 56 mod 64 */
132 if (count < 8) {
133 /* Two lots of padding: Pad the first block to 64 bytes */
134 memset(p, 0, count);
135 uint32_Reverse((uint32_t *)(ctx->in), 16);
136 MD5Transform(ctx->buf, (uint32_t *) ctx->in);
137 /* Now fill the next block with 56 bytes */
138 memset(ctx->in, 0, 56);
139 } else {
140 /* Pad block to 56 bytes */
141 memset(p, 0, count - 8);
143 uint32_Reverse((uint32_t *)(ctx->in), 14);
145 /* Append length in bits and transform */
146 ((uint32_t *) ctx->in)[14] = ctx->bits[0];
147 ((uint32_t *) ctx->in)[15] = ctx->bits[1];
149 MD5Transform(ctx->buf, (uint32_t *) ctx->in);
150 uint32_Reverse((uint32_t *)(ctx->in), 4);
151 memcpy(digest, ctx->buf, 16);
153 memset(ctx, 0, sizeof (ctx));
154 /* In case it's sensitive */
158 /* The four core functions - F1 is optimized somewhat */
160 /* #define F1(x, y, z) (x & y | ~x & z) */
161 #define F1(x, y, z) (z ^ (x & (y ^ z)))
162 #define F2(x, y, z) F1(z, x, y)
163 #define F3(x, y, z) (x ^ y ^ z)
164 #define F4(x, y, z) (y ^ (x | ~z))
166 /* This is the central step in the MD5 algorithm. */
167 #define MD5STEP(f, w, x, y, z, data, s) ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
170 * The core of the MD5 algorithm, this alters an existing MD5 hash to
171 * reflect the addition of 16 longwords of new data. MD5Update blocks
172 * the data and converts bytes into longwords for this routine.
174 void
175 MD5Transform(uint32_t buf[4], uint32_t const in[16])
177 register uint32_t a, b, c, d;
179 a = buf[0];
180 b = buf[1];
181 c = buf[2];
182 d = buf[3];
184 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
185 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
186 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
187 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
188 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
189 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
190 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
191 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
192 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
193 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
194 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
195 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
196 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
197 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
198 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
199 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
201 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
202 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
203 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
204 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
205 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
206 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
207 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
208 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
209 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
210 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
211 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
212 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
213 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
214 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
215 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
216 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
218 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
219 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
220 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
221 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
222 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
223 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
224 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
225 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
226 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
227 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
228 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
229 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
230 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
231 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
232 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
233 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
235 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
236 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
237 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
238 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
239 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
240 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
241 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
242 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
243 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
244 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
245 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
246 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
247 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
248 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
249 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
250 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
252 buf[0] += a;
253 buf[1] += b;
254 buf[2] += c;
255 buf[3] += d;
259 void
260 clu_md5(char *buf, uint32_t buflen, char *md5sum)
262 MD5_CTX md5_ctx;
264 MD5Init(&md5_ctx);
265 MD5Update(&md5_ctx, (uint8_t *)buf, buflen);
266 MD5Final((uint8_t*)md5sum, &md5_ctx);
270 #ifdef STANDALONE
272 main(int argc, char **argv)
274 int x;
275 char md5sum[16];
277 if (argc == 2) {
278 clu_md5(argv[1], strlen(argv[1]), md5sum);
279 for (x=0; x<16; x++)
280 printf("%02x", ((int)md5sum[x])&0xff);
281 printf("\n");
284 #endif