ARM: cpu topology: Add debugfs interface for cpu_power
[cmplus.git] / arch / arm / mach-omap2 / vc.c
blob42ffc643da383b6d49cda9fd5d55f3c4d28a659f
1 #include <linux/kernel.h>
2 #include <linux/delay.h>
3 #include <linux/init.h>
4 #include <linux/clk.h>
6 #include <plat/cpu.h>
8 #include "voltage.h"
9 #include "vc.h"
10 #include "prm-regbits-34xx.h"
11 #include "prm-regbits-44xx.h"
12 #include "prm44xx.h"
14 #define OMAP_VC_I2C_ACK_DELAY 3
16 /**
17 * struct omap_vc_channel_cfg - describe the cfg_channel bitfield
18 * @sa: bit for slave address
19 * @rav: bit for voltage configuration register
20 * @rac: bit for command configuration register
21 * @racen: enable bit for RAC
22 * @cmd: bit for command value set selection
24 * Channel configuration bits, common for OMAP3+
25 * OMAP3 register: PRM_VC_CH_CONF
26 * OMAP4 register: PRM_VC_CFG_CHANNEL
27 * OMAP5 register: PRM_VC_SMPS_<voltdm>_CONFIG
29 struct omap_vc_channel_cfg {
30 u8 sa;
31 u8 rav;
32 u8 rac;
33 u8 racen;
34 u8 cmd;
37 static struct omap_vc_channel_cfg vc_default_channel_cfg = {
38 .sa = BIT(0),
39 .rav = BIT(1),
40 .rac = BIT(2),
41 .racen = BIT(3),
42 .cmd = BIT(4),
46 * On OMAP3+, all VC channels have the above default bitfield
47 * configuration, except the OMAP4 MPU channel. This appears
48 * to be a freak accident as every other VC channel has the
49 * default configuration, thus creating a mutant channel config.
51 static struct omap_vc_channel_cfg vc_mutant_channel_cfg = {
52 .sa = BIT(0),
53 .rav = BIT(2),
54 .rac = BIT(3),
55 .racen = BIT(4),
56 .cmd = BIT(1),
59 static struct omap_vc_channel_cfg *vc_cfg_bits;
60 #define CFG_CHANNEL_MASK 0x1f
62 /**
63 * omap_vc_config_channel - configure VC channel to PMIC mappings
64 * @voltdm: pointer to voltagdomain defining the desired VC channel
66 * Configures the VC channel to PMIC mappings for the following
67 * PMIC settings
68 * - i2c slave address (SA)
69 * - voltage configuration address (RAV)
70 * - command configuration address (RAC) and enable bit (RACEN)
71 * - command values for ON, ONLP, RET and OFF (CMD)
73 * This function currently only allows flexible configuration of the
74 * non-default channel. Starting with OMAP4, there are more than 2
75 * channels, with one defined as the default (on OMAP4, it's MPU.)
76 * Only the non-default channel can be configured.
78 static int omap_vc_config_channel(struct voltagedomain *voltdm)
80 struct omap_vc_channel *vc = voltdm->vc;
83 * For default channel, the only configurable bit is RACEN.
84 * All others must stay at zero (see function comment above.)
86 if (vc->flags & OMAP_VC_CHANNEL_DEFAULT)
87 vc->cfg_channel &= vc_cfg_bits->racen;
89 voltdm->rmw(CFG_CHANNEL_MASK << vc->cfg_channel_sa_shift,
90 vc->cfg_channel << vc->cfg_channel_sa_shift,
91 vc->common->cfg_channel_reg);
93 return 0;
96 /* Voltage scale and accessory APIs */
97 int omap_vc_pre_scale(struct voltagedomain *voltdm,
98 unsigned long target_volt,
99 struct omap_volt_data *target_v,
100 u8 *target_vsel, u8 *current_vsel)
102 struct omap_vc_channel *vc = voltdm->vc;
103 u32 vc_cmdval;
105 /* Check if sufficient pmic info is available for this vdd */
106 if (!voltdm->pmic) {
107 pr_err("%s: Insufficient pmic info to scale the vdd_%s\n",
108 __func__, voltdm->name);
109 return -EINVAL;
112 if (!voltdm->pmic->uv_to_vsel) {
113 pr_err("%s: PMIC function to convert voltage in uV to"
114 "vsel not registered. Hence unable to scale voltage"
115 "for vdd_%s\n", __func__, voltdm->name);
116 return -ENODATA;
119 if (!voltdm->read || !voltdm->write) {
120 pr_err("%s: No read/write API for accessing vdd_%s regs\n",
121 __func__, voltdm->name);
122 return -EINVAL;
125 *target_vsel = voltdm->pmic->uv_to_vsel(target_volt);
126 *current_vsel = voltdm->read(voltdm->vp->voltage);
128 /* Setting the ON voltage to the new target voltage */
129 vc_cmdval = voltdm->read(vc->cmdval_reg);
130 vc_cmdval &= ~vc->common->cmd_on_mask;
131 vc_cmdval |= (*target_vsel << vc->common->cmd_on_shift);
132 voltdm->write(vc_cmdval, vc->cmdval_reg);
134 omap_vp_update_errorgain(voltdm, target_v);
136 return 0;
140 * omap_vc_set_auto_trans() - set auto transition parameters for a domain
141 * @voltdm: voltage domain we are interested in
142 * @flag: which state should we program this to
144 int omap_vc_set_auto_trans(struct voltagedomain *voltdm, u8 flag)
146 struct omap_vc_channel *vc;
147 const struct omap_vc_auto_trans *auto_trans;
148 u8 val = OMAP_VC_CHANNEL_AUTO_TRANSITION_UNSUPPORTED;
150 if (!voltdm) {
151 pr_err("%s: NULL Voltage domain!\n", __func__);
152 return -ENOENT;
154 vc = voltdm->vc;
155 if (!vc) {
156 pr_err("%s: NULL VC Voltage domain %s!\n", __func__,
157 voltdm->name);
158 return -ENOENT;
161 auto_trans = vc->auto_trans;
162 if (!auto_trans) {
163 pr_debug("%s: No auto trans %s!\n", __func__, voltdm->name);
164 return 0;
167 /* Handle value and masks per silicon data */
168 switch (flag) {
169 case OMAP_VC_CHANNEL_AUTO_TRANSITION_DISABLE:
170 val = 0x0;
171 break;
172 case OMAP_VC_CHANNEL_AUTO_TRANSITION_SLEEP:
173 val = auto_trans->sleep_val;
174 break;
175 case OMAP_VC_CHANNEL_AUTO_TRANSITION_RETENTION:
176 val = auto_trans->retention_val;
177 break;
178 case OMAP_VC_CHANNEL_AUTO_TRANSITION_OFF:
179 val = auto_trans->off_val;
180 break;
181 default:
182 pr_err("%s: Voltdm %s invalid flag %d\n", __func__,
183 voltdm->name, flag);
184 return -EINVAL;
187 if (val == OMAP_VC_CHANNEL_AUTO_TRANSITION_UNSUPPORTED) {
188 pr_err("%s: transition to %d on %s is NOT supported\n",
189 __func__, flag, voltdm->name);
190 return -EINVAL;
193 /* All ready - set it and move on.. */
194 voltdm->rmw(vc->auto_trans_mask, val << __ffs(vc->auto_trans_mask),
195 auto_trans->reg);
196 return 0;
199 void omap_vc_post_scale(struct voltagedomain *voltdm,
200 unsigned long target_volt,
201 struct omap_volt_data *target_vdata,
202 u8 target_vsel, u8 current_vsel)
204 struct omap_vc_channel *vc;
205 u32 smps_steps = 0, smps_delay = 0;
206 u8 on_vsel, onlp_vsel;
207 u32 val;
209 if (IS_ERR_OR_NULL(voltdm)) {
210 pr_err("%s bad voldm\n", __func__);
211 return;
214 vc = voltdm->vc;
215 if (IS_ERR_OR_NULL(vc)) {
216 pr_err("%s voldm=%s bad vc\n", __func__, voltdm->name);
217 return;
220 smps_steps = abs(target_vsel - current_vsel);
221 /* SMPS slew rate / step size. 2us added as buffer. */
222 smps_delay = ((smps_steps * voltdm->pmic->step_size) /
223 voltdm->pmic->slew_rate) + 2;
224 udelay(smps_delay);
226 voltdm->curr_volt = target_vdata;
228 /* Set up the on voltage for wakeup from lp and OFF */
229 on_vsel = voltdm->pmic->uv_to_vsel(target_volt);
230 onlp_vsel = voltdm->pmic->uv_to_vsel(target_volt);
231 val = (on_vsel << vc->common->cmd_on_shift) |
232 (onlp_vsel << vc->common->cmd_onlp_shift) |
233 vc->setup_voltage_common;
234 voltdm->write(val, vc->cmdval_reg);
237 static int omap_vc_bypass_send_value(struct voltagedomain *voltdm,
238 struct omap_vc_channel *vc, u8 sa, u8 reg, u32 data)
240 u32 loop_cnt = 0, retries_cnt = 0;
241 u32 vc_valid, vc_bypass_val_reg, vc_bypass_value;
243 if (IS_ERR_OR_NULL(vc->common)) {
244 pr_err("%s voldm=%s bad value for vc->common\n",
245 __func__, voltdm->name);
246 return -EINVAL;
249 vc_valid = vc->common->valid;
250 vc_bypass_val_reg = vc->common->bypass_val_reg;
251 vc_bypass_value = (data << vc->common->data_shift) |
252 (reg << vc->common->regaddr_shift) |
253 (sa << vc->common->slaveaddr_shift);
255 voltdm->write(vc_bypass_value, vc_bypass_val_reg);
256 voltdm->write(vc_bypass_value | vc_valid, vc_bypass_val_reg);
258 vc_bypass_value = voltdm->read(vc_bypass_val_reg);
260 * Loop till the bypass command is acknowledged from the SMPS.
261 * NOTE: This is legacy code. The loop count and retry count needs
262 * to be revisited.
264 while (vc_bypass_value & vc_valid) {
265 loop_cnt++;
267 if (retries_cnt > 10) {
268 pr_warning("%s: Retry count exceeded\n", __func__);
269 return -ETIMEDOUT;
272 if (loop_cnt > 50) {
273 retries_cnt++;
274 loop_cnt = 0;
275 udelay(10);
277 vc_bypass_value = voltdm->read(vc_bypass_val_reg);
280 return 0;
284 /* vc_bypass_scale_voltage - VC bypass method of voltage scaling */
285 int omap_vc_bypass_scale_voltage(struct voltagedomain *voltdm,
286 struct omap_volt_data *target_v)
288 struct omap_vc_channel *vc;
289 u8 target_vsel, current_vsel;
290 int ret;
291 unsigned long target_volt = omap_get_operation_voltage(target_v);
293 if (IS_ERR_OR_NULL(voltdm)) {
294 pr_err("%s bad voldm\n", __func__);
295 return -EINVAL;
298 vc = voltdm->vc;
299 if (IS_ERR_OR_NULL(vc)) {
300 pr_err("%s voldm=%s bad vc\n", __func__, voltdm->name);
301 return -EINVAL;
304 ret = omap_vc_pre_scale(voltdm, target_volt, target_v, &target_vsel,
305 &current_vsel);
306 if (ret)
307 return ret;
309 ret = omap_vc_bypass_send_value(voltdm, vc, vc->i2c_slave_addr,
310 vc->volt_reg_addr, target_vsel);
311 if (ret)
312 return ret;
314 omap_vc_post_scale(voltdm, target_volt, target_v, target_vsel,
315 current_vsel);
316 return 0;
320 * omap_vc_bypass_send_i2c_msg() - Function to control PMIC registers over SRI2C
321 * @voltdm: voltage domain
322 * @slave_addr: slave address of the device.
323 * @reg_addr: register address to access
324 * @data: what do we want to write there
326 * Many simpler PMICs with a single I2C interface still have configuration
327 * registers that may need population. Typical being slew rate configurations
328 * thermal shutdown configuration etc. When these PMICs are hooked on I2C_SR,
329 * this function allows these configuration registers to be accessed.
331 * WARNING: Though this could be used for voltage register configurations over
332 * I2C_SR, DONOT use it for that purpose, all the Voltage controller's internal
333 * information is bypassed using this function and must be used judiciously.
335 int omap_vc_bypass_send_i2c_msg(struct voltagedomain *voltdm, u8 slave_addr,
336 u8 reg_addr, u8 data)
338 struct omap_vc_channel *vc;
340 if (IS_ERR_OR_NULL(voltdm)) {
341 pr_err("%s bad voldm\n", __func__);
342 return -EINVAL;
345 vc = voltdm->vc;
346 if (IS_ERR_OR_NULL(vc)) {
347 pr_err("%s voldm=%s bad vc\n", __func__, voltdm->name);
348 return -EINVAL;
351 return omap_vc_bypass_send_value(voltdm, vc, slave_addr,
352 reg_addr, data);
355 static void __init omap3_vfsm_init(struct voltagedomain *voltdm)
358 * Voltage Manager FSM parameters init
359 * XXX This data should be passed in from the board file
361 voltdm->write(OMAP3_CLKSETUP, OMAP3_PRM_CLKSETUP_OFFSET);
362 voltdm->write(OMAP3_VOLTOFFSET, OMAP3_PRM_VOLTOFFSET_OFFSET);
363 voltdm->write(OMAP3_VOLTSETUP2, OMAP3_PRM_VOLTSETUP2_OFFSET);
366 static void __init omap3_vc_init_channel(struct voltagedomain *voltdm)
368 static bool is_initialized;
370 if (is_initialized)
371 return;
373 omap3_vfsm_init(voltdm);
375 is_initialized = true;
379 /* OMAP4 specific voltage init functions */
380 static void __init omap4_vc_init_channel(struct voltagedomain *voltdm)
382 static bool is_initialized;
383 struct omap_voltdm_pmic *pmic = voltdm->pmic;
384 u32 vc_val = 0;
386 if (is_initialized)
387 return;
389 if (pmic->i2c_high_speed) {
390 vc_val |= pmic->i2c_hscll_low << OMAP4430_HSCLL_SHIFT;
391 vc_val |= pmic->i2c_hscll_high << OMAP4430_HSCLH_SHIFT;
394 vc_val |= pmic->i2c_scll_low << OMAP4430_SCLL_SHIFT;
395 vc_val |= pmic->i2c_scll_high << OMAP4430_SCLH_SHIFT;
397 if (vc_val)
398 voltdm->write(vc_val, OMAP4_PRM_VC_CFG_I2C_CLK_OFFSET);
400 is_initialized = true;
404 * omap_vc_i2c_init - initialize I2C interface to PMIC
405 * @voltdm: voltage domain containing VC data
407 * Use PMIC supplied seetings for I2C high-speed mode and
408 * master code (if set) and program the VC I2C configuration
409 * register.
411 * The VC I2C configuration is common to all VC channels,
412 * so this function only configures I2C for the first VC
413 * channel registers. All other VC channels will use the
414 * same configuration.
416 static void __init omap_vc_i2c_init(struct voltagedomain *voltdm)
418 struct omap_vc_channel *vc = voltdm->vc;
419 static bool initialized;
420 static bool i2c_high_speed;
421 u8 mcode;
423 if (initialized) {
424 if (voltdm->pmic->i2c_high_speed != i2c_high_speed)
425 pr_warn("%s: I2C config for all channels must match.",
426 __func__);
427 return;
430 i2c_high_speed = voltdm->pmic->i2c_high_speed;
431 if (i2c_high_speed)
432 voltdm->rmw(vc->common->i2c_cfg_hsen_mask,
433 vc->common->i2c_cfg_hsen_mask,
434 vc->common->i2c_cfg_reg);
436 mcode = voltdm->pmic->i2c_mcode;
437 if (mcode)
438 voltdm->rmw(vc->common->i2c_mcode_mask,
439 mcode << __ffs(vc->common->i2c_mcode_mask),
440 vc->common->i2c_cfg_reg);
442 initialized = true;
446 * omap_vc_setup_lp_time() - configure the voltage ramp time for low states.
447 * @voltdm: voltagedomain we are interested in.
448 * @is_retention: Are we interested in retention or OFF?
450 * The ramp times are calculated based on the worst case voltage drop,
451 * which is the difference of on_volt and the ret_volt. This time is used
452 * for computing the duration necessary for low power states such as retention.
454 static int __init omap_vc_setup_lp_time(struct voltagedomain *voltdm,
455 bool is_retention)
457 u32 volt_drop = 0, volt_ramptime = 0, volt_rampcount;
458 u32 sys_clk_mhz = 0, sysclk_cycles = 0, max_latency_for_prescaler = 0;
459 struct clk *sys_ck;
460 u8 pre_scaler = 0;
461 struct omap_voltdm_pmic *pmic = voltdm->pmic;
462 struct omap_vc_channel *vc = voltdm->vc;
463 const struct setup_time_ramp_params *params;
465 params = vc->common->setup_time_params;
466 /* If the VC data does not have params for us, return PMIC's value */
467 if (!params)
468 return pmic->volt_setup_time;
469 if (!params->pre_scaler_to_sysclk_cycles_count)
470 return pmic->volt_setup_time;
472 /* No of sys_clk cycles for pre_scaler 0 */
473 sysclk_cycles = params->pre_scaler_to_sysclk_cycles[0];
475 sys_ck = clk_get(NULL, "sys_clkin_ck");
476 if (IS_ERR_OR_NULL(sys_ck)) {
477 WARN_ONCE(1, "%s: unable to get sys_clkin_ck (voldm %s)\n",
478 __func__, voltdm->name);
479 return pmic->volt_setup_time;
481 sys_clk_mhz = clk_get_rate(sys_ck) / 1000000;
482 clk_put(sys_ck);
485 * If we chose prescaler 0x0, then we have a limit on the maximum
486 * latency for which we can chose a correct count. This is because,
487 * the count field is limited to 6 bits and max value can be 63 and
488 * for prescaler 0, ramp up/down counter is incremented every
489 * 64 system clock cycles.
490 * for eg, max latency for prescaler for 38.4Mhz sys clk would be
491 * 105 = (63 * 64) / 38.4
493 max_latency_for_prescaler = (63 * sysclk_cycles) / sys_clk_mhz;
495 if (is_retention)
496 volt_drop = pmic->on_volt - pmic->ret_volt;
497 else
498 volt_drop = pmic->on_volt;
499 volt_ramptime = DIV_ROUND_UP(volt_drop, pmic->slew_rate);
500 volt_ramptime += OMAP_VC_I2C_ACK_DELAY;
502 /* many PMICs need additional time to switch back on */
503 if (!is_retention)
504 volt_ramptime += pmic->switch_on_time;
506 if (volt_ramptime < max_latency_for_prescaler)
507 pre_scaler = 0x0;
508 else
509 pre_scaler = 0x1;
512 * IF we mess up values, then try to have some form of recovery using
513 * PMIC's value.
515 if (pre_scaler > params->pre_scaler_to_sysclk_cycles_count) {
516 pr_err("%s: prescaler idx %d > available %d on domain %s\n",
517 __func__, pre_scaler,
518 params->pre_scaler_to_sysclk_cycles_count, voltdm->name);
519 return pmic->volt_setup_time;
522 sysclk_cycles = params->pre_scaler_to_sysclk_cycles[pre_scaler];
524 volt_rampcount = ((volt_ramptime * sys_clk_mhz) / sysclk_cycles) + 1;
526 return (pre_scaler << OMAP4430_RAMP_DOWN_PRESCAL_SHIFT) |
527 (pre_scaler << OMAP4430_RAMP_UP_PRESCAL_SHIFT) |
528 (volt_rampcount << OMAP4430_RAMP_DOWN_COUNT_SHIFT) |
529 (volt_rampcount << OMAP4430_RAMP_UP_COUNT_SHIFT);
532 void __init omap_vc_init_channel(struct voltagedomain *voltdm)
534 struct omap_vc_channel *vc = voltdm->vc;
535 u8 on_vsel, onlp_vsel, ret_vsel, off_vsel;
536 u32 val;
538 if (!voltdm->pmic || !voltdm->pmic->uv_to_vsel) {
539 pr_err("%s: PMIC info requried to configure vc for"
540 "vdd_%s not populated.Hence cannot initialize vc\n",
541 __func__, voltdm->name);
542 return;
545 if (!voltdm->read || !voltdm->write) {
546 pr_err("%s: No read/write API for accessing vdd_%s regs\n",
547 __func__, voltdm->name);
548 return;
551 vc->cfg_channel = 0;
552 if (vc->flags & OMAP_VC_CHANNEL_CFG_MUTANT)
553 vc_cfg_bits = &vc_mutant_channel_cfg;
554 else
555 vc_cfg_bits = &vc_default_channel_cfg;
557 /* get PMIC/board specific settings */
558 vc->i2c_slave_addr = voltdm->pmic->i2c_slave_addr;
559 vc->volt_reg_addr = voltdm->pmic->volt_reg_addr;
560 vc->cmd_reg_addr = voltdm->pmic->cmd_reg_addr;
561 /* Calculate the RET voltage setup time and update volt_setup_time */
562 vc->setup_time = omap_vc_setup_lp_time(voltdm, true);
564 if ((vc->flags & OMAP_VC_CHANNEL_DEFAULT) &&
565 ((vc->i2c_slave_addr == USE_DEFAULT_CHANNEL_I2C_PARAM) ||
566 (vc->cmd_reg_addr == USE_DEFAULT_CHANNEL_I2C_PARAM) ||
567 (vc->volt_reg_addr == USE_DEFAULT_CHANNEL_I2C_PARAM))) {
568 pr_err("%s: voltdm %s: default channel "
569 "bad config-sa=%2x vol=%2x, cmd=%2x?\n", __func__,
570 voltdm->name, vc->i2c_slave_addr, vc->volt_reg_addr,
571 vc->cmd_reg_addr);
572 return;
575 /* Configure the i2c slave address for this VC */
576 if (vc->i2c_slave_addr != USE_DEFAULT_CHANNEL_I2C_PARAM) {
577 voltdm->rmw(vc->smps_sa_mask,
578 vc->i2c_slave_addr << __ffs(vc->smps_sa_mask),
579 vc->common->smps_sa_reg);
580 vc->cfg_channel |= vc_cfg_bits->sa;
584 * Configure the PMIC register addresses.
586 if (vc->volt_reg_addr != USE_DEFAULT_CHANNEL_I2C_PARAM) {
587 voltdm->rmw(vc->smps_volra_mask,
588 vc->volt_reg_addr << __ffs(vc->smps_volra_mask),
589 vc->common->smps_volra_reg);
590 vc->cfg_channel |= vc_cfg_bits->rav;
593 if (vc->cmd_reg_addr != USE_DEFAULT_CHANNEL_I2C_PARAM) {
594 voltdm->rmw(vc->smps_cmdra_mask,
595 vc->cmd_reg_addr << __ffs(vc->smps_cmdra_mask),
596 vc->common->smps_cmdra_reg);
597 vc->cfg_channel |= vc_cfg_bits->rac;
600 /* If voltage and cmd regs are same, we can use cmdra register */
601 if (vc->volt_reg_addr == vc->cmd_reg_addr)
602 vc->cfg_channel |= vc_cfg_bits->racen;
604 /* Set up the on, inactive, retention and off voltage */
605 on_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->on_volt);
606 onlp_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->onlp_volt);
607 ret_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->ret_volt);
608 off_vsel = voltdm->pmic->uv_to_vsel(voltdm->pmic->off_volt);
609 vc->setup_voltage_common =
610 (ret_vsel << vc->common->cmd_ret_shift) |
611 (off_vsel << vc->common->cmd_off_shift);
612 val = (on_vsel << vc->common->cmd_on_shift) |
613 (onlp_vsel << vc->common->cmd_onlp_shift) |
614 vc->setup_voltage_common;
615 voltdm->write(val, vc->cmdval_reg);
616 vc->cfg_channel |= vc_cfg_bits->cmd;
618 /* Channel configuration */
619 omap_vc_config_channel(voltdm);
621 /* Configure the setup times */
622 voltdm->rmw(voltdm->vfsm->voltsetup_mask,
623 vc->setup_time << __ffs(voltdm->vfsm->voltsetup_mask),
624 voltdm->vfsm->voltsetup_reg);
625 voltdm->rmw(voltdm->vfsm->voltsetup_mask,
626 omap_vc_setup_lp_time(voltdm, false) <<
627 ffs(voltdm->vfsm->voltsetup_mask),
628 voltdm->vfsm->voltsetupoff_reg);
630 omap_vc_i2c_init(voltdm);
632 if (cpu_is_omap34xx())
633 omap3_vc_init_channel(voltdm);
634 else if (cpu_is_omap44xx())
635 omap4_vc_init_channel(voltdm);