2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
19 #include <asm/cputype.h>
20 #include <asm/sections.h>
21 #include <asm/cachetype.h>
22 #include <asm/setup.h>
23 #include <asm/sizes.h>
24 #include <asm/smp_plat.h>
26 #include <asm/highmem.h>
27 #include <asm/traps.h>
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
35 * empty_zero_page is a special page that is used for
36 * zero-initialized data and COW.
38 struct page
*empty_zero_page
;
39 EXPORT_SYMBOL(empty_zero_page
);
42 * The pmd table for the upper-most set of pages.
46 #define CPOLICY_UNCACHED 0
47 #define CPOLICY_BUFFERED 1
48 #define CPOLICY_WRITETHROUGH 2
49 #define CPOLICY_WRITEBACK 3
50 #define CPOLICY_WRITEALLOC 4
52 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
53 static unsigned int ecc_mask __initdata
= 0;
55 pgprot_t pgprot_kernel
;
57 EXPORT_SYMBOL(pgprot_user
);
58 EXPORT_SYMBOL(pgprot_kernel
);
61 const char policy
[16];
67 static struct cachepolicy cache_policies
[] __initdata
= {
71 .pmd
= PMD_SECT_UNCACHED
,
72 .pte
= L_PTE_MT_UNCACHED
,
76 .pmd
= PMD_SECT_BUFFERED
,
77 .pte
= L_PTE_MT_BUFFERABLE
,
79 .policy
= "writethrough",
82 .pte
= L_PTE_MT_WRITETHROUGH
,
84 .policy
= "writeback",
87 .pte
= L_PTE_MT_WRITEBACK
,
89 .policy
= "writealloc",
92 .pte
= L_PTE_MT_WRITEALLOC
,
97 * These are useful for identifying cache coherency
98 * problems by allowing the cache or the cache and
99 * writebuffer to be turned off. (Note: the write
100 * buffer should not be on and the cache off).
102 static int __init
early_cachepolicy(char *p
)
106 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
107 int len
= strlen(cache_policies
[i
].policy
);
109 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
111 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
112 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
116 if (i
== ARRAY_SIZE(cache_policies
))
117 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
119 * This restriction is partly to do with the way we boot; it is
120 * unpredictable to have memory mapped using two different sets of
121 * memory attributes (shared, type, and cache attribs). We can not
122 * change these attributes once the initial assembly has setup the
125 if (cpu_architecture() >= CPU_ARCH_ARMv6
) {
126 printk(KERN_WARNING
"Only cachepolicy=writeback supported on ARMv6 and later\n");
127 cachepolicy
= CPOLICY_WRITEBACK
;
130 set_cr(cr_alignment
);
133 early_param("cachepolicy", early_cachepolicy
);
135 static int __init
early_nocache(char *__unused
)
137 char *p
= "buffered";
138 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
139 early_cachepolicy(p
);
142 early_param("nocache", early_nocache
);
144 static int __init
early_nowrite(char *__unused
)
146 char *p
= "uncached";
147 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
148 early_cachepolicy(p
);
151 early_param("nowb", early_nowrite
);
153 static int __init
early_ecc(char *p
)
155 if (memcmp(p
, "on", 2) == 0)
156 ecc_mask
= PMD_PROTECTION
;
157 else if (memcmp(p
, "off", 3) == 0)
161 early_param("ecc", early_ecc
);
163 static int __init
noalign_setup(char *__unused
)
165 cr_alignment
&= ~CR_A
;
166 cr_no_alignment
&= ~CR_A
;
167 set_cr(cr_alignment
);
170 __setup("noalign", noalign_setup
);
173 void adjust_cr(unsigned long mask
, unsigned long set
)
181 local_irq_save(flags
);
183 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
184 cr_alignment
= (cr_alignment
& ~mask
) | set
;
186 set_cr((get_cr() & ~mask
) | set
);
188 local_irq_restore(flags
);
192 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
193 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
195 static struct mem_type mem_types
[] = {
196 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
197 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
199 .prot_l1
= PMD_TYPE_TABLE
,
200 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
203 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
204 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
205 .prot_l1
= PMD_TYPE_TABLE
,
206 .prot_sect
= PROT_SECT_DEVICE
,
209 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
210 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
211 .prot_l1
= PMD_TYPE_TABLE
,
212 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
215 [MT_DEVICE_WC
] = { /* ioremap_wc */
216 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
217 .prot_l1
= PMD_TYPE_TABLE
,
218 .prot_sect
= PROT_SECT_DEVICE
,
222 .prot_pte
= PROT_PTE_DEVICE
,
223 .prot_l1
= PMD_TYPE_TABLE
,
224 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
228 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
229 .domain
= DOMAIN_KERNEL
,
232 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
233 .domain
= DOMAIN_KERNEL
,
236 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
238 .prot_l1
= PMD_TYPE_TABLE
,
239 .domain
= DOMAIN_USER
,
241 [MT_HIGH_VECTORS
] = {
242 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
243 L_PTE_USER
| L_PTE_RDONLY
,
244 .prot_l1
= PMD_TYPE_TABLE
,
245 .domain
= DOMAIN_USER
,
248 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
249 .prot_l1
= PMD_TYPE_TABLE
,
250 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
251 .domain
= DOMAIN_KERNEL
,
254 .prot_sect
= PMD_TYPE_SECT
,
255 .domain
= DOMAIN_KERNEL
,
257 [MT_MEMORY_NONCACHED
] = {
258 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
260 .prot_l1
= PMD_TYPE_TABLE
,
261 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
262 .domain
= DOMAIN_KERNEL
,
265 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
267 .prot_l1
= PMD_TYPE_TABLE
,
268 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
269 .domain
= DOMAIN_KERNEL
,
272 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
273 .prot_l1
= PMD_TYPE_TABLE
,
274 .domain
= DOMAIN_KERNEL
,
277 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
279 .prot_l1
= PMD_TYPE_TABLE
,
280 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
| PMD_SECT_S
|
281 PMD_SECT_UNCACHED
| PMD_SECT_XN
,
282 .domain
= DOMAIN_KERNEL
,
286 const struct mem_type
*get_mem_type(unsigned int type
)
288 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
290 EXPORT_SYMBOL(get_mem_type
);
293 * Adjust the PMD section entries according to the CPU in use.
295 static void __init
build_mem_type_table(void)
297 struct cachepolicy
*cp
;
298 unsigned int cr
= get_cr();
299 unsigned int user_pgprot
, kern_pgprot
, vecs_pgprot
;
300 int cpu_arch
= cpu_architecture();
303 if (cpu_arch
< CPU_ARCH_ARMv6
) {
304 #if defined(CONFIG_CPU_DCACHE_DISABLE)
305 if (cachepolicy
> CPOLICY_BUFFERED
)
306 cachepolicy
= CPOLICY_BUFFERED
;
307 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
308 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
309 cachepolicy
= CPOLICY_WRITETHROUGH
;
312 if (cpu_arch
< CPU_ARCH_ARMv5
) {
313 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
314 cachepolicy
= CPOLICY_WRITEBACK
;
318 cachepolicy
= CPOLICY_WRITEALLOC
;
321 * Strip out features not present on earlier architectures.
322 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
323 * without extended page tables don't have the 'Shared' bit.
325 if (cpu_arch
< CPU_ARCH_ARMv5
)
326 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
327 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
328 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
329 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
330 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
333 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
334 * "update-able on write" bit on ARM610). However, Xscale and
335 * Xscale3 require this bit to be cleared.
337 if (cpu_is_xscale() || cpu_is_xsc3()) {
338 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
339 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
340 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
342 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
343 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
344 if (mem_types
[i
].prot_l1
)
345 mem_types
[i
].prot_l1
|= PMD_BIT4
;
346 if (mem_types
[i
].prot_sect
)
347 mem_types
[i
].prot_sect
|= PMD_BIT4
;
352 * Mark the device areas according to the CPU/architecture.
354 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
355 if (!cpu_is_xsc3()) {
357 * Mark device regions on ARMv6+ as execute-never
358 * to prevent speculative instruction fetches.
360 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
361 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
362 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
363 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
365 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
367 * For ARMv7 with TEX remapping,
368 * - shared device is SXCB=1100
369 * - nonshared device is SXCB=0100
370 * - write combine device mem is SXCB=0001
371 * (Uncached Normal memory)
373 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
374 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
375 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
376 } else if (cpu_is_xsc3()) {
379 * - shared device is TEXCB=00101
380 * - nonshared device is TEXCB=01000
381 * - write combine device mem is TEXCB=00100
382 * (Inner/Outer Uncacheable in xsc3 parlance)
384 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
385 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
386 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
389 * For ARMv6 and ARMv7 without TEX remapping,
390 * - shared device is TEXCB=00001
391 * - nonshared device is TEXCB=01000
392 * - write combine device mem is TEXCB=00100
393 * (Uncached Normal in ARMv6 parlance).
395 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
396 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
397 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
401 * On others, write combining is "Uncached/Buffered"
403 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
407 * Now deal with the memory-type mappings
409 cp
= &cache_policies
[cachepolicy
];
410 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
413 * Only use write-through for non-SMP systems
415 if (!is_smp() && cpu_arch
>= CPU_ARCH_ARMv5
&& cachepolicy
> CPOLICY_WRITETHROUGH
)
416 vecs_pgprot
= cache_policies
[CPOLICY_WRITETHROUGH
].pte
;
419 * Enable CPU-specific coherency if supported.
420 * (Only available on XSC3 at the moment.)
422 if (arch_is_coherent() && cpu_is_xsc3()) {
423 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
424 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
425 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_S
;
426 mem_types
[MT_MEMORY_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
429 * ARMv6 and above have extended page tables.
431 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
433 * Mark cache clean areas and XIP ROM read only
434 * from SVC mode and no access from userspace.
436 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
437 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
438 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
442 * Mark memory with the "shared" attribute
445 user_pgprot
|= L_PTE_SHARED
;
446 kern_pgprot
|= L_PTE_SHARED
;
447 vecs_pgprot
|= L_PTE_SHARED
;
448 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
449 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
450 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
451 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
452 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
453 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
454 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_S
;
455 mem_types
[MT_MEMORY_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
460 * Non-cacheable Normal - intended for memory areas that must
461 * not cause dirty cache line writebacks when used
463 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
464 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
465 /* Non-cacheable Normal is XCB = 001 */
466 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
469 /* For both ARMv6 and non-TEX-remapping ARMv7 */
470 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|=
474 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
477 for (i
= 0; i
< 16; i
++) {
478 unsigned long v
= pgprot_val(protection_map
[i
]);
479 protection_map
[i
] = __pgprot(v
| user_pgprot
);
482 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
483 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
485 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
486 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
487 L_PTE_DIRTY
| kern_pgprot
);
489 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
490 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
491 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
492 mem_types
[MT_MEMORY
].prot_pte
|= kern_pgprot
;
493 mem_types
[MT_MEMORY_NONCACHED
].prot_sect
|= ecc_mask
;
494 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
498 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
502 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
505 printk("Memory policy: ECC %sabled, Data cache %s\n",
506 ecc_mask
? "en" : "dis", cp
->policy
);
508 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
509 struct mem_type
*t
= &mem_types
[i
];
511 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
513 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
517 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
518 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
519 unsigned long size
, pgprot_t vma_prot
)
522 return pgprot_noncached(vma_prot
);
523 else if (file
->f_flags
& O_SYNC
)
524 return pgprot_writecombine(vma_prot
);
527 EXPORT_SYMBOL(phys_mem_access_prot
);
530 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
532 static void __init
*early_alloc(unsigned long sz
)
534 void *ptr
= __va(memblock_alloc(sz
, sz
));
539 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
, unsigned long prot
)
541 if (pmd_none(*pmd
)) {
542 pte_t
*pte
= early_alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
543 __pmd_populate(pmd
, __pa(pte
), prot
);
545 BUG_ON(pmd_bad(*pmd
));
546 return pte_offset_kernel(pmd
, addr
);
549 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
550 unsigned long end
, unsigned long pfn
,
551 const struct mem_type
*type
)
553 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
555 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)), 0);
557 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
560 static void __init
alloc_init_section(pud_t
*pud
, unsigned long addr
,
561 unsigned long end
, phys_addr_t phys
,
562 const struct mem_type
*type
)
564 pmd_t
*pmd
= pmd_offset(pud
, addr
);
567 * Try a section mapping - end, addr and phys must all be aligned
568 * to a section boundary. Note that PMDs refer to the individual
569 * L1 entries, whereas PGDs refer to a group of L1 entries making
570 * up one logical pointer to an L2 table.
572 if (((addr
| end
| phys
) & ~SECTION_MASK
) == 0) {
575 if (addr
& SECTION_SIZE
)
579 *pmd
= __pmd(phys
| type
->prot_sect
);
580 phys
+= SECTION_SIZE
;
581 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
586 * No need to loop; pte's aren't interested in the
587 * individual L1 entries.
589 alloc_init_pte(pmd
, addr
, end
, __phys_to_pfn(phys
), type
);
593 static void alloc_init_pud(pgd_t
*pgd
, unsigned long addr
, unsigned long end
,
594 unsigned long phys
, const struct mem_type
*type
)
596 pud_t
*pud
= pud_offset(pgd
, addr
);
600 next
= pud_addr_end(addr
, end
);
601 alloc_init_section(pud
, addr
, next
, phys
, type
);
603 } while (pud
++, addr
= next
, addr
!= end
);
606 static void __init
create_36bit_mapping(struct map_desc
*md
,
607 const struct mem_type
*type
)
609 unsigned long addr
, length
, end
;
614 phys
= __pfn_to_phys(md
->pfn
);
615 length
= PAGE_ALIGN(md
->length
);
617 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
618 printk(KERN_ERR
"MM: CPU does not support supersection "
619 "mapping for 0x%08llx at 0x%08lx\n",
620 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
624 /* N.B. ARMv6 supersections are only defined to work with domain 0.
625 * Since domain assignments can in fact be arbitrary, the
626 * 'domain == 0' check below is required to insure that ARMv6
627 * supersections are only allocated for domain 0 regardless
628 * of the actual domain assignments in use.
631 printk(KERN_ERR
"MM: invalid domain in supersection "
632 "mapping for 0x%08llx at 0x%08lx\n",
633 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
637 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
638 printk(KERN_ERR
"MM: cannot create mapping for 0x%08llx"
639 " at 0x%08lx invalid alignment\n",
640 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
645 * Shift bits [35:32] of address into bits [23:20] of PMD
648 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
650 pgd
= pgd_offset_k(addr
);
653 pud_t
*pud
= pud_offset(pgd
, addr
);
654 pmd_t
*pmd
= pmd_offset(pud
, addr
);
657 for (i
= 0; i
< 16; i
++)
658 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
660 addr
+= SUPERSECTION_SIZE
;
661 phys
+= SUPERSECTION_SIZE
;
662 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
663 } while (addr
!= end
);
667 * Create the page directory entries and any necessary
668 * page tables for the mapping specified by `md'. We
669 * are able to cope here with varying sizes and address
670 * offsets, and we take full advantage of sections and
673 static void __init
create_mapping(struct map_desc
*md
)
675 unsigned long addr
, length
, end
;
677 const struct mem_type
*type
;
680 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
681 printk(KERN_WARNING
"BUG: not creating mapping for 0x%08llx"
682 " at 0x%08lx in user region\n",
683 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
687 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
688 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
689 printk(KERN_WARNING
"BUG: mapping for 0x%08llx"
690 " at 0x%08lx overlaps vmalloc space\n",
691 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
694 type
= &mem_types
[md
->type
];
697 * Catch 36-bit addresses
699 if (md
->pfn
>= 0x100000) {
700 create_36bit_mapping(md
, type
);
704 addr
= md
->virtual & PAGE_MASK
;
705 phys
= __pfn_to_phys(md
->pfn
);
706 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
708 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
709 printk(KERN_WARNING
"BUG: map for 0x%08llx at 0x%08lx can not "
710 "be mapped using pages, ignoring.\n",
711 (long long)__pfn_to_phys(md
->pfn
), addr
);
715 pgd
= pgd_offset_k(addr
);
718 unsigned long next
= pgd_addr_end(addr
, end
);
720 alloc_init_pud(pgd
, addr
, next
, phys
, type
);
724 } while (pgd
++, addr
!= end
);
728 * Create the architecture specific mappings
730 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
734 for (i
= 0; i
< nr
; i
++)
735 create_mapping(io_desc
+ i
);
738 static void * __initdata vmalloc_min
= (void *)(VMALLOC_END
- SZ_128M
);
741 * vmalloc=size forces the vmalloc area to be exactly 'size'
742 * bytes. This can be used to increase (or decrease) the vmalloc
743 * area - the default is 128m.
745 static int __init
early_vmalloc(char *arg
)
747 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
749 if (vmalloc_reserve
< SZ_16M
) {
750 vmalloc_reserve
= SZ_16M
;
752 "vmalloc area too small, limiting to %luMB\n",
753 vmalloc_reserve
>> 20);
756 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
757 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
759 "vmalloc area is too big, limiting to %luMB\n",
760 vmalloc_reserve
>> 20);
763 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
766 early_param("vmalloc", early_vmalloc
);
768 static phys_addr_t lowmem_limit __initdata
= 0;
770 void __init
sanity_check_meminfo(void)
772 int i
, j
, highmem
= 0;
774 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
775 struct membank
*bank
= &meminfo
.bank
[j
];
776 *bank
= meminfo
.bank
[i
];
778 #ifdef CONFIG_HIGHMEM
779 if (__va(bank
->start
) >= vmalloc_min
||
780 __va(bank
->start
) < (void *)PAGE_OFFSET
)
783 bank
->highmem
= highmem
;
786 * Split those memory banks which are partially overlapping
787 * the vmalloc area greatly simplifying things later.
789 if (__va(bank
->start
) < vmalloc_min
&&
790 bank
->size
> vmalloc_min
- __va(bank
->start
)) {
791 if (meminfo
.nr_banks
>= NR_BANKS
) {
792 printk(KERN_CRIT
"NR_BANKS too low, "
793 "ignoring high memory\n");
795 memmove(bank
+ 1, bank
,
796 (meminfo
.nr_banks
- i
) * sizeof(*bank
));
799 bank
[1].size
-= vmalloc_min
- __va(bank
->start
);
800 bank
[1].start
= __pa(vmalloc_min
- 1) + 1;
801 bank
[1].highmem
= highmem
= 1;
804 bank
->size
= vmalloc_min
- __va(bank
->start
);
807 bank
->highmem
= highmem
;
810 * Check whether this memory bank would entirely overlap
813 if (__va(bank
->start
) >= vmalloc_min
||
814 __va(bank
->start
) < (void *)PAGE_OFFSET
) {
815 printk(KERN_NOTICE
"Ignoring RAM at %.8llx-%.8llx "
816 "(vmalloc region overlap).\n",
817 (unsigned long long)bank
->start
,
818 (unsigned long long)bank
->start
+ bank
->size
- 1);
823 * Check whether this memory bank would partially overlap
826 if (__va(bank
->start
+ bank
->size
) > vmalloc_min
||
827 __va(bank
->start
+ bank
->size
) < __va(bank
->start
)) {
828 unsigned long newsize
= vmalloc_min
- __va(bank
->start
);
829 printk(KERN_NOTICE
"Truncating RAM at %.8llx-%.8llx "
830 "to -%.8llx (vmalloc region overlap).\n",
831 (unsigned long long)bank
->start
,
832 (unsigned long long)bank
->start
+ bank
->size
- 1,
833 (unsigned long long)bank
->start
+ newsize
- 1);
834 bank
->size
= newsize
;
837 if (!bank
->highmem
&& bank
->start
+ bank
->size
> lowmem_limit
)
838 lowmem_limit
= bank
->start
+ bank
->size
;
842 #ifdef CONFIG_HIGHMEM
844 const char *reason
= NULL
;
846 if (cache_is_vipt_aliasing()) {
848 * Interactions between kmap and other mappings
849 * make highmem support with aliasing VIPT caches
852 reason
= "with VIPT aliasing cache";
855 printk(KERN_CRIT
"HIGHMEM is not supported %s, ignoring high memory\n",
857 while (j
> 0 && meminfo
.bank
[j
- 1].highmem
)
862 meminfo
.nr_banks
= j
;
863 memblock_set_current_limit(lowmem_limit
);
866 static inline void prepare_page_table(void)
872 * Clear out all the mappings below the kernel image.
874 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PGDIR_SIZE
)
875 pmd_clear(pmd_off_k(addr
));
877 #ifdef CONFIG_XIP_KERNEL
878 /* The XIP kernel is mapped in the module area -- skip over it */
879 addr
= ((unsigned long)_etext
+ PGDIR_SIZE
- 1) & PGDIR_MASK
;
881 for ( ; addr
< PAGE_OFFSET
; addr
+= PGDIR_SIZE
)
882 pmd_clear(pmd_off_k(addr
));
885 * Find the end of the first block of lowmem.
887 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
888 if (end
>= lowmem_limit
)
892 * Clear out all the kernel space mappings, except for the first
893 * memory bank, up to the end of the vmalloc region.
895 for (addr
= __phys_to_virt(end
);
896 addr
< VMALLOC_END
; addr
+= PGDIR_SIZE
)
897 pmd_clear(pmd_off_k(addr
));
901 * Reserve the special regions of memory
903 void __init
arm_mm_memblock_reserve(void)
906 * Reserve the page tables. These are already in use,
907 * and can only be in node 0.
909 memblock_reserve(__pa(swapper_pg_dir
), PTRS_PER_PGD
* sizeof(pgd_t
));
913 * Because of the SA1111 DMA bug, we want to preserve our
914 * precious DMA-able memory...
916 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
921 * Set up device the mappings. Since we clear out the page tables for all
922 * mappings above VMALLOC_END, we will remove any debug device mappings.
923 * This means you have to be careful how you debug this function, or any
924 * called function. This means you can't use any function or debugging
925 * method which may touch any device, otherwise the kernel _will_ crash.
927 static void __init
devicemaps_init(struct machine_desc
*mdesc
)
933 * Allocate the vector page early.
935 vectors_page
= early_alloc(PAGE_SIZE
);
937 for (addr
= VMALLOC_END
; addr
; addr
+= PGDIR_SIZE
)
938 pmd_clear(pmd_off_k(addr
));
941 * Map the kernel if it is XIP.
942 * It is always first in the modulearea.
944 #ifdef CONFIG_XIP_KERNEL
945 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
946 map
.virtual = MODULES_VADDR
;
947 map
.length
= ((unsigned long)_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
949 create_mapping(&map
);
953 * Map the cache flushing regions.
956 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
957 map
.virtual = FLUSH_BASE
;
959 map
.type
= MT_CACHECLEAN
;
960 create_mapping(&map
);
962 #ifdef FLUSH_BASE_MINICACHE
963 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
964 map
.virtual = FLUSH_BASE_MINICACHE
;
966 map
.type
= MT_MINICLEAN
;
967 create_mapping(&map
);
971 * Create a mapping for the machine vectors at the high-vectors
972 * location (0xffff0000). If we aren't using high-vectors, also
973 * create a mapping at the low-vectors virtual address.
975 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors_page
));
976 map
.virtual = 0xffff0000;
977 map
.length
= PAGE_SIZE
;
978 map
.type
= MT_HIGH_VECTORS
;
979 create_mapping(&map
);
981 if (!vectors_high()) {
983 map
.type
= MT_LOW_VECTORS
;
984 create_mapping(&map
);
988 * Ask the machine support to map in the statically mapped devices.
994 * Finally flush the caches and tlb to ensure that we're in a
995 * consistent state wrt the writebuffer. This also ensures that
996 * any write-allocated cache lines in the vector page are written
997 * back. After this point, we can start to touch devices again.
999 local_flush_tlb_all();
1003 static void __init
kmap_init(void)
1005 #ifdef CONFIG_HIGHMEM
1006 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1007 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1011 static void __init
map_lowmem(void)
1013 struct memblock_region
*reg
;
1015 /* Map all the lowmem memory banks. */
1016 for_each_memblock(memory
, reg
) {
1017 phys_addr_t start
= reg
->base
;
1018 phys_addr_t end
= start
+ reg
->size
;
1019 struct map_desc map
;
1021 if (end
> lowmem_limit
)
1026 map
.pfn
= __phys_to_pfn(start
);
1027 map
.virtual = __phys_to_virt(start
);
1028 map
.length
= end
- start
;
1029 map
.type
= MT_MEMORY
;
1031 create_mapping(&map
);
1036 * paging_init() sets up the page tables, initialises the zone memory
1037 * maps, and sets up the zero page, bad page and bad page tables.
1039 void __init
paging_init(struct machine_desc
*mdesc
)
1043 memblock_set_current_limit(lowmem_limit
);
1045 build_mem_type_table();
1046 prepare_page_table();
1048 devicemaps_init(mdesc
);
1051 top_pmd
= pmd_off_k(0xffff0000);
1053 /* allocate the zero page. */
1054 zero_page
= early_alloc(PAGE_SIZE
);
1058 empty_zero_page
= virt_to_page(zero_page
);
1059 __flush_dcache_page(NULL
, empty_zero_page
);