ARM: cpu topology: Add debugfs interface for cpu_power
[cmplus.git] / drivers / md / dm-crypt.c
blob6f906bc9328bc35d9de37efb7cf53f00e0349f5d
1 /*
2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
7 */
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <asm/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
30 #include <linux/device-mapper.h>
32 #define DM_MSG_PREFIX "crypt"
33 #define MESG_STR(x) x, sizeof(x)
36 * context holding the current state of a multi-part conversion
38 struct convert_context {
39 struct completion restart;
40 struct bio *bio_in;
41 struct bio *bio_out;
42 unsigned int offset_in;
43 unsigned int offset_out;
44 unsigned int idx_in;
45 unsigned int idx_out;
46 sector_t sector;
47 atomic_t pending;
51 * per bio private data
53 struct dm_crypt_io {
54 struct dm_target *target;
55 struct bio *base_bio;
56 struct work_struct work;
58 struct convert_context ctx;
60 atomic_t pending;
61 int error;
62 sector_t sector;
63 struct dm_crypt_io *base_io;
66 struct dm_crypt_request {
67 struct convert_context *ctx;
68 struct scatterlist sg_in;
69 struct scatterlist sg_out;
70 sector_t iv_sector;
73 struct crypt_config;
75 struct crypt_iv_operations {
76 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
77 const char *opts);
78 void (*dtr)(struct crypt_config *cc);
79 int (*init)(struct crypt_config *cc);
80 int (*wipe)(struct crypt_config *cc);
81 int (*generator)(struct crypt_config *cc, u8 *iv,
82 struct dm_crypt_request *dmreq);
83 int (*post)(struct crypt_config *cc, u8 *iv,
84 struct dm_crypt_request *dmreq);
87 struct iv_essiv_private {
88 struct crypto_hash *hash_tfm;
89 u8 *salt;
92 struct iv_benbi_private {
93 int shift;
96 #define LMK_SEED_SIZE 64 /* hash + 0 */
97 struct iv_lmk_private {
98 struct crypto_shash *hash_tfm;
99 u8 *seed;
103 * Crypt: maps a linear range of a block device
104 * and encrypts / decrypts at the same time.
106 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
109 * Duplicated per-CPU state for cipher.
111 struct crypt_cpu {
112 struct ablkcipher_request *req;
113 /* ESSIV: struct crypto_cipher *essiv_tfm */
114 void *iv_private;
115 struct crypto_ablkcipher *tfms[0];
119 * The fields in here must be read only after initialization,
120 * changing state should be in crypt_cpu.
122 struct crypt_config {
123 struct dm_dev *dev;
124 sector_t start;
127 * pool for per bio private data, crypto requests and
128 * encryption requeusts/buffer pages
130 mempool_t *io_pool;
131 mempool_t *req_pool;
132 mempool_t *page_pool;
133 struct bio_set *bs;
135 struct workqueue_struct *io_queue;
136 struct workqueue_struct *crypt_queue;
138 char *cipher;
139 char *cipher_string;
141 struct crypt_iv_operations *iv_gen_ops;
142 union {
143 struct iv_essiv_private essiv;
144 struct iv_benbi_private benbi;
145 struct iv_lmk_private lmk;
146 } iv_gen_private;
147 sector_t iv_offset;
148 unsigned int iv_size;
151 * Duplicated per cpu state. Access through
152 * per_cpu_ptr() only.
154 struct crypt_cpu __percpu *cpu;
155 unsigned tfms_count;
158 * Layout of each crypto request:
160 * struct ablkcipher_request
161 * context
162 * padding
163 * struct dm_crypt_request
164 * padding
165 * IV
167 * The padding is added so that dm_crypt_request and the IV are
168 * correctly aligned.
170 unsigned int dmreq_start;
172 unsigned long flags;
173 unsigned int key_size;
174 unsigned int key_parts;
175 u8 key[0];
178 #define MIN_IOS 16
179 #define MIN_POOL_PAGES 32
181 static struct kmem_cache *_crypt_io_pool;
183 static void clone_init(struct dm_crypt_io *, struct bio *);
184 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
185 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
187 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
189 return this_cpu_ptr(cc->cpu);
193 * Use this to access cipher attributes that are the same for each CPU.
195 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
197 return __this_cpu_ptr(cc->cpu)->tfms[0];
201 * Different IV generation algorithms:
203 * plain: the initial vector is the 32-bit little-endian version of the sector
204 * number, padded with zeros if necessary.
206 * plain64: the initial vector is the 64-bit little-endian version of the sector
207 * number, padded with zeros if necessary.
209 * essiv: "encrypted sector|salt initial vector", the sector number is
210 * encrypted with the bulk cipher using a salt as key. The salt
211 * should be derived from the bulk cipher's key via hashing.
213 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
214 * (needed for LRW-32-AES and possible other narrow block modes)
216 * null: the initial vector is always zero. Provides compatibility with
217 * obsolete loop_fish2 devices. Do not use for new devices.
219 * lmk: Compatible implementation of the block chaining mode used
220 * by the Loop-AES block device encryption system
221 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
222 * It operates on full 512 byte sectors and uses CBC
223 * with an IV derived from the sector number, the data and
224 * optionally extra IV seed.
225 * This means that after decryption the first block
226 * of sector must be tweaked according to decrypted data.
227 * Loop-AES can use three encryption schemes:
228 * version 1: is plain aes-cbc mode
229 * version 2: uses 64 multikey scheme with lmk IV generator
230 * version 3: the same as version 2 with additional IV seed
231 * (it uses 65 keys, last key is used as IV seed)
233 * plumb: unimplemented, see:
234 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
237 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
238 struct dm_crypt_request *dmreq)
240 memset(iv, 0, cc->iv_size);
241 *(u32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
243 return 0;
246 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
247 struct dm_crypt_request *dmreq)
249 memset(iv, 0, cc->iv_size);
250 *(u64 *)iv = cpu_to_le64(dmreq->iv_sector);
252 return 0;
255 /* Initialise ESSIV - compute salt but no local memory allocations */
256 static int crypt_iv_essiv_init(struct crypt_config *cc)
258 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
259 struct hash_desc desc;
260 struct scatterlist sg;
261 struct crypto_cipher *essiv_tfm;
262 int err, cpu;
264 sg_init_one(&sg, cc->key, cc->key_size);
265 desc.tfm = essiv->hash_tfm;
266 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
268 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
269 if (err)
270 return err;
272 for_each_possible_cpu(cpu) {
273 essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,
275 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
276 crypto_hash_digestsize(essiv->hash_tfm));
277 if (err)
278 return err;
281 return 0;
284 /* Wipe salt and reset key derived from volume key */
285 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
287 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
288 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
289 struct crypto_cipher *essiv_tfm;
290 int cpu, r, err = 0;
292 memset(essiv->salt, 0, salt_size);
294 for_each_possible_cpu(cpu) {
295 essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
296 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
297 if (r)
298 err = r;
301 return err;
304 /* Set up per cpu cipher state */
305 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
306 struct dm_target *ti,
307 u8 *salt, unsigned saltsize)
309 struct crypto_cipher *essiv_tfm;
310 int err;
312 /* Setup the essiv_tfm with the given salt */
313 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
314 if (IS_ERR(essiv_tfm)) {
315 ti->error = "Error allocating crypto tfm for ESSIV";
316 return essiv_tfm;
319 if (crypto_cipher_blocksize(essiv_tfm) !=
320 crypto_ablkcipher_ivsize(any_tfm(cc))) {
321 ti->error = "Block size of ESSIV cipher does "
322 "not match IV size of block cipher";
323 crypto_free_cipher(essiv_tfm);
324 return ERR_PTR(-EINVAL);
327 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
328 if (err) {
329 ti->error = "Failed to set key for ESSIV cipher";
330 crypto_free_cipher(essiv_tfm);
331 return ERR_PTR(err);
334 return essiv_tfm;
337 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
339 int cpu;
340 struct crypt_cpu *cpu_cc;
341 struct crypto_cipher *essiv_tfm;
342 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
344 crypto_free_hash(essiv->hash_tfm);
345 essiv->hash_tfm = NULL;
347 kzfree(essiv->salt);
348 essiv->salt = NULL;
350 for_each_possible_cpu(cpu) {
351 cpu_cc = per_cpu_ptr(cc->cpu, cpu);
352 essiv_tfm = cpu_cc->iv_private;
354 if (essiv_tfm)
355 crypto_free_cipher(essiv_tfm);
357 cpu_cc->iv_private = NULL;
361 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
362 const char *opts)
364 struct crypto_cipher *essiv_tfm = NULL;
365 struct crypto_hash *hash_tfm = NULL;
366 u8 *salt = NULL;
367 int err, cpu;
369 if (!opts) {
370 ti->error = "Digest algorithm missing for ESSIV mode";
371 return -EINVAL;
374 /* Allocate hash algorithm */
375 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
376 if (IS_ERR(hash_tfm)) {
377 ti->error = "Error initializing ESSIV hash";
378 err = PTR_ERR(hash_tfm);
379 goto bad;
382 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
383 if (!salt) {
384 ti->error = "Error kmallocing salt storage in ESSIV";
385 err = -ENOMEM;
386 goto bad;
389 cc->iv_gen_private.essiv.salt = salt;
390 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
392 for_each_possible_cpu(cpu) {
393 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
394 crypto_hash_digestsize(hash_tfm));
395 if (IS_ERR(essiv_tfm)) {
396 crypt_iv_essiv_dtr(cc);
397 return PTR_ERR(essiv_tfm);
399 per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
402 return 0;
404 bad:
405 if (hash_tfm && !IS_ERR(hash_tfm))
406 crypto_free_hash(hash_tfm);
407 kfree(salt);
408 return err;
411 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
412 struct dm_crypt_request *dmreq)
414 struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;
416 memset(iv, 0, cc->iv_size);
417 *(u64 *)iv = cpu_to_le64(dmreq->iv_sector);
418 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
420 return 0;
423 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
424 const char *opts)
426 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
427 int log = ilog2(bs);
429 /* we need to calculate how far we must shift the sector count
430 * to get the cipher block count, we use this shift in _gen */
432 if (1 << log != bs) {
433 ti->error = "cypher blocksize is not a power of 2";
434 return -EINVAL;
437 if (log > 9) {
438 ti->error = "cypher blocksize is > 512";
439 return -EINVAL;
442 cc->iv_gen_private.benbi.shift = 9 - log;
444 return 0;
447 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
451 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
452 struct dm_crypt_request *dmreq)
454 __be64 val;
456 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
458 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
459 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
461 return 0;
464 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
465 struct dm_crypt_request *dmreq)
467 memset(iv, 0, cc->iv_size);
469 return 0;
472 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
474 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
476 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
477 crypto_free_shash(lmk->hash_tfm);
478 lmk->hash_tfm = NULL;
480 kzfree(lmk->seed);
481 lmk->seed = NULL;
484 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
485 const char *opts)
487 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
489 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
490 if (IS_ERR(lmk->hash_tfm)) {
491 ti->error = "Error initializing LMK hash";
492 return PTR_ERR(lmk->hash_tfm);
495 /* No seed in LMK version 2 */
496 if (cc->key_parts == cc->tfms_count) {
497 lmk->seed = NULL;
498 return 0;
501 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
502 if (!lmk->seed) {
503 crypt_iv_lmk_dtr(cc);
504 ti->error = "Error kmallocing seed storage in LMK";
505 return -ENOMEM;
508 return 0;
511 static int crypt_iv_lmk_init(struct crypt_config *cc)
513 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
514 int subkey_size = cc->key_size / cc->key_parts;
516 /* LMK seed is on the position of LMK_KEYS + 1 key */
517 if (lmk->seed)
518 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
519 crypto_shash_digestsize(lmk->hash_tfm));
521 return 0;
524 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
526 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
528 if (lmk->seed)
529 memset(lmk->seed, 0, LMK_SEED_SIZE);
531 return 0;
534 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
535 struct dm_crypt_request *dmreq,
536 u8 *data)
538 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
539 struct {
540 struct shash_desc desc;
541 char ctx[crypto_shash_descsize(lmk->hash_tfm)];
542 } sdesc;
543 struct md5_state md5state;
544 u32 buf[4];
545 int i, r;
547 sdesc.desc.tfm = lmk->hash_tfm;
548 sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
550 r = crypto_shash_init(&sdesc.desc);
551 if (r)
552 return r;
554 if (lmk->seed) {
555 r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
556 if (r)
557 return r;
560 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
561 r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
562 if (r)
563 return r;
565 /* Sector is cropped to 56 bits here */
566 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
567 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
568 buf[2] = cpu_to_le32(4024);
569 buf[3] = 0;
570 r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
571 if (r)
572 return r;
574 /* No MD5 padding here */
575 r = crypto_shash_export(&sdesc.desc, &md5state);
576 if (r)
577 return r;
579 for (i = 0; i < MD5_HASH_WORDS; i++)
580 __cpu_to_le32s(&md5state.hash[i]);
581 memcpy(iv, &md5state.hash, cc->iv_size);
583 return 0;
586 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
587 struct dm_crypt_request *dmreq)
589 u8 *src;
590 int r = 0;
592 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
593 src = kmap_atomic(sg_page(&dmreq->sg_in), KM_USER0);
594 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
595 kunmap_atomic(src, KM_USER0);
596 } else
597 memset(iv, 0, cc->iv_size);
599 return r;
602 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
603 struct dm_crypt_request *dmreq)
605 u8 *dst;
606 int r;
608 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
609 return 0;
611 dst = kmap_atomic(sg_page(&dmreq->sg_out), KM_USER0);
612 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
614 /* Tweak the first block of plaintext sector */
615 if (!r)
616 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
618 kunmap_atomic(dst, KM_USER0);
619 return r;
622 static struct crypt_iv_operations crypt_iv_plain_ops = {
623 .generator = crypt_iv_plain_gen
626 static struct crypt_iv_operations crypt_iv_plain64_ops = {
627 .generator = crypt_iv_plain64_gen
630 static struct crypt_iv_operations crypt_iv_essiv_ops = {
631 .ctr = crypt_iv_essiv_ctr,
632 .dtr = crypt_iv_essiv_dtr,
633 .init = crypt_iv_essiv_init,
634 .wipe = crypt_iv_essiv_wipe,
635 .generator = crypt_iv_essiv_gen
638 static struct crypt_iv_operations crypt_iv_benbi_ops = {
639 .ctr = crypt_iv_benbi_ctr,
640 .dtr = crypt_iv_benbi_dtr,
641 .generator = crypt_iv_benbi_gen
644 static struct crypt_iv_operations crypt_iv_null_ops = {
645 .generator = crypt_iv_null_gen
648 static struct crypt_iv_operations crypt_iv_lmk_ops = {
649 .ctr = crypt_iv_lmk_ctr,
650 .dtr = crypt_iv_lmk_dtr,
651 .init = crypt_iv_lmk_init,
652 .wipe = crypt_iv_lmk_wipe,
653 .generator = crypt_iv_lmk_gen,
654 .post = crypt_iv_lmk_post
657 static void crypt_convert_init(struct crypt_config *cc,
658 struct convert_context *ctx,
659 struct bio *bio_out, struct bio *bio_in,
660 sector_t sector)
662 ctx->bio_in = bio_in;
663 ctx->bio_out = bio_out;
664 ctx->offset_in = 0;
665 ctx->offset_out = 0;
666 ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
667 ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
668 ctx->sector = sector + cc->iv_offset;
669 init_completion(&ctx->restart);
672 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
673 struct ablkcipher_request *req)
675 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
678 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
679 struct dm_crypt_request *dmreq)
681 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
684 static u8 *iv_of_dmreq(struct crypt_config *cc,
685 struct dm_crypt_request *dmreq)
687 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
688 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
691 static int crypt_convert_block(struct crypt_config *cc,
692 struct convert_context *ctx,
693 struct ablkcipher_request *req)
695 struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
696 struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
697 struct dm_crypt_request *dmreq;
698 u8 *iv;
699 int r = 0;
701 dmreq = dmreq_of_req(cc, req);
702 iv = iv_of_dmreq(cc, dmreq);
704 dmreq->iv_sector = ctx->sector;
705 dmreq->ctx = ctx;
706 sg_init_table(&dmreq->sg_in, 1);
707 sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
708 bv_in->bv_offset + ctx->offset_in);
710 sg_init_table(&dmreq->sg_out, 1);
711 sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
712 bv_out->bv_offset + ctx->offset_out);
714 ctx->offset_in += 1 << SECTOR_SHIFT;
715 if (ctx->offset_in >= bv_in->bv_len) {
716 ctx->offset_in = 0;
717 ctx->idx_in++;
720 ctx->offset_out += 1 << SECTOR_SHIFT;
721 if (ctx->offset_out >= bv_out->bv_len) {
722 ctx->offset_out = 0;
723 ctx->idx_out++;
726 if (cc->iv_gen_ops) {
727 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
728 if (r < 0)
729 return r;
732 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
733 1 << SECTOR_SHIFT, iv);
735 if (bio_data_dir(ctx->bio_in) == WRITE)
736 r = crypto_ablkcipher_encrypt(req);
737 else
738 r = crypto_ablkcipher_decrypt(req);
740 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
741 r = cc->iv_gen_ops->post(cc, iv, dmreq);
743 return r;
746 static void kcryptd_async_done(struct crypto_async_request *async_req,
747 int error);
749 static void crypt_alloc_req(struct crypt_config *cc,
750 struct convert_context *ctx)
752 struct crypt_cpu *this_cc = this_crypt_config(cc);
753 unsigned key_index = ctx->sector & (cc->tfms_count - 1);
755 if (!this_cc->req)
756 this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
758 ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
759 ablkcipher_request_set_callback(this_cc->req,
760 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
761 kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
765 * Encrypt / decrypt data from one bio to another one (can be the same one)
767 static int crypt_convert(struct crypt_config *cc,
768 struct convert_context *ctx)
770 struct crypt_cpu *this_cc = this_crypt_config(cc);
771 int r;
773 atomic_set(&ctx->pending, 1);
775 while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
776 ctx->idx_out < ctx->bio_out->bi_vcnt) {
778 crypt_alloc_req(cc, ctx);
780 atomic_inc(&ctx->pending);
782 r = crypt_convert_block(cc, ctx, this_cc->req);
784 switch (r) {
785 /* async */
786 case -EBUSY:
787 wait_for_completion(&ctx->restart);
788 INIT_COMPLETION(ctx->restart);
789 /* fall through*/
790 case -EINPROGRESS:
791 this_cc->req = NULL;
792 ctx->sector++;
793 continue;
795 /* sync */
796 case 0:
797 atomic_dec(&ctx->pending);
798 ctx->sector++;
799 cond_resched();
800 continue;
802 /* error */
803 default:
804 atomic_dec(&ctx->pending);
805 return r;
809 return 0;
812 static void dm_crypt_bio_destructor(struct bio *bio)
814 struct dm_crypt_io *io = bio->bi_private;
815 struct crypt_config *cc = io->target->private;
817 bio_free(bio, cc->bs);
821 * Generate a new unfragmented bio with the given size
822 * This should never violate the device limitations
823 * May return a smaller bio when running out of pages, indicated by
824 * *out_of_pages set to 1.
826 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
827 unsigned *out_of_pages)
829 struct crypt_config *cc = io->target->private;
830 struct bio *clone;
831 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
832 gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
833 unsigned i, len;
834 struct page *page;
836 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
837 if (!clone)
838 return NULL;
840 clone_init(io, clone);
841 *out_of_pages = 0;
843 for (i = 0; i < nr_iovecs; i++) {
844 page = mempool_alloc(cc->page_pool, gfp_mask);
845 if (!page) {
846 *out_of_pages = 1;
847 break;
851 * If additional pages cannot be allocated without waiting,
852 * return a partially-allocated bio. The caller will then try
853 * to allocate more bios while submitting this partial bio.
855 gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
857 len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
859 if (!bio_add_page(clone, page, len, 0)) {
860 mempool_free(page, cc->page_pool);
861 break;
864 size -= len;
867 if (!clone->bi_size) {
868 bio_put(clone);
869 return NULL;
872 return clone;
875 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
877 unsigned int i;
878 struct bio_vec *bv;
880 for (i = 0; i < clone->bi_vcnt; i++) {
881 bv = bio_iovec_idx(clone, i);
882 BUG_ON(!bv->bv_page);
883 mempool_free(bv->bv_page, cc->page_pool);
884 bv->bv_page = NULL;
888 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
889 struct bio *bio, sector_t sector)
891 struct crypt_config *cc = ti->private;
892 struct dm_crypt_io *io;
894 io = mempool_alloc(cc->io_pool, GFP_NOIO);
895 io->target = ti;
896 io->base_bio = bio;
897 io->sector = sector;
898 io->error = 0;
899 io->base_io = NULL;
900 atomic_set(&io->pending, 0);
902 return io;
905 static void crypt_inc_pending(struct dm_crypt_io *io)
907 atomic_inc(&io->pending);
911 * One of the bios was finished. Check for completion of
912 * the whole request and correctly clean up the buffer.
913 * If base_io is set, wait for the last fragment to complete.
915 static void crypt_dec_pending(struct dm_crypt_io *io)
917 struct crypt_config *cc = io->target->private;
918 struct bio *base_bio = io->base_bio;
919 struct dm_crypt_io *base_io = io->base_io;
920 int error = io->error;
922 if (!atomic_dec_and_test(&io->pending))
923 return;
925 mempool_free(io, cc->io_pool);
927 if (likely(!base_io))
928 bio_endio(base_bio, error);
929 else {
930 if (error && !base_io->error)
931 base_io->error = error;
932 crypt_dec_pending(base_io);
937 * kcryptd/kcryptd_io:
939 * Needed because it would be very unwise to do decryption in an
940 * interrupt context.
942 * kcryptd performs the actual encryption or decryption.
944 * kcryptd_io performs the IO submission.
946 * They must be separated as otherwise the final stages could be
947 * starved by new requests which can block in the first stages due
948 * to memory allocation.
950 * The work is done per CPU global for all dm-crypt instances.
951 * They should not depend on each other and do not block.
953 static void crypt_endio(struct bio *clone, int error)
955 struct dm_crypt_io *io = clone->bi_private;
956 struct crypt_config *cc = io->target->private;
957 unsigned rw = bio_data_dir(clone);
959 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
960 error = -EIO;
963 * free the processed pages
965 if (rw == WRITE)
966 crypt_free_buffer_pages(cc, clone);
968 bio_put(clone);
970 if (rw == READ && !error) {
971 kcryptd_queue_crypt(io);
972 return;
975 if (unlikely(error))
976 io->error = error;
978 crypt_dec_pending(io);
981 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
983 struct crypt_config *cc = io->target->private;
985 clone->bi_private = io;
986 clone->bi_end_io = crypt_endio;
987 clone->bi_bdev = cc->dev->bdev;
988 clone->bi_rw = io->base_bio->bi_rw;
989 clone->bi_destructor = dm_crypt_bio_destructor;
992 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
994 struct crypt_config *cc = io->target->private;
995 struct bio *base_bio = io->base_bio;
996 struct bio *clone;
999 * The block layer might modify the bvec array, so always
1000 * copy the required bvecs because we need the original
1001 * one in order to decrypt the whole bio data *afterwards*.
1003 clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
1004 if (!clone)
1005 return 1;
1007 crypt_inc_pending(io);
1009 clone_init(io, clone);
1010 clone->bi_idx = 0;
1011 clone->bi_vcnt = bio_segments(base_bio);
1012 clone->bi_size = base_bio->bi_size;
1013 clone->bi_sector = cc->start + io->sector;
1014 memcpy(clone->bi_io_vec, bio_iovec(base_bio),
1015 sizeof(struct bio_vec) * clone->bi_vcnt);
1017 generic_make_request(clone);
1018 return 0;
1021 static void kcryptd_io_write(struct dm_crypt_io *io)
1023 struct bio *clone = io->ctx.bio_out;
1024 generic_make_request(clone);
1027 static void kcryptd_io(struct work_struct *work)
1029 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1031 if (bio_data_dir(io->base_bio) == READ) {
1032 crypt_inc_pending(io);
1033 if (kcryptd_io_read(io, GFP_NOIO))
1034 io->error = -ENOMEM;
1035 crypt_dec_pending(io);
1036 } else
1037 kcryptd_io_write(io);
1040 static void kcryptd_queue_io(struct dm_crypt_io *io)
1042 struct crypt_config *cc = io->target->private;
1044 INIT_WORK(&io->work, kcryptd_io);
1045 queue_work(cc->io_queue, &io->work);
1048 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1050 struct bio *clone = io->ctx.bio_out;
1051 struct crypt_config *cc = io->target->private;
1053 if (unlikely(io->error < 0)) {
1054 crypt_free_buffer_pages(cc, clone);
1055 bio_put(clone);
1056 crypt_dec_pending(io);
1057 return;
1060 /* crypt_convert should have filled the clone bio */
1061 BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1063 clone->bi_sector = cc->start + io->sector;
1065 if (async)
1066 kcryptd_queue_io(io);
1067 else
1068 generic_make_request(clone);
1071 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1073 struct crypt_config *cc = io->target->private;
1074 struct bio *clone;
1075 struct dm_crypt_io *new_io;
1076 int crypt_finished;
1077 unsigned out_of_pages = 0;
1078 unsigned remaining = io->base_bio->bi_size;
1079 sector_t sector = io->sector;
1080 int r;
1083 * Prevent io from disappearing until this function completes.
1085 crypt_inc_pending(io);
1086 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1089 * The allocated buffers can be smaller than the whole bio,
1090 * so repeat the whole process until all the data can be handled.
1092 while (remaining) {
1093 clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1094 if (unlikely(!clone)) {
1095 io->error = -ENOMEM;
1096 break;
1099 io->ctx.bio_out = clone;
1100 io->ctx.idx_out = 0;
1102 remaining -= clone->bi_size;
1103 sector += bio_sectors(clone);
1105 crypt_inc_pending(io);
1107 r = crypt_convert(cc, &io->ctx);
1108 if (r < 0)
1109 io->error = -EIO;
1111 crypt_finished = atomic_dec_and_test(&io->ctx.pending);
1113 /* Encryption was already finished, submit io now */
1114 if (crypt_finished) {
1115 kcryptd_crypt_write_io_submit(io, 0);
1118 * If there was an error, do not try next fragments.
1119 * For async, error is processed in async handler.
1121 if (unlikely(r < 0))
1122 break;
1124 io->sector = sector;
1128 * Out of memory -> run queues
1129 * But don't wait if split was due to the io size restriction
1131 if (unlikely(out_of_pages))
1132 congestion_wait(BLK_RW_ASYNC, HZ/100);
1135 * With async crypto it is unsafe to share the crypto context
1136 * between fragments, so switch to a new dm_crypt_io structure.
1138 if (unlikely(!crypt_finished && remaining)) {
1139 new_io = crypt_io_alloc(io->target, io->base_bio,
1140 sector);
1141 crypt_inc_pending(new_io);
1142 crypt_convert_init(cc, &new_io->ctx, NULL,
1143 io->base_bio, sector);
1144 new_io->ctx.idx_in = io->ctx.idx_in;
1145 new_io->ctx.offset_in = io->ctx.offset_in;
1148 * Fragments after the first use the base_io
1149 * pending count.
1151 if (!io->base_io)
1152 new_io->base_io = io;
1153 else {
1154 new_io->base_io = io->base_io;
1155 crypt_inc_pending(io->base_io);
1156 crypt_dec_pending(io);
1159 io = new_io;
1163 crypt_dec_pending(io);
1166 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1168 crypt_dec_pending(io);
1171 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1173 struct crypt_config *cc = io->target->private;
1174 int r = 0;
1176 crypt_inc_pending(io);
1178 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1179 io->sector);
1181 r = crypt_convert(cc, &io->ctx);
1182 if (r < 0)
1183 io->error = -EIO;
1185 if (atomic_dec_and_test(&io->ctx.pending))
1186 kcryptd_crypt_read_done(io);
1188 crypt_dec_pending(io);
1191 static void kcryptd_async_done(struct crypto_async_request *async_req,
1192 int error)
1194 struct dm_crypt_request *dmreq = async_req->data;
1195 struct convert_context *ctx = dmreq->ctx;
1196 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1197 struct crypt_config *cc = io->target->private;
1199 if (error == -EINPROGRESS) {
1200 complete(&ctx->restart);
1201 return;
1204 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1205 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1207 if (error < 0)
1208 io->error = -EIO;
1210 mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1212 if (!atomic_dec_and_test(&ctx->pending))
1213 return;
1215 if (bio_data_dir(io->base_bio) == READ)
1216 kcryptd_crypt_read_done(io);
1217 else
1218 kcryptd_crypt_write_io_submit(io, 1);
1221 static void kcryptd_crypt(struct work_struct *work)
1223 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1225 if (bio_data_dir(io->base_bio) == READ)
1226 kcryptd_crypt_read_convert(io);
1227 else
1228 kcryptd_crypt_write_convert(io);
1231 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1233 struct crypt_config *cc = io->target->private;
1235 INIT_WORK(&io->work, kcryptd_crypt);
1236 queue_work(cc->crypt_queue, &io->work);
1240 * Decode key from its hex representation
1242 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1244 char buffer[3];
1245 char *endp;
1246 unsigned int i;
1248 buffer[2] = '\0';
1250 for (i = 0; i < size; i++) {
1251 buffer[0] = *hex++;
1252 buffer[1] = *hex++;
1254 key[i] = (u8)simple_strtoul(buffer, &endp, 16);
1256 if (endp != &buffer[2])
1257 return -EINVAL;
1260 if (*hex != '\0')
1261 return -EINVAL;
1263 return 0;
1267 * Encode key into its hex representation
1269 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
1271 unsigned int i;
1273 for (i = 0; i < size; i++) {
1274 sprintf(hex, "%02x", *key);
1275 hex += 2;
1276 key++;
1280 static void crypt_free_tfms(struct crypt_config *cc, int cpu)
1282 struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1283 unsigned i;
1285 for (i = 0; i < cc->tfms_count; i++)
1286 if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
1287 crypto_free_ablkcipher(cpu_cc->tfms[i]);
1288 cpu_cc->tfms[i] = NULL;
1292 static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
1294 struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1295 unsigned i;
1296 int err;
1298 for (i = 0; i < cc->tfms_count; i++) {
1299 cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1300 if (IS_ERR(cpu_cc->tfms[i])) {
1301 err = PTR_ERR(cpu_cc->tfms[i]);
1302 crypt_free_tfms(cc, cpu);
1303 return err;
1307 return 0;
1310 static int crypt_setkey_allcpus(struct crypt_config *cc)
1312 unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1313 int cpu, err = 0, i, r;
1315 for_each_possible_cpu(cpu) {
1316 for (i = 0; i < cc->tfms_count; i++) {
1317 r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
1318 cc->key + (i * subkey_size), subkey_size);
1319 if (r)
1320 err = r;
1324 return err;
1327 static int crypt_set_key(struct crypt_config *cc, char *key)
1329 int r = -EINVAL;
1330 int key_string_len = strlen(key);
1332 /* The key size may not be changed. */
1333 if (cc->key_size != (key_string_len >> 1))
1334 goto out;
1336 /* Hyphen (which gives a key_size of zero) means there is no key. */
1337 if (!cc->key_size && strcmp(key, "-"))
1338 goto out;
1340 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1341 goto out;
1343 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1345 r = crypt_setkey_allcpus(cc);
1347 out:
1348 /* Hex key string not needed after here, so wipe it. */
1349 memset(key, '0', key_string_len);
1351 return r;
1354 static int crypt_wipe_key(struct crypt_config *cc)
1356 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1357 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1359 return crypt_setkey_allcpus(cc);
1362 static void crypt_dtr(struct dm_target *ti)
1364 struct crypt_config *cc = ti->private;
1365 struct crypt_cpu *cpu_cc;
1366 int cpu;
1368 ti->private = NULL;
1370 if (!cc)
1371 return;
1373 if (cc->io_queue)
1374 destroy_workqueue(cc->io_queue);
1375 if (cc->crypt_queue)
1376 destroy_workqueue(cc->crypt_queue);
1378 if (cc->cpu)
1379 for_each_possible_cpu(cpu) {
1380 cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1381 if (cpu_cc->req)
1382 mempool_free(cpu_cc->req, cc->req_pool);
1383 crypt_free_tfms(cc, cpu);
1386 if (cc->bs)
1387 bioset_free(cc->bs);
1389 if (cc->page_pool)
1390 mempool_destroy(cc->page_pool);
1391 if (cc->req_pool)
1392 mempool_destroy(cc->req_pool);
1393 if (cc->io_pool)
1394 mempool_destroy(cc->io_pool);
1396 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1397 cc->iv_gen_ops->dtr(cc);
1399 if (cc->dev)
1400 dm_put_device(ti, cc->dev);
1402 if (cc->cpu)
1403 free_percpu(cc->cpu);
1405 kzfree(cc->cipher);
1406 kzfree(cc->cipher_string);
1408 /* Must zero key material before freeing */
1409 kzfree(cc);
1412 static int crypt_ctr_cipher(struct dm_target *ti,
1413 char *cipher_in, char *key)
1415 struct crypt_config *cc = ti->private;
1416 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1417 char *cipher_api = NULL;
1418 int cpu, ret = -EINVAL;
1420 /* Convert to crypto api definition? */
1421 if (strchr(cipher_in, '(')) {
1422 ti->error = "Bad cipher specification";
1423 return -EINVAL;
1426 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1427 if (!cc->cipher_string)
1428 goto bad_mem;
1431 * Legacy dm-crypt cipher specification
1432 * cipher[:keycount]-mode-iv:ivopts
1434 tmp = cipher_in;
1435 keycount = strsep(&tmp, "-");
1436 cipher = strsep(&keycount, ":");
1438 if (!keycount)
1439 cc->tfms_count = 1;
1440 else if (sscanf(keycount, "%u", &cc->tfms_count) != 1 ||
1441 !is_power_of_2(cc->tfms_count)) {
1442 ti->error = "Bad cipher key count specification";
1443 return -EINVAL;
1445 cc->key_parts = cc->tfms_count;
1447 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1448 if (!cc->cipher)
1449 goto bad_mem;
1451 chainmode = strsep(&tmp, "-");
1452 ivopts = strsep(&tmp, "-");
1453 ivmode = strsep(&ivopts, ":");
1455 if (tmp)
1456 DMWARN("Ignoring unexpected additional cipher options");
1458 cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
1459 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
1460 __alignof__(struct crypt_cpu));
1461 if (!cc->cpu) {
1462 ti->error = "Cannot allocate per cpu state";
1463 goto bad_mem;
1467 * For compatibility with the original dm-crypt mapping format, if
1468 * only the cipher name is supplied, use cbc-plain.
1470 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1471 chainmode = "cbc";
1472 ivmode = "plain";
1475 if (strcmp(chainmode, "ecb") && !ivmode) {
1476 ti->error = "IV mechanism required";
1477 return -EINVAL;
1480 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1481 if (!cipher_api)
1482 goto bad_mem;
1484 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1485 "%s(%s)", chainmode, cipher);
1486 if (ret < 0) {
1487 kfree(cipher_api);
1488 goto bad_mem;
1491 /* Allocate cipher */
1492 for_each_possible_cpu(cpu) {
1493 ret = crypt_alloc_tfms(cc, cpu, cipher_api);
1494 if (ret < 0) {
1495 ti->error = "Error allocating crypto tfm";
1496 goto bad;
1500 /* Initialize and set key */
1501 ret = crypt_set_key(cc, key);
1502 if (ret < 0) {
1503 ti->error = "Error decoding and setting key";
1504 goto bad;
1507 /* Initialize IV */
1508 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1509 if (cc->iv_size)
1510 /* at least a 64 bit sector number should fit in our buffer */
1511 cc->iv_size = max(cc->iv_size,
1512 (unsigned int)(sizeof(u64) / sizeof(u8)));
1513 else if (ivmode) {
1514 DMWARN("Selected cipher does not support IVs");
1515 ivmode = NULL;
1518 /* Choose ivmode, see comments at iv code. */
1519 if (ivmode == NULL)
1520 cc->iv_gen_ops = NULL;
1521 else if (strcmp(ivmode, "plain") == 0)
1522 cc->iv_gen_ops = &crypt_iv_plain_ops;
1523 else if (strcmp(ivmode, "plain64") == 0)
1524 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1525 else if (strcmp(ivmode, "essiv") == 0)
1526 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1527 else if (strcmp(ivmode, "benbi") == 0)
1528 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1529 else if (strcmp(ivmode, "null") == 0)
1530 cc->iv_gen_ops = &crypt_iv_null_ops;
1531 else if (strcmp(ivmode, "lmk") == 0) {
1532 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1533 /* Version 2 and 3 is recognised according
1534 * to length of provided multi-key string.
1535 * If present (version 3), last key is used as IV seed.
1537 if (cc->key_size % cc->key_parts)
1538 cc->key_parts++;
1539 } else {
1540 ret = -EINVAL;
1541 ti->error = "Invalid IV mode";
1542 goto bad;
1545 /* Allocate IV */
1546 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1547 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1548 if (ret < 0) {
1549 ti->error = "Error creating IV";
1550 goto bad;
1554 /* Initialize IV (set keys for ESSIV etc) */
1555 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1556 ret = cc->iv_gen_ops->init(cc);
1557 if (ret < 0) {
1558 ti->error = "Error initialising IV";
1559 goto bad;
1563 ret = 0;
1564 bad:
1565 kfree(cipher_api);
1566 return ret;
1568 bad_mem:
1569 ti->error = "Cannot allocate cipher strings";
1570 return -ENOMEM;
1574 * Construct an encryption mapping:
1575 * <cipher> <key> <iv_offset> <dev_path> <start>
1577 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1579 struct crypt_config *cc;
1580 unsigned int key_size;
1581 unsigned long long tmpll;
1582 int ret;
1584 if (argc != 5) {
1585 ti->error = "Not enough arguments";
1586 return -EINVAL;
1589 key_size = strlen(argv[1]) >> 1;
1591 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1592 if (!cc) {
1593 ti->error = "Cannot allocate encryption context";
1594 return -ENOMEM;
1596 cc->key_size = key_size;
1598 ti->private = cc;
1599 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1600 if (ret < 0)
1601 goto bad;
1603 ret = -ENOMEM;
1604 cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1605 if (!cc->io_pool) {
1606 ti->error = "Cannot allocate crypt io mempool";
1607 goto bad;
1610 cc->dmreq_start = sizeof(struct ablkcipher_request);
1611 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1612 cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1613 cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1614 ~(crypto_tfm_ctx_alignment() - 1);
1616 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1617 sizeof(struct dm_crypt_request) + cc->iv_size);
1618 if (!cc->req_pool) {
1619 ti->error = "Cannot allocate crypt request mempool";
1620 goto bad;
1623 cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1624 if (!cc->page_pool) {
1625 ti->error = "Cannot allocate page mempool";
1626 goto bad;
1629 cc->bs = bioset_create(MIN_IOS, 0);
1630 if (!cc->bs) {
1631 ti->error = "Cannot allocate crypt bioset";
1632 goto bad;
1635 ret = -EINVAL;
1636 if (sscanf(argv[2], "%llu", &tmpll) != 1) {
1637 ti->error = "Invalid iv_offset sector";
1638 goto bad;
1640 cc->iv_offset = tmpll;
1642 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1643 ti->error = "Device lookup failed";
1644 goto bad;
1647 if (sscanf(argv[4], "%llu", &tmpll) != 1) {
1648 ti->error = "Invalid device sector";
1649 goto bad;
1651 cc->start = tmpll;
1653 ret = -ENOMEM;
1654 cc->io_queue = alloc_workqueue("kcryptd_io",
1655 WQ_NON_REENTRANT|
1656 WQ_MEM_RECLAIM,
1658 if (!cc->io_queue) {
1659 ti->error = "Couldn't create kcryptd io queue";
1660 goto bad;
1663 cc->crypt_queue = alloc_workqueue("kcryptd",
1664 WQ_NON_REENTRANT|
1665 WQ_CPU_INTENSIVE|
1666 WQ_MEM_RECLAIM,
1668 if (!cc->crypt_queue) {
1669 ti->error = "Couldn't create kcryptd queue";
1670 goto bad;
1673 ti->num_flush_requests = 1;
1674 return 0;
1676 bad:
1677 crypt_dtr(ti);
1678 return ret;
1681 static int crypt_map(struct dm_target *ti, struct bio *bio,
1682 union map_info *map_context)
1684 struct dm_crypt_io *io;
1685 struct crypt_config *cc;
1687 if (bio->bi_rw & REQ_FLUSH) {
1688 cc = ti->private;
1689 bio->bi_bdev = cc->dev->bdev;
1690 return DM_MAPIO_REMAPPED;
1693 io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
1695 if (bio_data_dir(io->base_bio) == READ) {
1696 if (kcryptd_io_read(io, GFP_NOWAIT))
1697 kcryptd_queue_io(io);
1698 } else
1699 kcryptd_queue_crypt(io);
1701 return DM_MAPIO_SUBMITTED;
1704 static int crypt_status(struct dm_target *ti, status_type_t type,
1705 char *result, unsigned int maxlen)
1707 struct crypt_config *cc = ti->private;
1708 unsigned int sz = 0;
1710 switch (type) {
1711 case STATUSTYPE_INFO:
1712 result[0] = '\0';
1713 break;
1715 case STATUSTYPE_TABLE:
1716 DMEMIT("%s ", cc->cipher_string);
1718 if (cc->key_size > 0) {
1719 if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1720 return -ENOMEM;
1722 crypt_encode_key(result + sz, cc->key, cc->key_size);
1723 sz += cc->key_size << 1;
1724 } else {
1725 if (sz >= maxlen)
1726 return -ENOMEM;
1727 result[sz++] = '-';
1730 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1731 cc->dev->name, (unsigned long long)cc->start);
1732 break;
1734 return 0;
1737 static void crypt_postsuspend(struct dm_target *ti)
1739 struct crypt_config *cc = ti->private;
1741 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1744 static int crypt_preresume(struct dm_target *ti)
1746 struct crypt_config *cc = ti->private;
1748 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1749 DMERR("aborting resume - crypt key is not set.");
1750 return -EAGAIN;
1753 return 0;
1756 static void crypt_resume(struct dm_target *ti)
1758 struct crypt_config *cc = ti->private;
1760 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1763 /* Message interface
1764 * key set <key>
1765 * key wipe
1767 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1769 struct crypt_config *cc = ti->private;
1770 int ret = -EINVAL;
1772 if (argc < 2)
1773 goto error;
1775 if (!strnicmp(argv[0], MESG_STR("key"))) {
1776 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1777 DMWARN("not suspended during key manipulation.");
1778 return -EINVAL;
1780 if (argc == 3 && !strnicmp(argv[1], MESG_STR("set"))) {
1781 ret = crypt_set_key(cc, argv[2]);
1782 if (ret)
1783 return ret;
1784 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1785 ret = cc->iv_gen_ops->init(cc);
1786 return ret;
1788 if (argc == 2 && !strnicmp(argv[1], MESG_STR("wipe"))) {
1789 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1790 ret = cc->iv_gen_ops->wipe(cc);
1791 if (ret)
1792 return ret;
1794 return crypt_wipe_key(cc);
1798 error:
1799 DMWARN("unrecognised message received.");
1800 return -EINVAL;
1803 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1804 struct bio_vec *biovec, int max_size)
1806 struct crypt_config *cc = ti->private;
1807 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1809 if (!q->merge_bvec_fn)
1810 return max_size;
1812 bvm->bi_bdev = cc->dev->bdev;
1813 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1815 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1818 static int crypt_iterate_devices(struct dm_target *ti,
1819 iterate_devices_callout_fn fn, void *data)
1821 struct crypt_config *cc = ti->private;
1823 return fn(ti, cc->dev, cc->start, ti->len, data);
1826 static struct target_type crypt_target = {
1827 .name = "crypt",
1828 .version = {1, 10, 0},
1829 .module = THIS_MODULE,
1830 .ctr = crypt_ctr,
1831 .dtr = crypt_dtr,
1832 .map = crypt_map,
1833 .status = crypt_status,
1834 .postsuspend = crypt_postsuspend,
1835 .preresume = crypt_preresume,
1836 .resume = crypt_resume,
1837 .message = crypt_message,
1838 .merge = crypt_merge,
1839 .iterate_devices = crypt_iterate_devices,
1842 static int __init dm_crypt_init(void)
1844 int r;
1846 _crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1847 if (!_crypt_io_pool)
1848 return -ENOMEM;
1850 r = dm_register_target(&crypt_target);
1851 if (r < 0) {
1852 DMERR("register failed %d", r);
1853 kmem_cache_destroy(_crypt_io_pool);
1856 return r;
1859 static void __exit dm_crypt_exit(void)
1861 dm_unregister_target(&crypt_target);
1862 kmem_cache_destroy(_crypt_io_pool);
1865 module_init(dm_crypt_init);
1866 module_exit(dm_crypt_exit);
1868 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1869 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1870 MODULE_LICENSE("GPL");