2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
6 * This file is released under the GPL.
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <asm/atomic.h>
23 #include <linux/scatterlist.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
30 #include <linux/device-mapper.h>
32 #define DM_MSG_PREFIX "crypt"
33 #define MESG_STR(x) x, sizeof(x)
36 * context holding the current state of a multi-part conversion
38 struct convert_context
{
39 struct completion restart
;
42 unsigned int offset_in
;
43 unsigned int offset_out
;
51 * per bio private data
54 struct dm_target
*target
;
56 struct work_struct work
;
58 struct convert_context ctx
;
63 struct dm_crypt_io
*base_io
;
66 struct dm_crypt_request
{
67 struct convert_context
*ctx
;
68 struct scatterlist sg_in
;
69 struct scatterlist sg_out
;
75 struct crypt_iv_operations
{
76 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
78 void (*dtr
)(struct crypt_config
*cc
);
79 int (*init
)(struct crypt_config
*cc
);
80 int (*wipe
)(struct crypt_config
*cc
);
81 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
82 struct dm_crypt_request
*dmreq
);
83 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
84 struct dm_crypt_request
*dmreq
);
87 struct iv_essiv_private
{
88 struct crypto_hash
*hash_tfm
;
92 struct iv_benbi_private
{
96 #define LMK_SEED_SIZE 64 /* hash + 0 */
97 struct iv_lmk_private
{
98 struct crypto_shash
*hash_tfm
;
103 * Crypt: maps a linear range of a block device
104 * and encrypts / decrypts at the same time.
106 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
};
109 * Duplicated per-CPU state for cipher.
112 struct ablkcipher_request
*req
;
113 /* ESSIV: struct crypto_cipher *essiv_tfm */
115 struct crypto_ablkcipher
*tfms
[0];
119 * The fields in here must be read only after initialization,
120 * changing state should be in crypt_cpu.
122 struct crypt_config
{
127 * pool for per bio private data, crypto requests and
128 * encryption requeusts/buffer pages
132 mempool_t
*page_pool
;
135 struct workqueue_struct
*io_queue
;
136 struct workqueue_struct
*crypt_queue
;
141 struct crypt_iv_operations
*iv_gen_ops
;
143 struct iv_essiv_private essiv
;
144 struct iv_benbi_private benbi
;
145 struct iv_lmk_private lmk
;
148 unsigned int iv_size
;
151 * Duplicated per cpu state. Access through
152 * per_cpu_ptr() only.
154 struct crypt_cpu __percpu
*cpu
;
158 * Layout of each crypto request:
160 * struct ablkcipher_request
163 * struct dm_crypt_request
167 * The padding is added so that dm_crypt_request and the IV are
170 unsigned int dmreq_start
;
173 unsigned int key_size
;
174 unsigned int key_parts
;
179 #define MIN_POOL_PAGES 32
181 static struct kmem_cache
*_crypt_io_pool
;
183 static void clone_init(struct dm_crypt_io
*, struct bio
*);
184 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
185 static u8
*iv_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
);
187 static struct crypt_cpu
*this_crypt_config(struct crypt_config
*cc
)
189 return this_cpu_ptr(cc
->cpu
);
193 * Use this to access cipher attributes that are the same for each CPU.
195 static struct crypto_ablkcipher
*any_tfm(struct crypt_config
*cc
)
197 return __this_cpu_ptr(cc
->cpu
)->tfms
[0];
201 * Different IV generation algorithms:
203 * plain: the initial vector is the 32-bit little-endian version of the sector
204 * number, padded with zeros if necessary.
206 * plain64: the initial vector is the 64-bit little-endian version of the sector
207 * number, padded with zeros if necessary.
209 * essiv: "encrypted sector|salt initial vector", the sector number is
210 * encrypted with the bulk cipher using a salt as key. The salt
211 * should be derived from the bulk cipher's key via hashing.
213 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
214 * (needed for LRW-32-AES and possible other narrow block modes)
216 * null: the initial vector is always zero. Provides compatibility with
217 * obsolete loop_fish2 devices. Do not use for new devices.
219 * lmk: Compatible implementation of the block chaining mode used
220 * by the Loop-AES block device encryption system
221 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
222 * It operates on full 512 byte sectors and uses CBC
223 * with an IV derived from the sector number, the data and
224 * optionally extra IV seed.
225 * This means that after decryption the first block
226 * of sector must be tweaked according to decrypted data.
227 * Loop-AES can use three encryption schemes:
228 * version 1: is plain aes-cbc mode
229 * version 2: uses 64 multikey scheme with lmk IV generator
230 * version 3: the same as version 2 with additional IV seed
231 * (it uses 65 keys, last key is used as IV seed)
233 * plumb: unimplemented, see:
234 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
237 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
238 struct dm_crypt_request
*dmreq
)
240 memset(iv
, 0, cc
->iv_size
);
241 *(u32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
246 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
247 struct dm_crypt_request
*dmreq
)
249 memset(iv
, 0, cc
->iv_size
);
250 *(u64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
255 /* Initialise ESSIV - compute salt but no local memory allocations */
256 static int crypt_iv_essiv_init(struct crypt_config
*cc
)
258 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
259 struct hash_desc desc
;
260 struct scatterlist sg
;
261 struct crypto_cipher
*essiv_tfm
;
264 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
265 desc
.tfm
= essiv
->hash_tfm
;
266 desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
268 err
= crypto_hash_digest(&desc
, &sg
, cc
->key_size
, essiv
->salt
);
272 for_each_possible_cpu(cpu
) {
273 essiv_tfm
= per_cpu_ptr(cc
->cpu
, cpu
)->iv_private
,
275 err
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
,
276 crypto_hash_digestsize(essiv
->hash_tfm
));
284 /* Wipe salt and reset key derived from volume key */
285 static int crypt_iv_essiv_wipe(struct crypt_config
*cc
)
287 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
288 unsigned salt_size
= crypto_hash_digestsize(essiv
->hash_tfm
);
289 struct crypto_cipher
*essiv_tfm
;
292 memset(essiv
->salt
, 0, salt_size
);
294 for_each_possible_cpu(cpu
) {
295 essiv_tfm
= per_cpu_ptr(cc
->cpu
, cpu
)->iv_private
;
296 r
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
, salt_size
);
304 /* Set up per cpu cipher state */
305 static struct crypto_cipher
*setup_essiv_cpu(struct crypt_config
*cc
,
306 struct dm_target
*ti
,
307 u8
*salt
, unsigned saltsize
)
309 struct crypto_cipher
*essiv_tfm
;
312 /* Setup the essiv_tfm with the given salt */
313 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
314 if (IS_ERR(essiv_tfm
)) {
315 ti
->error
= "Error allocating crypto tfm for ESSIV";
319 if (crypto_cipher_blocksize(essiv_tfm
) !=
320 crypto_ablkcipher_ivsize(any_tfm(cc
))) {
321 ti
->error
= "Block size of ESSIV cipher does "
322 "not match IV size of block cipher";
323 crypto_free_cipher(essiv_tfm
);
324 return ERR_PTR(-EINVAL
);
327 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
329 ti
->error
= "Failed to set key for ESSIV cipher";
330 crypto_free_cipher(essiv_tfm
);
337 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
340 struct crypt_cpu
*cpu_cc
;
341 struct crypto_cipher
*essiv_tfm
;
342 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
344 crypto_free_hash(essiv
->hash_tfm
);
345 essiv
->hash_tfm
= NULL
;
350 for_each_possible_cpu(cpu
) {
351 cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
352 essiv_tfm
= cpu_cc
->iv_private
;
355 crypto_free_cipher(essiv_tfm
);
357 cpu_cc
->iv_private
= NULL
;
361 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
364 struct crypto_cipher
*essiv_tfm
= NULL
;
365 struct crypto_hash
*hash_tfm
= NULL
;
370 ti
->error
= "Digest algorithm missing for ESSIV mode";
374 /* Allocate hash algorithm */
375 hash_tfm
= crypto_alloc_hash(opts
, 0, CRYPTO_ALG_ASYNC
);
376 if (IS_ERR(hash_tfm
)) {
377 ti
->error
= "Error initializing ESSIV hash";
378 err
= PTR_ERR(hash_tfm
);
382 salt
= kzalloc(crypto_hash_digestsize(hash_tfm
), GFP_KERNEL
);
384 ti
->error
= "Error kmallocing salt storage in ESSIV";
389 cc
->iv_gen_private
.essiv
.salt
= salt
;
390 cc
->iv_gen_private
.essiv
.hash_tfm
= hash_tfm
;
392 for_each_possible_cpu(cpu
) {
393 essiv_tfm
= setup_essiv_cpu(cc
, ti
, salt
,
394 crypto_hash_digestsize(hash_tfm
));
395 if (IS_ERR(essiv_tfm
)) {
396 crypt_iv_essiv_dtr(cc
);
397 return PTR_ERR(essiv_tfm
);
399 per_cpu_ptr(cc
->cpu
, cpu
)->iv_private
= essiv_tfm
;
405 if (hash_tfm
&& !IS_ERR(hash_tfm
))
406 crypto_free_hash(hash_tfm
);
411 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
412 struct dm_crypt_request
*dmreq
)
414 struct crypto_cipher
*essiv_tfm
= this_crypt_config(cc
)->iv_private
;
416 memset(iv
, 0, cc
->iv_size
);
417 *(u64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
418 crypto_cipher_encrypt_one(essiv_tfm
, iv
, iv
);
423 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
426 unsigned bs
= crypto_ablkcipher_blocksize(any_tfm(cc
));
429 /* we need to calculate how far we must shift the sector count
430 * to get the cipher block count, we use this shift in _gen */
432 if (1 << log
!= bs
) {
433 ti
->error
= "cypher blocksize is not a power of 2";
438 ti
->error
= "cypher blocksize is > 512";
442 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
447 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
451 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
452 struct dm_crypt_request
*dmreq
)
456 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
458 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
459 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
464 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
465 struct dm_crypt_request
*dmreq
)
467 memset(iv
, 0, cc
->iv_size
);
472 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
474 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
476 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
477 crypto_free_shash(lmk
->hash_tfm
);
478 lmk
->hash_tfm
= NULL
;
484 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
487 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
489 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
490 if (IS_ERR(lmk
->hash_tfm
)) {
491 ti
->error
= "Error initializing LMK hash";
492 return PTR_ERR(lmk
->hash_tfm
);
495 /* No seed in LMK version 2 */
496 if (cc
->key_parts
== cc
->tfms_count
) {
501 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
503 crypt_iv_lmk_dtr(cc
);
504 ti
->error
= "Error kmallocing seed storage in LMK";
511 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
513 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
514 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
516 /* LMK seed is on the position of LMK_KEYS + 1 key */
518 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
519 crypto_shash_digestsize(lmk
->hash_tfm
));
524 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
526 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
529 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
534 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
535 struct dm_crypt_request
*dmreq
,
538 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
540 struct shash_desc desc
;
541 char ctx
[crypto_shash_descsize(lmk
->hash_tfm
)];
543 struct md5_state md5state
;
547 sdesc
.desc
.tfm
= lmk
->hash_tfm
;
548 sdesc
.desc
.flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
550 r
= crypto_shash_init(&sdesc
.desc
);
555 r
= crypto_shash_update(&sdesc
.desc
, lmk
->seed
, LMK_SEED_SIZE
);
560 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
561 r
= crypto_shash_update(&sdesc
.desc
, data
+ 16, 16 * 31);
565 /* Sector is cropped to 56 bits here */
566 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
567 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
568 buf
[2] = cpu_to_le32(4024);
570 r
= crypto_shash_update(&sdesc
.desc
, (u8
*)buf
, sizeof(buf
));
574 /* No MD5 padding here */
575 r
= crypto_shash_export(&sdesc
.desc
, &md5state
);
579 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
580 __cpu_to_le32s(&md5state
.hash
[i
]);
581 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
586 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
587 struct dm_crypt_request
*dmreq
)
592 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
593 src
= kmap_atomic(sg_page(&dmreq
->sg_in
), KM_USER0
);
594 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ dmreq
->sg_in
.offset
);
595 kunmap_atomic(src
, KM_USER0
);
597 memset(iv
, 0, cc
->iv_size
);
602 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
603 struct dm_crypt_request
*dmreq
)
608 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
611 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
), KM_USER0
);
612 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
614 /* Tweak the first block of plaintext sector */
616 crypto_xor(dst
+ dmreq
->sg_out
.offset
, iv
, cc
->iv_size
);
618 kunmap_atomic(dst
, KM_USER0
);
622 static struct crypt_iv_operations crypt_iv_plain_ops
= {
623 .generator
= crypt_iv_plain_gen
626 static struct crypt_iv_operations crypt_iv_plain64_ops
= {
627 .generator
= crypt_iv_plain64_gen
630 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
631 .ctr
= crypt_iv_essiv_ctr
,
632 .dtr
= crypt_iv_essiv_dtr
,
633 .init
= crypt_iv_essiv_init
,
634 .wipe
= crypt_iv_essiv_wipe
,
635 .generator
= crypt_iv_essiv_gen
638 static struct crypt_iv_operations crypt_iv_benbi_ops
= {
639 .ctr
= crypt_iv_benbi_ctr
,
640 .dtr
= crypt_iv_benbi_dtr
,
641 .generator
= crypt_iv_benbi_gen
644 static struct crypt_iv_operations crypt_iv_null_ops
= {
645 .generator
= crypt_iv_null_gen
648 static struct crypt_iv_operations crypt_iv_lmk_ops
= {
649 .ctr
= crypt_iv_lmk_ctr
,
650 .dtr
= crypt_iv_lmk_dtr
,
651 .init
= crypt_iv_lmk_init
,
652 .wipe
= crypt_iv_lmk_wipe
,
653 .generator
= crypt_iv_lmk_gen
,
654 .post
= crypt_iv_lmk_post
657 static void crypt_convert_init(struct crypt_config
*cc
,
658 struct convert_context
*ctx
,
659 struct bio
*bio_out
, struct bio
*bio_in
,
662 ctx
->bio_in
= bio_in
;
663 ctx
->bio_out
= bio_out
;
666 ctx
->idx_in
= bio_in
? bio_in
->bi_idx
: 0;
667 ctx
->idx_out
= bio_out
? bio_out
->bi_idx
: 0;
668 ctx
->sector
= sector
+ cc
->iv_offset
;
669 init_completion(&ctx
->restart
);
672 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
673 struct ablkcipher_request
*req
)
675 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
678 static struct ablkcipher_request
*req_of_dmreq(struct crypt_config
*cc
,
679 struct dm_crypt_request
*dmreq
)
681 return (struct ablkcipher_request
*)((char *)dmreq
- cc
->dmreq_start
);
684 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
685 struct dm_crypt_request
*dmreq
)
687 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
688 crypto_ablkcipher_alignmask(any_tfm(cc
)) + 1);
691 static int crypt_convert_block(struct crypt_config
*cc
,
692 struct convert_context
*ctx
,
693 struct ablkcipher_request
*req
)
695 struct bio_vec
*bv_in
= bio_iovec_idx(ctx
->bio_in
, ctx
->idx_in
);
696 struct bio_vec
*bv_out
= bio_iovec_idx(ctx
->bio_out
, ctx
->idx_out
);
697 struct dm_crypt_request
*dmreq
;
701 dmreq
= dmreq_of_req(cc
, req
);
702 iv
= iv_of_dmreq(cc
, dmreq
);
704 dmreq
->iv_sector
= ctx
->sector
;
706 sg_init_table(&dmreq
->sg_in
, 1);
707 sg_set_page(&dmreq
->sg_in
, bv_in
->bv_page
, 1 << SECTOR_SHIFT
,
708 bv_in
->bv_offset
+ ctx
->offset_in
);
710 sg_init_table(&dmreq
->sg_out
, 1);
711 sg_set_page(&dmreq
->sg_out
, bv_out
->bv_page
, 1 << SECTOR_SHIFT
,
712 bv_out
->bv_offset
+ ctx
->offset_out
);
714 ctx
->offset_in
+= 1 << SECTOR_SHIFT
;
715 if (ctx
->offset_in
>= bv_in
->bv_len
) {
720 ctx
->offset_out
+= 1 << SECTOR_SHIFT
;
721 if (ctx
->offset_out
>= bv_out
->bv_len
) {
726 if (cc
->iv_gen_ops
) {
727 r
= cc
->iv_gen_ops
->generator(cc
, iv
, dmreq
);
732 ablkcipher_request_set_crypt(req
, &dmreq
->sg_in
, &dmreq
->sg_out
,
733 1 << SECTOR_SHIFT
, iv
);
735 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
736 r
= crypto_ablkcipher_encrypt(req
);
738 r
= crypto_ablkcipher_decrypt(req
);
740 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
741 r
= cc
->iv_gen_ops
->post(cc
, iv
, dmreq
);
746 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
749 static void crypt_alloc_req(struct crypt_config
*cc
,
750 struct convert_context
*ctx
)
752 struct crypt_cpu
*this_cc
= this_crypt_config(cc
);
753 unsigned key_index
= ctx
->sector
& (cc
->tfms_count
- 1);
756 this_cc
->req
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
758 ablkcipher_request_set_tfm(this_cc
->req
, this_cc
->tfms
[key_index
]);
759 ablkcipher_request_set_callback(this_cc
->req
,
760 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
761 kcryptd_async_done
, dmreq_of_req(cc
, this_cc
->req
));
765 * Encrypt / decrypt data from one bio to another one (can be the same one)
767 static int crypt_convert(struct crypt_config
*cc
,
768 struct convert_context
*ctx
)
770 struct crypt_cpu
*this_cc
= this_crypt_config(cc
);
773 atomic_set(&ctx
->pending
, 1);
775 while(ctx
->idx_in
< ctx
->bio_in
->bi_vcnt
&&
776 ctx
->idx_out
< ctx
->bio_out
->bi_vcnt
) {
778 crypt_alloc_req(cc
, ctx
);
780 atomic_inc(&ctx
->pending
);
782 r
= crypt_convert_block(cc
, ctx
, this_cc
->req
);
787 wait_for_completion(&ctx
->restart
);
788 INIT_COMPLETION(ctx
->restart
);
797 atomic_dec(&ctx
->pending
);
804 atomic_dec(&ctx
->pending
);
812 static void dm_crypt_bio_destructor(struct bio
*bio
)
814 struct dm_crypt_io
*io
= bio
->bi_private
;
815 struct crypt_config
*cc
= io
->target
->private;
817 bio_free(bio
, cc
->bs
);
821 * Generate a new unfragmented bio with the given size
822 * This should never violate the device limitations
823 * May return a smaller bio when running out of pages, indicated by
824 * *out_of_pages set to 1.
826 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
,
827 unsigned *out_of_pages
)
829 struct crypt_config
*cc
= io
->target
->private;
831 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
832 gfp_t gfp_mask
= GFP_NOIO
| __GFP_HIGHMEM
;
836 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
840 clone_init(io
, clone
);
843 for (i
= 0; i
< nr_iovecs
; i
++) {
844 page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
851 * If additional pages cannot be allocated without waiting,
852 * return a partially-allocated bio. The caller will then try
853 * to allocate more bios while submitting this partial bio.
855 gfp_mask
= (gfp_mask
| __GFP_NOWARN
) & ~__GFP_WAIT
;
857 len
= (size
> PAGE_SIZE
) ? PAGE_SIZE
: size
;
859 if (!bio_add_page(clone
, page
, len
, 0)) {
860 mempool_free(page
, cc
->page_pool
);
867 if (!clone
->bi_size
) {
875 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
880 for (i
= 0; i
< clone
->bi_vcnt
; i
++) {
881 bv
= bio_iovec_idx(clone
, i
);
882 BUG_ON(!bv
->bv_page
);
883 mempool_free(bv
->bv_page
, cc
->page_pool
);
888 static struct dm_crypt_io
*crypt_io_alloc(struct dm_target
*ti
,
889 struct bio
*bio
, sector_t sector
)
891 struct crypt_config
*cc
= ti
->private;
892 struct dm_crypt_io
*io
;
894 io
= mempool_alloc(cc
->io_pool
, GFP_NOIO
);
900 atomic_set(&io
->pending
, 0);
905 static void crypt_inc_pending(struct dm_crypt_io
*io
)
907 atomic_inc(&io
->pending
);
911 * One of the bios was finished. Check for completion of
912 * the whole request and correctly clean up the buffer.
913 * If base_io is set, wait for the last fragment to complete.
915 static void crypt_dec_pending(struct dm_crypt_io
*io
)
917 struct crypt_config
*cc
= io
->target
->private;
918 struct bio
*base_bio
= io
->base_bio
;
919 struct dm_crypt_io
*base_io
= io
->base_io
;
920 int error
= io
->error
;
922 if (!atomic_dec_and_test(&io
->pending
))
925 mempool_free(io
, cc
->io_pool
);
927 if (likely(!base_io
))
928 bio_endio(base_bio
, error
);
930 if (error
&& !base_io
->error
)
931 base_io
->error
= error
;
932 crypt_dec_pending(base_io
);
937 * kcryptd/kcryptd_io:
939 * Needed because it would be very unwise to do decryption in an
942 * kcryptd performs the actual encryption or decryption.
944 * kcryptd_io performs the IO submission.
946 * They must be separated as otherwise the final stages could be
947 * starved by new requests which can block in the first stages due
948 * to memory allocation.
950 * The work is done per CPU global for all dm-crypt instances.
951 * They should not depend on each other and do not block.
953 static void crypt_endio(struct bio
*clone
, int error
)
955 struct dm_crypt_io
*io
= clone
->bi_private
;
956 struct crypt_config
*cc
= io
->target
->private;
957 unsigned rw
= bio_data_dir(clone
);
959 if (unlikely(!bio_flagged(clone
, BIO_UPTODATE
) && !error
))
963 * free the processed pages
966 crypt_free_buffer_pages(cc
, clone
);
970 if (rw
== READ
&& !error
) {
971 kcryptd_queue_crypt(io
);
978 crypt_dec_pending(io
);
981 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
983 struct crypt_config
*cc
= io
->target
->private;
985 clone
->bi_private
= io
;
986 clone
->bi_end_io
= crypt_endio
;
987 clone
->bi_bdev
= cc
->dev
->bdev
;
988 clone
->bi_rw
= io
->base_bio
->bi_rw
;
989 clone
->bi_destructor
= dm_crypt_bio_destructor
;
992 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
994 struct crypt_config
*cc
= io
->target
->private;
995 struct bio
*base_bio
= io
->base_bio
;
999 * The block layer might modify the bvec array, so always
1000 * copy the required bvecs because we need the original
1001 * one in order to decrypt the whole bio data *afterwards*.
1003 clone
= bio_alloc_bioset(gfp
, bio_segments(base_bio
), cc
->bs
);
1007 crypt_inc_pending(io
);
1009 clone_init(io
, clone
);
1011 clone
->bi_vcnt
= bio_segments(base_bio
);
1012 clone
->bi_size
= base_bio
->bi_size
;
1013 clone
->bi_sector
= cc
->start
+ io
->sector
;
1014 memcpy(clone
->bi_io_vec
, bio_iovec(base_bio
),
1015 sizeof(struct bio_vec
) * clone
->bi_vcnt
);
1017 generic_make_request(clone
);
1021 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1023 struct bio
*clone
= io
->ctx
.bio_out
;
1024 generic_make_request(clone
);
1027 static void kcryptd_io(struct work_struct
*work
)
1029 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1031 if (bio_data_dir(io
->base_bio
) == READ
) {
1032 crypt_inc_pending(io
);
1033 if (kcryptd_io_read(io
, GFP_NOIO
))
1034 io
->error
= -ENOMEM
;
1035 crypt_dec_pending(io
);
1037 kcryptd_io_write(io
);
1040 static void kcryptd_queue_io(struct dm_crypt_io
*io
)
1042 struct crypt_config
*cc
= io
->target
->private;
1044 INIT_WORK(&io
->work
, kcryptd_io
);
1045 queue_work(cc
->io_queue
, &io
->work
);
1048 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
, int async
)
1050 struct bio
*clone
= io
->ctx
.bio_out
;
1051 struct crypt_config
*cc
= io
->target
->private;
1053 if (unlikely(io
->error
< 0)) {
1054 crypt_free_buffer_pages(cc
, clone
);
1056 crypt_dec_pending(io
);
1060 /* crypt_convert should have filled the clone bio */
1061 BUG_ON(io
->ctx
.idx_out
< clone
->bi_vcnt
);
1063 clone
->bi_sector
= cc
->start
+ io
->sector
;
1066 kcryptd_queue_io(io
);
1068 generic_make_request(clone
);
1071 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1073 struct crypt_config
*cc
= io
->target
->private;
1075 struct dm_crypt_io
*new_io
;
1077 unsigned out_of_pages
= 0;
1078 unsigned remaining
= io
->base_bio
->bi_size
;
1079 sector_t sector
= io
->sector
;
1083 * Prevent io from disappearing until this function completes.
1085 crypt_inc_pending(io
);
1086 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1089 * The allocated buffers can be smaller than the whole bio,
1090 * so repeat the whole process until all the data can be handled.
1093 clone
= crypt_alloc_buffer(io
, remaining
, &out_of_pages
);
1094 if (unlikely(!clone
)) {
1095 io
->error
= -ENOMEM
;
1099 io
->ctx
.bio_out
= clone
;
1100 io
->ctx
.idx_out
= 0;
1102 remaining
-= clone
->bi_size
;
1103 sector
+= bio_sectors(clone
);
1105 crypt_inc_pending(io
);
1107 r
= crypt_convert(cc
, &io
->ctx
);
1111 crypt_finished
= atomic_dec_and_test(&io
->ctx
.pending
);
1113 /* Encryption was already finished, submit io now */
1114 if (crypt_finished
) {
1115 kcryptd_crypt_write_io_submit(io
, 0);
1118 * If there was an error, do not try next fragments.
1119 * For async, error is processed in async handler.
1121 if (unlikely(r
< 0))
1124 io
->sector
= sector
;
1128 * Out of memory -> run queues
1129 * But don't wait if split was due to the io size restriction
1131 if (unlikely(out_of_pages
))
1132 congestion_wait(BLK_RW_ASYNC
, HZ
/100);
1135 * With async crypto it is unsafe to share the crypto context
1136 * between fragments, so switch to a new dm_crypt_io structure.
1138 if (unlikely(!crypt_finished
&& remaining
)) {
1139 new_io
= crypt_io_alloc(io
->target
, io
->base_bio
,
1141 crypt_inc_pending(new_io
);
1142 crypt_convert_init(cc
, &new_io
->ctx
, NULL
,
1143 io
->base_bio
, sector
);
1144 new_io
->ctx
.idx_in
= io
->ctx
.idx_in
;
1145 new_io
->ctx
.offset_in
= io
->ctx
.offset_in
;
1148 * Fragments after the first use the base_io
1152 new_io
->base_io
= io
;
1154 new_io
->base_io
= io
->base_io
;
1155 crypt_inc_pending(io
->base_io
);
1156 crypt_dec_pending(io
);
1163 crypt_dec_pending(io
);
1166 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
)
1168 crypt_dec_pending(io
);
1171 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1173 struct crypt_config
*cc
= io
->target
->private;
1176 crypt_inc_pending(io
);
1178 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1181 r
= crypt_convert(cc
, &io
->ctx
);
1185 if (atomic_dec_and_test(&io
->ctx
.pending
))
1186 kcryptd_crypt_read_done(io
);
1188 crypt_dec_pending(io
);
1191 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1194 struct dm_crypt_request
*dmreq
= async_req
->data
;
1195 struct convert_context
*ctx
= dmreq
->ctx
;
1196 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1197 struct crypt_config
*cc
= io
->target
->private;
1199 if (error
== -EINPROGRESS
) {
1200 complete(&ctx
->restart
);
1204 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1205 error
= cc
->iv_gen_ops
->post(cc
, iv_of_dmreq(cc
, dmreq
), dmreq
);
1210 mempool_free(req_of_dmreq(cc
, dmreq
), cc
->req_pool
);
1212 if (!atomic_dec_and_test(&ctx
->pending
))
1215 if (bio_data_dir(io
->base_bio
) == READ
)
1216 kcryptd_crypt_read_done(io
);
1218 kcryptd_crypt_write_io_submit(io
, 1);
1221 static void kcryptd_crypt(struct work_struct
*work
)
1223 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1225 if (bio_data_dir(io
->base_bio
) == READ
)
1226 kcryptd_crypt_read_convert(io
);
1228 kcryptd_crypt_write_convert(io
);
1231 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
1233 struct crypt_config
*cc
= io
->target
->private;
1235 INIT_WORK(&io
->work
, kcryptd_crypt
);
1236 queue_work(cc
->crypt_queue
, &io
->work
);
1240 * Decode key from its hex representation
1242 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
1250 for (i
= 0; i
< size
; i
++) {
1254 key
[i
] = (u8
)simple_strtoul(buffer
, &endp
, 16);
1256 if (endp
!= &buffer
[2])
1267 * Encode key into its hex representation
1269 static void crypt_encode_key(char *hex
, u8
*key
, unsigned int size
)
1273 for (i
= 0; i
< size
; i
++) {
1274 sprintf(hex
, "%02x", *key
);
1280 static void crypt_free_tfms(struct crypt_config
*cc
, int cpu
)
1282 struct crypt_cpu
*cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1285 for (i
= 0; i
< cc
->tfms_count
; i
++)
1286 if (cpu_cc
->tfms
[i
] && !IS_ERR(cpu_cc
->tfms
[i
])) {
1287 crypto_free_ablkcipher(cpu_cc
->tfms
[i
]);
1288 cpu_cc
->tfms
[i
] = NULL
;
1292 static int crypt_alloc_tfms(struct crypt_config
*cc
, int cpu
, char *ciphermode
)
1294 struct crypt_cpu
*cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1298 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1299 cpu_cc
->tfms
[i
] = crypto_alloc_ablkcipher(ciphermode
, 0, 0);
1300 if (IS_ERR(cpu_cc
->tfms
[i
])) {
1301 err
= PTR_ERR(cpu_cc
->tfms
[i
]);
1302 crypt_free_tfms(cc
, cpu
);
1310 static int crypt_setkey_allcpus(struct crypt_config
*cc
)
1312 unsigned subkey_size
= cc
->key_size
>> ilog2(cc
->tfms_count
);
1313 int cpu
, err
= 0, i
, r
;
1315 for_each_possible_cpu(cpu
) {
1316 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1317 r
= crypto_ablkcipher_setkey(per_cpu_ptr(cc
->cpu
, cpu
)->tfms
[i
],
1318 cc
->key
+ (i
* subkey_size
), subkey_size
);
1327 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
1330 int key_string_len
= strlen(key
);
1332 /* The key size may not be changed. */
1333 if (cc
->key_size
!= (key_string_len
>> 1))
1336 /* Hyphen (which gives a key_size of zero) means there is no key. */
1337 if (!cc
->key_size
&& strcmp(key
, "-"))
1340 if (cc
->key_size
&& crypt_decode_key(cc
->key
, key
, cc
->key_size
) < 0)
1343 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1345 r
= crypt_setkey_allcpus(cc
);
1348 /* Hex key string not needed after here, so wipe it. */
1349 memset(key
, '0', key_string_len
);
1354 static int crypt_wipe_key(struct crypt_config
*cc
)
1356 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1357 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
1359 return crypt_setkey_allcpus(cc
);
1362 static void crypt_dtr(struct dm_target
*ti
)
1364 struct crypt_config
*cc
= ti
->private;
1365 struct crypt_cpu
*cpu_cc
;
1374 destroy_workqueue(cc
->io_queue
);
1375 if (cc
->crypt_queue
)
1376 destroy_workqueue(cc
->crypt_queue
);
1379 for_each_possible_cpu(cpu
) {
1380 cpu_cc
= per_cpu_ptr(cc
->cpu
, cpu
);
1382 mempool_free(cpu_cc
->req
, cc
->req_pool
);
1383 crypt_free_tfms(cc
, cpu
);
1387 bioset_free(cc
->bs
);
1390 mempool_destroy(cc
->page_pool
);
1392 mempool_destroy(cc
->req_pool
);
1394 mempool_destroy(cc
->io_pool
);
1396 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
1397 cc
->iv_gen_ops
->dtr(cc
);
1400 dm_put_device(ti
, cc
->dev
);
1403 free_percpu(cc
->cpu
);
1406 kzfree(cc
->cipher_string
);
1408 /* Must zero key material before freeing */
1412 static int crypt_ctr_cipher(struct dm_target
*ti
,
1413 char *cipher_in
, char *key
)
1415 struct crypt_config
*cc
= ti
->private;
1416 char *tmp
, *cipher
, *chainmode
, *ivmode
, *ivopts
, *keycount
;
1417 char *cipher_api
= NULL
;
1418 int cpu
, ret
= -EINVAL
;
1420 /* Convert to crypto api definition? */
1421 if (strchr(cipher_in
, '(')) {
1422 ti
->error
= "Bad cipher specification";
1426 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
1427 if (!cc
->cipher_string
)
1431 * Legacy dm-crypt cipher specification
1432 * cipher[:keycount]-mode-iv:ivopts
1435 keycount
= strsep(&tmp
, "-");
1436 cipher
= strsep(&keycount
, ":");
1440 else if (sscanf(keycount
, "%u", &cc
->tfms_count
) != 1 ||
1441 !is_power_of_2(cc
->tfms_count
)) {
1442 ti
->error
= "Bad cipher key count specification";
1445 cc
->key_parts
= cc
->tfms_count
;
1447 cc
->cipher
= kstrdup(cipher
, GFP_KERNEL
);
1451 chainmode
= strsep(&tmp
, "-");
1452 ivopts
= strsep(&tmp
, "-");
1453 ivmode
= strsep(&ivopts
, ":");
1456 DMWARN("Ignoring unexpected additional cipher options");
1458 cc
->cpu
= __alloc_percpu(sizeof(*(cc
->cpu
)) +
1459 cc
->tfms_count
* sizeof(*(cc
->cpu
->tfms
)),
1460 __alignof__(struct crypt_cpu
));
1462 ti
->error
= "Cannot allocate per cpu state";
1467 * For compatibility with the original dm-crypt mapping format, if
1468 * only the cipher name is supplied, use cbc-plain.
1470 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !ivmode
)) {
1475 if (strcmp(chainmode
, "ecb") && !ivmode
) {
1476 ti
->error
= "IV mechanism required";
1480 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
1484 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
1485 "%s(%s)", chainmode
, cipher
);
1491 /* Allocate cipher */
1492 for_each_possible_cpu(cpu
) {
1493 ret
= crypt_alloc_tfms(cc
, cpu
, cipher_api
);
1495 ti
->error
= "Error allocating crypto tfm";
1500 /* Initialize and set key */
1501 ret
= crypt_set_key(cc
, key
);
1503 ti
->error
= "Error decoding and setting key";
1508 cc
->iv_size
= crypto_ablkcipher_ivsize(any_tfm(cc
));
1510 /* at least a 64 bit sector number should fit in our buffer */
1511 cc
->iv_size
= max(cc
->iv_size
,
1512 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
1514 DMWARN("Selected cipher does not support IVs");
1518 /* Choose ivmode, see comments at iv code. */
1520 cc
->iv_gen_ops
= NULL
;
1521 else if (strcmp(ivmode
, "plain") == 0)
1522 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
1523 else if (strcmp(ivmode
, "plain64") == 0)
1524 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
1525 else if (strcmp(ivmode
, "essiv") == 0)
1526 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
1527 else if (strcmp(ivmode
, "benbi") == 0)
1528 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
1529 else if (strcmp(ivmode
, "null") == 0)
1530 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
1531 else if (strcmp(ivmode
, "lmk") == 0) {
1532 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
1533 /* Version 2 and 3 is recognised according
1534 * to length of provided multi-key string.
1535 * If present (version 3), last key is used as IV seed.
1537 if (cc
->key_size
% cc
->key_parts
)
1541 ti
->error
= "Invalid IV mode";
1546 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
1547 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
1549 ti
->error
= "Error creating IV";
1554 /* Initialize IV (set keys for ESSIV etc) */
1555 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
1556 ret
= cc
->iv_gen_ops
->init(cc
);
1558 ti
->error
= "Error initialising IV";
1569 ti
->error
= "Cannot allocate cipher strings";
1574 * Construct an encryption mapping:
1575 * <cipher> <key> <iv_offset> <dev_path> <start>
1577 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
1579 struct crypt_config
*cc
;
1580 unsigned int key_size
;
1581 unsigned long long tmpll
;
1585 ti
->error
= "Not enough arguments";
1589 key_size
= strlen(argv
[1]) >> 1;
1591 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
1593 ti
->error
= "Cannot allocate encryption context";
1596 cc
->key_size
= key_size
;
1599 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
1604 cc
->io_pool
= mempool_create_slab_pool(MIN_IOS
, _crypt_io_pool
);
1606 ti
->error
= "Cannot allocate crypt io mempool";
1610 cc
->dmreq_start
= sizeof(struct ablkcipher_request
);
1611 cc
->dmreq_start
+= crypto_ablkcipher_reqsize(any_tfm(cc
));
1612 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, crypto_tfm_ctx_alignment());
1613 cc
->dmreq_start
+= crypto_ablkcipher_alignmask(any_tfm(cc
)) &
1614 ~(crypto_tfm_ctx_alignment() - 1);
1616 cc
->req_pool
= mempool_create_kmalloc_pool(MIN_IOS
, cc
->dmreq_start
+
1617 sizeof(struct dm_crypt_request
) + cc
->iv_size
);
1618 if (!cc
->req_pool
) {
1619 ti
->error
= "Cannot allocate crypt request mempool";
1623 cc
->page_pool
= mempool_create_page_pool(MIN_POOL_PAGES
, 0);
1624 if (!cc
->page_pool
) {
1625 ti
->error
= "Cannot allocate page mempool";
1629 cc
->bs
= bioset_create(MIN_IOS
, 0);
1631 ti
->error
= "Cannot allocate crypt bioset";
1636 if (sscanf(argv
[2], "%llu", &tmpll
) != 1) {
1637 ti
->error
= "Invalid iv_offset sector";
1640 cc
->iv_offset
= tmpll
;
1642 if (dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
)) {
1643 ti
->error
= "Device lookup failed";
1647 if (sscanf(argv
[4], "%llu", &tmpll
) != 1) {
1648 ti
->error
= "Invalid device sector";
1654 cc
->io_queue
= alloc_workqueue("kcryptd_io",
1658 if (!cc
->io_queue
) {
1659 ti
->error
= "Couldn't create kcryptd io queue";
1663 cc
->crypt_queue
= alloc_workqueue("kcryptd",
1668 if (!cc
->crypt_queue
) {
1669 ti
->error
= "Couldn't create kcryptd queue";
1673 ti
->num_flush_requests
= 1;
1681 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
,
1682 union map_info
*map_context
)
1684 struct dm_crypt_io
*io
;
1685 struct crypt_config
*cc
;
1687 if (bio
->bi_rw
& REQ_FLUSH
) {
1689 bio
->bi_bdev
= cc
->dev
->bdev
;
1690 return DM_MAPIO_REMAPPED
;
1693 io
= crypt_io_alloc(ti
, bio
, dm_target_offset(ti
, bio
->bi_sector
));
1695 if (bio_data_dir(io
->base_bio
) == READ
) {
1696 if (kcryptd_io_read(io
, GFP_NOWAIT
))
1697 kcryptd_queue_io(io
);
1699 kcryptd_queue_crypt(io
);
1701 return DM_MAPIO_SUBMITTED
;
1704 static int crypt_status(struct dm_target
*ti
, status_type_t type
,
1705 char *result
, unsigned int maxlen
)
1707 struct crypt_config
*cc
= ti
->private;
1708 unsigned int sz
= 0;
1711 case STATUSTYPE_INFO
:
1715 case STATUSTYPE_TABLE
:
1716 DMEMIT("%s ", cc
->cipher_string
);
1718 if (cc
->key_size
> 0) {
1719 if ((maxlen
- sz
) < ((cc
->key_size
<< 1) + 1))
1722 crypt_encode_key(result
+ sz
, cc
->key
, cc
->key_size
);
1723 sz
+= cc
->key_size
<< 1;
1730 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
1731 cc
->dev
->name
, (unsigned long long)cc
->start
);
1737 static void crypt_postsuspend(struct dm_target
*ti
)
1739 struct crypt_config
*cc
= ti
->private;
1741 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1744 static int crypt_preresume(struct dm_target
*ti
)
1746 struct crypt_config
*cc
= ti
->private;
1748 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
1749 DMERR("aborting resume - crypt key is not set.");
1756 static void crypt_resume(struct dm_target
*ti
)
1758 struct crypt_config
*cc
= ti
->private;
1760 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
1763 /* Message interface
1767 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
1769 struct crypt_config
*cc
= ti
->private;
1775 if (!strnicmp(argv
[0], MESG_STR("key"))) {
1776 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
1777 DMWARN("not suspended during key manipulation.");
1780 if (argc
== 3 && !strnicmp(argv
[1], MESG_STR("set"))) {
1781 ret
= crypt_set_key(cc
, argv
[2]);
1784 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
1785 ret
= cc
->iv_gen_ops
->init(cc
);
1788 if (argc
== 2 && !strnicmp(argv
[1], MESG_STR("wipe"))) {
1789 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
1790 ret
= cc
->iv_gen_ops
->wipe(cc
);
1794 return crypt_wipe_key(cc
);
1799 DMWARN("unrecognised message received.");
1803 static int crypt_merge(struct dm_target
*ti
, struct bvec_merge_data
*bvm
,
1804 struct bio_vec
*biovec
, int max_size
)
1806 struct crypt_config
*cc
= ti
->private;
1807 struct request_queue
*q
= bdev_get_queue(cc
->dev
->bdev
);
1809 if (!q
->merge_bvec_fn
)
1812 bvm
->bi_bdev
= cc
->dev
->bdev
;
1813 bvm
->bi_sector
= cc
->start
+ dm_target_offset(ti
, bvm
->bi_sector
);
1815 return min(max_size
, q
->merge_bvec_fn(q
, bvm
, biovec
));
1818 static int crypt_iterate_devices(struct dm_target
*ti
,
1819 iterate_devices_callout_fn fn
, void *data
)
1821 struct crypt_config
*cc
= ti
->private;
1823 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
1826 static struct target_type crypt_target
= {
1828 .version
= {1, 10, 0},
1829 .module
= THIS_MODULE
,
1833 .status
= crypt_status
,
1834 .postsuspend
= crypt_postsuspend
,
1835 .preresume
= crypt_preresume
,
1836 .resume
= crypt_resume
,
1837 .message
= crypt_message
,
1838 .merge
= crypt_merge
,
1839 .iterate_devices
= crypt_iterate_devices
,
1842 static int __init
dm_crypt_init(void)
1846 _crypt_io_pool
= KMEM_CACHE(dm_crypt_io
, 0);
1847 if (!_crypt_io_pool
)
1850 r
= dm_register_target(&crypt_target
);
1852 DMERR("register failed %d", r
);
1853 kmem_cache_destroy(_crypt_io_pool
);
1859 static void __exit
dm_crypt_exit(void)
1861 dm_unregister_target(&crypt_target
);
1862 kmem_cache_destroy(_crypt_io_pool
);
1865 module_init(dm_crypt_init
);
1866 module_exit(dm_crypt_exit
);
1868 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1869 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
1870 MODULE_LICENSE("GPL");