2 * Copyright (c) International Business Machines Corp., 2006
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
22 * UBI wear-leveling sub-system.
24 * This sub-system is responsible for wear-leveling. It works in terms of
25 * physical eraseblocks and erase counters and knows nothing about logical
26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27 * eraseblocks are of two types - used and free. Used physical eraseblocks are
28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 * When physical eraseblocks are returned to the WL sub-system by means of the
35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36 * done asynchronously in context of the per-UBI device background thread,
37 * which is also managed by the WL sub-system.
39 * The wear-leveling is ensured by means of moving the contents of used
40 * physical eraseblocks with low erase counter to free physical eraseblocks
41 * with high erase counter.
43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
44 * an "optimal" physical eraseblock. For example, when it is known that the
45 * physical eraseblock will be "put" soon because it contains short-term data,
46 * the WL sub-system may pick a free physical eraseblock with low erase
47 * counter, and so forth.
49 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
52 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
53 * in a physical eraseblock, it has to be moved. Technically this is the same
54 * as moving it for wear-leveling reasons.
56 * As it was said, for the UBI sub-system all physical eraseblocks are either
57 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
58 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
59 * RB-trees, as well as (temporarily) in the @wl->pq queue.
61 * When the WL sub-system returns a physical eraseblock, the physical
62 * eraseblock is protected from being moved for some "time". For this reason,
63 * the physical eraseblock is not directly moved from the @wl->free tree to the
64 * @wl->used tree. There is a protection queue in between where this
65 * physical eraseblock is temporarily stored (@wl->pq).
67 * All this protection stuff is needed because:
68 * o we don't want to move physical eraseblocks just after we have given them
69 * to the user; instead, we first want to let users fill them up with data;
71 * o there is a chance that the user will put the physical eraseblock very
72 * soon, so it makes sense not to move it for some time, but wait; this is
73 * especially important in case of "short term" physical eraseblocks.
75 * Physical eraseblocks stay protected only for limited time. But the "time" is
76 * measured in erase cycles in this case. This is implemented with help of the
77 * protection queue. Eraseblocks are put to the tail of this queue when they
78 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
79 * head of the queue on each erase operation (for any eraseblock). So the
80 * length of the queue defines how may (global) erase cycles PEBs are protected.
82 * To put it differently, each physical eraseblock has 2 main states: free and
83 * used. The former state corresponds to the @wl->free tree. The latter state
84 * is split up on several sub-states:
85 * o the WL movement is allowed (@wl->used tree);
86 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
87 * erroneous - e.g., there was a read error;
88 * o the WL movement is temporarily prohibited (@wl->pq queue);
89 * o scrubbing is needed (@wl->scrub tree).
91 * Depending on the sub-state, wear-leveling entries of the used physical
92 * eraseblocks may be kept in one of those structures.
94 * Note, in this implementation, we keep a small in-RAM object for each physical
95 * eraseblock. This is surely not a scalable solution. But it appears to be good
96 * enough for moderately large flashes and it is simple. In future, one may
97 * re-work this sub-system and make it more scalable.
99 * At the moment this sub-system does not utilize the sequence number, which
100 * was introduced relatively recently. But it would be wise to do this because
101 * the sequence number of a logical eraseblock characterizes how old is it. For
102 * example, when we move a PEB with low erase counter, and we need to pick the
103 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
104 * pick target PEB with an average EC if our PEB is not very "old". This is a
105 * room for future re-works of the WL sub-system.
108 #include <linux/slab.h>
109 #include <linux/crc32.h>
110 #include <linux/freezer.h>
111 #include <linux/kthread.h>
114 /* Number of physical eraseblocks reserved for wear-leveling purposes */
115 #define WL_RESERVED_PEBS 1
118 * Maximum difference between two erase counters. If this threshold is
119 * exceeded, the WL sub-system starts moving data from used physical
120 * eraseblocks with low erase counter to free physical eraseblocks with high
123 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
126 * When a physical eraseblock is moved, the WL sub-system has to pick the target
127 * physical eraseblock to move to. The simplest way would be just to pick the
128 * one with the highest erase counter. But in certain workloads this could lead
129 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
130 * situation when the picked physical eraseblock is constantly erased after the
131 * data is written to it. So, we have a constant which limits the highest erase
132 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
133 * does not pick eraseblocks with erase counter greater than the lowest erase
134 * counter plus %WL_FREE_MAX_DIFF.
136 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
139 * Maximum number of consecutive background thread failures which is enough to
140 * switch to read-only mode.
142 #define WL_MAX_FAILURES 32
145 * struct ubi_work - UBI work description data structure.
146 * @list: a link in the list of pending works
147 * @func: worker function
148 * @e: physical eraseblock to erase
149 * @torture: if the physical eraseblock has to be tortured
151 * The @func pointer points to the worker function. If the @cancel argument is
152 * not zero, the worker has to free the resources and exit immediately. The
153 * worker has to return zero in case of success and a negative error code in
157 struct list_head list
;
158 int (*func
)(struct ubi_device
*ubi
, struct ubi_work
*wrk
, int cancel
);
159 /* The below fields are only relevant to erasure works */
160 struct ubi_wl_entry
*e
;
164 #ifdef CONFIG_MTD_UBI_DEBUG
165 static int paranoid_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
);
166 static int paranoid_check_in_wl_tree(struct ubi_wl_entry
*e
,
167 struct rb_root
*root
);
168 static int paranoid_check_in_pq(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
);
170 #define paranoid_check_ec(ubi, pnum, ec) 0
171 #define paranoid_check_in_wl_tree(e, root)
172 #define paranoid_check_in_pq(ubi, e) 0
176 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
177 * @e: the wear-leveling entry to add
178 * @root: the root of the tree
180 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
181 * the @ubi->used and @ubi->free RB-trees.
183 static void wl_tree_add(struct ubi_wl_entry
*e
, struct rb_root
*root
)
185 struct rb_node
**p
, *parent
= NULL
;
189 struct ubi_wl_entry
*e1
;
192 e1
= rb_entry(parent
, struct ubi_wl_entry
, u
.rb
);
196 else if (e
->ec
> e1
->ec
)
199 ubi_assert(e
->pnum
!= e1
->pnum
);
200 if (e
->pnum
< e1
->pnum
)
207 rb_link_node(&e
->u
.rb
, parent
, p
);
208 rb_insert_color(&e
->u
.rb
, root
);
212 * do_work - do one pending work.
213 * @ubi: UBI device description object
215 * This function returns zero in case of success and a negative error code in
218 static int do_work(struct ubi_device
*ubi
)
221 struct ubi_work
*wrk
;
226 * @ubi->work_sem is used to synchronize with the workers. Workers take
227 * it in read mode, so many of them may be doing works at a time. But
228 * the queue flush code has to be sure the whole queue of works is
229 * done, and it takes the mutex in write mode.
231 down_read(&ubi
->work_sem
);
232 spin_lock(&ubi
->wl_lock
);
233 if (list_empty(&ubi
->works
)) {
234 spin_unlock(&ubi
->wl_lock
);
235 up_read(&ubi
->work_sem
);
239 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
240 list_del(&wrk
->list
);
241 ubi
->works_count
-= 1;
242 ubi_assert(ubi
->works_count
>= 0);
243 spin_unlock(&ubi
->wl_lock
);
246 * Call the worker function. Do not touch the work structure
247 * after this call as it will have been freed or reused by that
248 * time by the worker function.
250 err
= wrk
->func(ubi
, wrk
, 0);
252 ubi_err("work failed with error code %d", err
);
253 up_read(&ubi
->work_sem
);
259 * produce_free_peb - produce a free physical eraseblock.
260 * @ubi: UBI device description object
262 * This function tries to make a free PEB by means of synchronous execution of
263 * pending works. This may be needed if, for example the background thread is
264 * disabled. Returns zero in case of success and a negative error code in case
267 static int produce_free_peb(struct ubi_device
*ubi
)
271 spin_lock(&ubi
->wl_lock
);
272 while (!ubi
->free
.rb_node
) {
273 spin_unlock(&ubi
->wl_lock
);
275 dbg_wl("do one work synchronously");
280 spin_lock(&ubi
->wl_lock
);
282 spin_unlock(&ubi
->wl_lock
);
288 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
289 * @e: the wear-leveling entry to check
290 * @root: the root of the tree
292 * This function returns non-zero if @e is in the @root RB-tree and zero if it
295 static int in_wl_tree(struct ubi_wl_entry
*e
, struct rb_root
*root
)
301 struct ubi_wl_entry
*e1
;
303 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
305 if (e
->pnum
== e1
->pnum
) {
312 else if (e
->ec
> e1
->ec
)
315 ubi_assert(e
->pnum
!= e1
->pnum
);
316 if (e
->pnum
< e1
->pnum
)
327 * prot_queue_add - add physical eraseblock to the protection queue.
328 * @ubi: UBI device description object
329 * @e: the physical eraseblock to add
331 * This function adds @e to the tail of the protection queue @ubi->pq, where
332 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
333 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
336 static void prot_queue_add(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
338 int pq_tail
= ubi
->pq_head
- 1;
341 pq_tail
= UBI_PROT_QUEUE_LEN
- 1;
342 ubi_assert(pq_tail
>= 0 && pq_tail
< UBI_PROT_QUEUE_LEN
);
343 list_add_tail(&e
->u
.list
, &ubi
->pq
[pq_tail
]);
344 dbg_wl("added PEB %d EC %d to the protection queue", e
->pnum
, e
->ec
);
348 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
349 * @root: the RB-tree where to look for
350 * @max: highest possible erase counter
352 * This function looks for a wear leveling entry with erase counter closest to
353 * @max and less than @max.
355 static struct ubi_wl_entry
*find_wl_entry(struct rb_root
*root
, int max
)
358 struct ubi_wl_entry
*e
;
360 e
= rb_entry(rb_first(root
), struct ubi_wl_entry
, u
.rb
);
365 struct ubi_wl_entry
*e1
;
367 e1
= rb_entry(p
, struct ubi_wl_entry
, u
.rb
);
380 * ubi_wl_get_peb - get a physical eraseblock.
381 * @ubi: UBI device description object
382 * @dtype: type of data which will be stored in this physical eraseblock
384 * This function returns a physical eraseblock in case of success and a
385 * negative error code in case of failure. Might sleep.
387 int ubi_wl_get_peb(struct ubi_device
*ubi
, int dtype
)
390 struct ubi_wl_entry
*e
, *first
, *last
;
392 ubi_assert(dtype
== UBI_LONGTERM
|| dtype
== UBI_SHORTTERM
||
393 dtype
== UBI_UNKNOWN
);
396 spin_lock(&ubi
->wl_lock
);
397 if (!ubi
->free
.rb_node
) {
398 if (ubi
->works_count
== 0) {
399 ubi_assert(list_empty(&ubi
->works
));
400 ubi_err("no free eraseblocks");
401 spin_unlock(&ubi
->wl_lock
);
404 spin_unlock(&ubi
->wl_lock
);
406 err
= produce_free_peb(ubi
);
415 * For long term data we pick a physical eraseblock with high
416 * erase counter. But the highest erase counter we can pick is
417 * bounded by the the lowest erase counter plus
420 e
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
424 * For unknown data we pick a physical eraseblock with medium
425 * erase counter. But we by no means can pick a physical
426 * eraseblock with erase counter greater or equivalent than the
427 * lowest erase counter plus %WL_FREE_MAX_DIFF/2.
429 first
= rb_entry(rb_first(&ubi
->free
), struct ubi_wl_entry
,
431 last
= rb_entry(rb_last(&ubi
->free
), struct ubi_wl_entry
, u
.rb
);
433 if (last
->ec
- first
->ec
< WL_FREE_MAX_DIFF
)
434 e
= rb_entry(ubi
->free
.rb_node
,
435 struct ubi_wl_entry
, u
.rb
);
437 e
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
/2);
441 * For short term data we pick a physical eraseblock with the
442 * lowest erase counter as we expect it will be erased soon.
444 e
= rb_entry(rb_first(&ubi
->free
), struct ubi_wl_entry
, u
.rb
);
450 paranoid_check_in_wl_tree(e
, &ubi
->free
);
453 * Move the physical eraseblock to the protection queue where it will
454 * be protected from being moved for some time.
456 rb_erase(&e
->u
.rb
, &ubi
->free
);
457 dbg_wl("PEB %d EC %d", e
->pnum
, e
->ec
);
458 prot_queue_add(ubi
, e
);
459 spin_unlock(&ubi
->wl_lock
);
461 err
= ubi_dbg_check_all_ff(ubi
, e
->pnum
, ubi
->vid_hdr_aloffset
,
462 ubi
->peb_size
- ubi
->vid_hdr_aloffset
);
464 ubi_err("new PEB %d does not contain all 0xFF bytes", e
->pnum
);
472 * prot_queue_del - remove a physical eraseblock from the protection queue.
473 * @ubi: UBI device description object
474 * @pnum: the physical eraseblock to remove
476 * This function deletes PEB @pnum from the protection queue and returns zero
477 * in case of success and %-ENODEV if the PEB was not found.
479 static int prot_queue_del(struct ubi_device
*ubi
, int pnum
)
481 struct ubi_wl_entry
*e
;
483 e
= ubi
->lookuptbl
[pnum
];
487 if (paranoid_check_in_pq(ubi
, e
))
490 list_del(&e
->u
.list
);
491 dbg_wl("deleted PEB %d from the protection queue", e
->pnum
);
496 * sync_erase - synchronously erase a physical eraseblock.
497 * @ubi: UBI device description object
498 * @e: the the physical eraseblock to erase
499 * @torture: if the physical eraseblock has to be tortured
501 * This function returns zero in case of success and a negative error code in
504 static int sync_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
508 struct ubi_ec_hdr
*ec_hdr
;
509 unsigned long long ec
= e
->ec
;
511 dbg_wl("erase PEB %d, old EC %llu", e
->pnum
, ec
);
513 err
= paranoid_check_ec(ubi
, e
->pnum
, e
->ec
);
517 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
521 err
= ubi_io_sync_erase(ubi
, e
->pnum
, torture
);
526 if (ec
> UBI_MAX_ERASECOUNTER
) {
528 * Erase counter overflow. Upgrade UBI and use 64-bit
529 * erase counters internally.
531 ubi_err("erase counter overflow at PEB %d, EC %llu",
537 dbg_wl("erased PEB %d, new EC %llu", e
->pnum
, ec
);
539 ec_hdr
->ec
= cpu_to_be64(ec
);
541 err
= ubi_io_write_ec_hdr(ubi
, e
->pnum
, ec_hdr
);
546 spin_lock(&ubi
->wl_lock
);
547 if (e
->ec
> ubi
->max_ec
)
549 spin_unlock(&ubi
->wl_lock
);
557 * serve_prot_queue - check if it is time to stop protecting PEBs.
558 * @ubi: UBI device description object
560 * This function is called after each erase operation and removes PEBs from the
561 * tail of the protection queue. These PEBs have been protected for long enough
562 * and should be moved to the used tree.
564 static void serve_prot_queue(struct ubi_device
*ubi
)
566 struct ubi_wl_entry
*e
, *tmp
;
570 * There may be several protected physical eraseblock to remove,
575 spin_lock(&ubi
->wl_lock
);
576 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[ubi
->pq_head
], u
.list
) {
577 dbg_wl("PEB %d EC %d protection over, move to used tree",
580 list_del(&e
->u
.list
);
581 wl_tree_add(e
, &ubi
->used
);
584 * Let's be nice and avoid holding the spinlock for
587 spin_unlock(&ubi
->wl_lock
);
594 if (ubi
->pq_head
== UBI_PROT_QUEUE_LEN
)
596 ubi_assert(ubi
->pq_head
>= 0 && ubi
->pq_head
< UBI_PROT_QUEUE_LEN
);
597 spin_unlock(&ubi
->wl_lock
);
601 * schedule_ubi_work - schedule a work.
602 * @ubi: UBI device description object
603 * @wrk: the work to schedule
605 * This function adds a work defined by @wrk to the tail of the pending works
608 static void schedule_ubi_work(struct ubi_device
*ubi
, struct ubi_work
*wrk
)
610 spin_lock(&ubi
->wl_lock
);
611 list_add_tail(&wrk
->list
, &ubi
->works
);
612 ubi_assert(ubi
->works_count
>= 0);
613 ubi
->works_count
+= 1;
614 if (ubi
->thread_enabled
&& !ubi_dbg_is_bgt_disabled())
615 wake_up_process(ubi
->bgt_thread
);
616 spin_unlock(&ubi
->wl_lock
);
619 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
623 * schedule_erase - schedule an erase work.
624 * @ubi: UBI device description object
625 * @e: the WL entry of the physical eraseblock to erase
626 * @torture: if the physical eraseblock has to be tortured
628 * This function returns zero in case of success and a %-ENOMEM in case of
631 static int schedule_erase(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
,
634 struct ubi_work
*wl_wrk
;
636 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
637 e
->pnum
, e
->ec
, torture
);
639 wl_wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
643 wl_wrk
->func
= &erase_worker
;
645 wl_wrk
->torture
= torture
;
647 schedule_ubi_work(ubi
, wl_wrk
);
652 * wear_leveling_worker - wear-leveling worker function.
653 * @ubi: UBI device description object
654 * @wrk: the work object
655 * @cancel: non-zero if the worker has to free memory and exit
657 * This function copies a more worn out physical eraseblock to a less worn out
658 * one. Returns zero in case of success and a negative error code in case of
661 static int wear_leveling_worker(struct ubi_device
*ubi
, struct ubi_work
*wrk
,
664 int err
, scrubbing
= 0, torture
= 0, protect
= 0, erroneous
= 0;
665 int vol_id
= -1, uninitialized_var(lnum
);
666 struct ubi_wl_entry
*e1
, *e2
;
667 struct ubi_vid_hdr
*vid_hdr
;
673 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_NOFS
);
677 mutex_lock(&ubi
->move_mutex
);
678 spin_lock(&ubi
->wl_lock
);
679 ubi_assert(!ubi
->move_from
&& !ubi
->move_to
);
680 ubi_assert(!ubi
->move_to_put
);
682 if (!ubi
->free
.rb_node
||
683 (!ubi
->used
.rb_node
&& !ubi
->scrub
.rb_node
)) {
685 * No free physical eraseblocks? Well, they must be waiting in
686 * the queue to be erased. Cancel movement - it will be
687 * triggered again when a free physical eraseblock appears.
689 * No used physical eraseblocks? They must be temporarily
690 * protected from being moved. They will be moved to the
691 * @ubi->used tree later and the wear-leveling will be
694 dbg_wl("cancel WL, a list is empty: free %d, used %d",
695 !ubi
->free
.rb_node
, !ubi
->used
.rb_node
);
699 if (!ubi
->scrub
.rb_node
) {
701 * Now pick the least worn-out used physical eraseblock and a
702 * highly worn-out free physical eraseblock. If the erase
703 * counters differ much enough, start wear-leveling.
705 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
706 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
708 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
)) {
709 dbg_wl("no WL needed: min used EC %d, max free EC %d",
713 paranoid_check_in_wl_tree(e1
, &ubi
->used
);
714 rb_erase(&e1
->u
.rb
, &ubi
->used
);
715 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
716 e1
->pnum
, e1
->ec
, e2
->pnum
, e2
->ec
);
718 /* Perform scrubbing */
720 e1
= rb_entry(rb_first(&ubi
->scrub
), struct ubi_wl_entry
, u
.rb
);
721 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
722 paranoid_check_in_wl_tree(e1
, &ubi
->scrub
);
723 rb_erase(&e1
->u
.rb
, &ubi
->scrub
);
724 dbg_wl("scrub PEB %d to PEB %d", e1
->pnum
, e2
->pnum
);
727 paranoid_check_in_wl_tree(e2
, &ubi
->free
);
728 rb_erase(&e2
->u
.rb
, &ubi
->free
);
731 spin_unlock(&ubi
->wl_lock
);
734 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
735 * We so far do not know which logical eraseblock our physical
736 * eraseblock (@e1) belongs to. We have to read the volume identifier
739 * Note, we are protected from this PEB being unmapped and erased. The
740 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
741 * which is being moved was unmapped.
744 err
= ubi_io_read_vid_hdr(ubi
, e1
->pnum
, vid_hdr
, 0);
745 if (err
&& err
!= UBI_IO_BITFLIPS
) {
746 if (err
== UBI_IO_FF
) {
748 * We are trying to move PEB without a VID header. UBI
749 * always write VID headers shortly after the PEB was
750 * given, so we have a situation when it has not yet
751 * had a chance to write it, because it was preempted.
752 * So add this PEB to the protection queue so far,
753 * because presumably more data will be written there
754 * (including the missing VID header), and then we'll
757 dbg_wl("PEB %d has no VID header", e1
->pnum
);
760 } else if (err
== UBI_IO_FF_BITFLIPS
) {
762 * The same situation as %UBI_IO_FF, but bit-flips were
763 * detected. It is better to schedule this PEB for
766 dbg_wl("PEB %d has no VID header but has bit-flips",
772 ubi_err("error %d while reading VID header from PEB %d",
777 vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
778 lnum
= be32_to_cpu(vid_hdr
->lnum
);
780 err
= ubi_eba_copy_leb(ubi
, e1
->pnum
, e2
->pnum
, vid_hdr
);
782 if (err
== MOVE_CANCEL_RACE
) {
784 * The LEB has not been moved because the volume is
785 * being deleted or the PEB has been put meanwhile. We
786 * should prevent this PEB from being selected for
787 * wear-leveling movement again, so put it to the
793 if (err
== MOVE_RETRY
) {
797 if (err
== MOVE_CANCEL_BITFLIPS
|| err
== MOVE_TARGET_WR_ERR
||
798 err
== MOVE_TARGET_RD_ERR
) {
800 * Target PEB had bit-flips or write error - torture it.
806 if (err
== MOVE_SOURCE_RD_ERR
) {
808 * An error happened while reading the source PEB. Do
809 * not switch to R/O mode in this case, and give the
810 * upper layers a possibility to recover from this,
811 * e.g. by unmapping corresponding LEB. Instead, just
812 * put this PEB to the @ubi->erroneous list to prevent
813 * UBI from trying to move it over and over again.
815 if (ubi
->erroneous_peb_count
> ubi
->max_erroneous
) {
816 ubi_err("too many erroneous eraseblocks (%d)",
817 ubi
->erroneous_peb_count
);
830 /* The PEB has been successfully moved */
832 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
833 e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
834 ubi_free_vid_hdr(ubi
, vid_hdr
);
836 spin_lock(&ubi
->wl_lock
);
837 if (!ubi
->move_to_put
) {
838 wl_tree_add(e2
, &ubi
->used
);
841 ubi
->move_from
= ubi
->move_to
= NULL
;
842 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
843 spin_unlock(&ubi
->wl_lock
);
845 err
= schedule_erase(ubi
, e1
, 0);
847 kmem_cache_free(ubi_wl_entry_slab
, e1
);
849 kmem_cache_free(ubi_wl_entry_slab
, e2
);
855 * Well, the target PEB was put meanwhile, schedule it for
858 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
859 e2
->pnum
, vol_id
, lnum
);
860 err
= schedule_erase(ubi
, e2
, 0);
862 kmem_cache_free(ubi_wl_entry_slab
, e2
);
868 mutex_unlock(&ubi
->move_mutex
);
872 * For some reasons the LEB was not moved, might be an error, might be
873 * something else. @e1 was not changed, so return it back. @e2 might
874 * have been changed, schedule it for erasure.
878 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
879 e1
->pnum
, vol_id
, lnum
, e2
->pnum
, err
);
881 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
882 e1
->pnum
, e2
->pnum
, err
);
883 spin_lock(&ubi
->wl_lock
);
885 prot_queue_add(ubi
, e1
);
886 else if (erroneous
) {
887 wl_tree_add(e1
, &ubi
->erroneous
);
888 ubi
->erroneous_peb_count
+= 1;
889 } else if (scrubbing
)
890 wl_tree_add(e1
, &ubi
->scrub
);
892 wl_tree_add(e1
, &ubi
->used
);
893 ubi_assert(!ubi
->move_to_put
);
894 ubi
->move_from
= ubi
->move_to
= NULL
;
895 ubi
->wl_scheduled
= 0;
896 spin_unlock(&ubi
->wl_lock
);
898 ubi_free_vid_hdr(ubi
, vid_hdr
);
899 err
= schedule_erase(ubi
, e2
, torture
);
901 kmem_cache_free(ubi_wl_entry_slab
, e2
);
904 mutex_unlock(&ubi
->move_mutex
);
909 ubi_err("error %d while moving PEB %d to PEB %d",
910 err
, e1
->pnum
, e2
->pnum
);
912 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
913 err
, e1
->pnum
, vol_id
, lnum
, e2
->pnum
);
914 spin_lock(&ubi
->wl_lock
);
915 ubi
->move_from
= ubi
->move_to
= NULL
;
916 ubi
->move_to_put
= ubi
->wl_scheduled
= 0;
917 spin_unlock(&ubi
->wl_lock
);
919 ubi_free_vid_hdr(ubi
, vid_hdr
);
920 kmem_cache_free(ubi_wl_entry_slab
, e1
);
921 kmem_cache_free(ubi_wl_entry_slab
, e2
);
925 mutex_unlock(&ubi
->move_mutex
);
926 ubi_assert(err
!= 0);
927 return err
< 0 ? err
: -EIO
;
930 ubi
->wl_scheduled
= 0;
931 spin_unlock(&ubi
->wl_lock
);
932 mutex_unlock(&ubi
->move_mutex
);
933 ubi_free_vid_hdr(ubi
, vid_hdr
);
938 * ensure_wear_leveling - schedule wear-leveling if it is needed.
939 * @ubi: UBI device description object
941 * This function checks if it is time to start wear-leveling and schedules it
942 * if yes. This function returns zero in case of success and a negative error
943 * code in case of failure.
945 static int ensure_wear_leveling(struct ubi_device
*ubi
)
948 struct ubi_wl_entry
*e1
;
949 struct ubi_wl_entry
*e2
;
950 struct ubi_work
*wrk
;
952 spin_lock(&ubi
->wl_lock
);
953 if (ubi
->wl_scheduled
)
954 /* Wear-leveling is already in the work queue */
958 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
959 * the WL worker has to be scheduled anyway.
961 if (!ubi
->scrub
.rb_node
) {
962 if (!ubi
->used
.rb_node
|| !ubi
->free
.rb_node
)
963 /* No physical eraseblocks - no deal */
967 * We schedule wear-leveling only if the difference between the
968 * lowest erase counter of used physical eraseblocks and a high
969 * erase counter of free physical eraseblocks is greater than
972 e1
= rb_entry(rb_first(&ubi
->used
), struct ubi_wl_entry
, u
.rb
);
973 e2
= find_wl_entry(&ubi
->free
, WL_FREE_MAX_DIFF
);
975 if (!(e2
->ec
- e1
->ec
>= UBI_WL_THRESHOLD
))
977 dbg_wl("schedule wear-leveling");
979 dbg_wl("schedule scrubbing");
981 ubi
->wl_scheduled
= 1;
982 spin_unlock(&ubi
->wl_lock
);
984 wrk
= kmalloc(sizeof(struct ubi_work
), GFP_NOFS
);
990 wrk
->func
= &wear_leveling_worker
;
991 schedule_ubi_work(ubi
, wrk
);
995 spin_lock(&ubi
->wl_lock
);
996 ubi
->wl_scheduled
= 0;
998 spin_unlock(&ubi
->wl_lock
);
1003 * erase_worker - physical eraseblock erase worker function.
1004 * @ubi: UBI device description object
1005 * @wl_wrk: the work object
1006 * @cancel: non-zero if the worker has to free memory and exit
1008 * This function erases a physical eraseblock and perform torture testing if
1009 * needed. It also takes care about marking the physical eraseblock bad if
1010 * needed. Returns zero in case of success and a negative error code in case of
1013 static int erase_worker(struct ubi_device
*ubi
, struct ubi_work
*wl_wrk
,
1016 struct ubi_wl_entry
*e
= wl_wrk
->e
;
1017 int pnum
= e
->pnum
, err
, need
;
1020 dbg_wl("cancel erasure of PEB %d EC %d", pnum
, e
->ec
);
1022 kmem_cache_free(ubi_wl_entry_slab
, e
);
1026 dbg_wl("erase PEB %d EC %d", pnum
, e
->ec
);
1028 err
= sync_erase(ubi
, e
, wl_wrk
->torture
);
1030 /* Fine, we've erased it successfully */
1033 spin_lock(&ubi
->wl_lock
);
1034 wl_tree_add(e
, &ubi
->free
);
1035 spin_unlock(&ubi
->wl_lock
);
1038 * One more erase operation has happened, take care about
1039 * protected physical eraseblocks.
1041 serve_prot_queue(ubi
);
1043 /* And take care about wear-leveling */
1044 err
= ensure_wear_leveling(ubi
);
1048 ubi_err("failed to erase PEB %d, error %d", pnum
, err
);
1051 if (err
== -EINTR
|| err
== -ENOMEM
|| err
== -EAGAIN
||
1055 /* Re-schedule the LEB for erasure */
1056 err1
= schedule_erase(ubi
, e
, 0);
1064 kmem_cache_free(ubi_wl_entry_slab
, e
);
1067 * If this is not %-EIO, we have no idea what to do. Scheduling
1068 * this physical eraseblock for erasure again would cause
1069 * errors again and again. Well, lets switch to R/O mode.
1073 /* It is %-EIO, the PEB went bad */
1075 if (!ubi
->bad_allowed
) {
1076 ubi_err("bad physical eraseblock %d detected", pnum
);
1080 spin_lock(&ubi
->volumes_lock
);
1081 need
= ubi
->beb_rsvd_level
- ubi
->beb_rsvd_pebs
+ 1;
1083 need
= ubi
->avail_pebs
>= need
? need
: ubi
->avail_pebs
;
1084 ubi
->avail_pebs
-= need
;
1085 ubi
->rsvd_pebs
+= need
;
1086 ubi
->beb_rsvd_pebs
+= need
;
1088 ubi_msg("reserve more %d PEBs", need
);
1091 if (ubi
->beb_rsvd_pebs
== 0) {
1092 spin_unlock(&ubi
->volumes_lock
);
1093 ubi_err("no reserved physical eraseblocks");
1096 spin_unlock(&ubi
->volumes_lock
);
1098 ubi_msg("mark PEB %d as bad", pnum
);
1099 err
= ubi_io_mark_bad(ubi
, pnum
);
1103 spin_lock(&ubi
->volumes_lock
);
1104 ubi
->beb_rsvd_pebs
-= 1;
1105 ubi
->bad_peb_count
+= 1;
1106 ubi
->good_peb_count
-= 1;
1107 ubi_calculate_reserved(ubi
);
1108 if (ubi
->beb_rsvd_pebs
)
1109 ubi_msg("%d PEBs left in the reserve", ubi
->beb_rsvd_pebs
);
1111 ubi_warn("last PEB from the reserved pool was used");
1112 spin_unlock(&ubi
->volumes_lock
);
1122 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1123 * @ubi: UBI device description object
1124 * @pnum: physical eraseblock to return
1125 * @torture: if this physical eraseblock has to be tortured
1127 * This function is called to return physical eraseblock @pnum to the pool of
1128 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1129 * occurred to this @pnum and it has to be tested. This function returns zero
1130 * in case of success, and a negative error code in case of failure.
1132 int ubi_wl_put_peb(struct ubi_device
*ubi
, int pnum
, int torture
)
1135 struct ubi_wl_entry
*e
;
1137 dbg_wl("PEB %d", pnum
);
1138 ubi_assert(pnum
>= 0);
1139 ubi_assert(pnum
< ubi
->peb_count
);
1142 spin_lock(&ubi
->wl_lock
);
1143 e
= ubi
->lookuptbl
[pnum
];
1144 if (e
== ubi
->move_from
) {
1146 * User is putting the physical eraseblock which was selected to
1147 * be moved. It will be scheduled for erasure in the
1148 * wear-leveling worker.
1150 dbg_wl("PEB %d is being moved, wait", pnum
);
1151 spin_unlock(&ubi
->wl_lock
);
1153 /* Wait for the WL worker by taking the @ubi->move_mutex */
1154 mutex_lock(&ubi
->move_mutex
);
1155 mutex_unlock(&ubi
->move_mutex
);
1157 } else if (e
== ubi
->move_to
) {
1159 * User is putting the physical eraseblock which was selected
1160 * as the target the data is moved to. It may happen if the EBA
1161 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1162 * but the WL sub-system has not put the PEB to the "used" tree
1163 * yet, but it is about to do this. So we just set a flag which
1164 * will tell the WL worker that the PEB is not needed anymore
1165 * and should be scheduled for erasure.
1167 dbg_wl("PEB %d is the target of data moving", pnum
);
1168 ubi_assert(!ubi
->move_to_put
);
1169 ubi
->move_to_put
= 1;
1170 spin_unlock(&ubi
->wl_lock
);
1173 if (in_wl_tree(e
, &ubi
->used
)) {
1174 paranoid_check_in_wl_tree(e
, &ubi
->used
);
1175 rb_erase(&e
->u
.rb
, &ubi
->used
);
1176 } else if (in_wl_tree(e
, &ubi
->scrub
)) {
1177 paranoid_check_in_wl_tree(e
, &ubi
->scrub
);
1178 rb_erase(&e
->u
.rb
, &ubi
->scrub
);
1179 } else if (in_wl_tree(e
, &ubi
->erroneous
)) {
1180 paranoid_check_in_wl_tree(e
, &ubi
->erroneous
);
1181 rb_erase(&e
->u
.rb
, &ubi
->erroneous
);
1182 ubi
->erroneous_peb_count
-= 1;
1183 ubi_assert(ubi
->erroneous_peb_count
>= 0);
1184 /* Erroneous PEBs should be tortured */
1187 err
= prot_queue_del(ubi
, e
->pnum
);
1189 ubi_err("PEB %d not found", pnum
);
1191 spin_unlock(&ubi
->wl_lock
);
1196 spin_unlock(&ubi
->wl_lock
);
1198 err
= schedule_erase(ubi
, e
, torture
);
1200 spin_lock(&ubi
->wl_lock
);
1201 wl_tree_add(e
, &ubi
->used
);
1202 spin_unlock(&ubi
->wl_lock
);
1209 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1210 * @ubi: UBI device description object
1211 * @pnum: the physical eraseblock to schedule
1213 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1214 * needs scrubbing. This function schedules a physical eraseblock for
1215 * scrubbing which is done in background. This function returns zero in case of
1216 * success and a negative error code in case of failure.
1218 int ubi_wl_scrub_peb(struct ubi_device
*ubi
, int pnum
)
1220 struct ubi_wl_entry
*e
;
1222 dbg_msg("schedule PEB %d for scrubbing", pnum
);
1225 spin_lock(&ubi
->wl_lock
);
1226 e
= ubi
->lookuptbl
[pnum
];
1227 if (e
== ubi
->move_from
|| in_wl_tree(e
, &ubi
->scrub
) ||
1228 in_wl_tree(e
, &ubi
->erroneous
)) {
1229 spin_unlock(&ubi
->wl_lock
);
1233 if (e
== ubi
->move_to
) {
1235 * This physical eraseblock was used to move data to. The data
1236 * was moved but the PEB was not yet inserted to the proper
1237 * tree. We should just wait a little and let the WL worker
1240 spin_unlock(&ubi
->wl_lock
);
1241 dbg_wl("the PEB %d is not in proper tree, retry", pnum
);
1246 if (in_wl_tree(e
, &ubi
->used
)) {
1247 paranoid_check_in_wl_tree(e
, &ubi
->used
);
1248 rb_erase(&e
->u
.rb
, &ubi
->used
);
1252 err
= prot_queue_del(ubi
, e
->pnum
);
1254 ubi_err("PEB %d not found", pnum
);
1256 spin_unlock(&ubi
->wl_lock
);
1261 wl_tree_add(e
, &ubi
->scrub
);
1262 spin_unlock(&ubi
->wl_lock
);
1265 * Technically scrubbing is the same as wear-leveling, so it is done
1268 return ensure_wear_leveling(ubi
);
1272 * ubi_wl_flush - flush all pending works.
1273 * @ubi: UBI device description object
1275 * This function returns zero in case of success and a negative error code in
1278 int ubi_wl_flush(struct ubi_device
*ubi
)
1283 * Erase while the pending works queue is not empty, but not more than
1284 * the number of currently pending works.
1286 dbg_wl("flush (%d pending works)", ubi
->works_count
);
1287 while (ubi
->works_count
) {
1294 * Make sure all the works which have been done in parallel are
1297 down_write(&ubi
->work_sem
);
1298 up_write(&ubi
->work_sem
);
1301 * And in case last was the WL worker and it canceled the LEB
1302 * movement, flush again.
1304 while (ubi
->works_count
) {
1305 dbg_wl("flush more (%d pending works)", ubi
->works_count
);
1315 * tree_destroy - destroy an RB-tree.
1316 * @root: the root of the tree to destroy
1318 static void tree_destroy(struct rb_root
*root
)
1321 struct ubi_wl_entry
*e
;
1327 else if (rb
->rb_right
)
1330 e
= rb_entry(rb
, struct ubi_wl_entry
, u
.rb
);
1334 if (rb
->rb_left
== &e
->u
.rb
)
1337 rb
->rb_right
= NULL
;
1340 kmem_cache_free(ubi_wl_entry_slab
, e
);
1346 * ubi_thread - UBI background thread.
1347 * @u: the UBI device description object pointer
1349 int ubi_thread(void *u
)
1352 struct ubi_device
*ubi
= u
;
1354 ubi_msg("background thread \"%s\" started, PID %d",
1355 ubi
->bgt_name
, task_pid_nr(current
));
1361 if (kthread_should_stop())
1364 if (try_to_freeze())
1367 spin_lock(&ubi
->wl_lock
);
1368 if (list_empty(&ubi
->works
) || ubi
->ro_mode
||
1369 !ubi
->thread_enabled
|| ubi_dbg_is_bgt_disabled()) {
1370 set_current_state(TASK_INTERRUPTIBLE
);
1371 spin_unlock(&ubi
->wl_lock
);
1375 spin_unlock(&ubi
->wl_lock
);
1379 ubi_err("%s: work failed with error code %d",
1380 ubi
->bgt_name
, err
);
1381 if (failures
++ > WL_MAX_FAILURES
) {
1383 * Too many failures, disable the thread and
1384 * switch to read-only mode.
1386 ubi_msg("%s: %d consecutive failures",
1387 ubi
->bgt_name
, WL_MAX_FAILURES
);
1389 ubi
->thread_enabled
= 0;
1398 dbg_wl("background thread \"%s\" is killed", ubi
->bgt_name
);
1403 * cancel_pending - cancel all pending works.
1404 * @ubi: UBI device description object
1406 static void cancel_pending(struct ubi_device
*ubi
)
1408 while (!list_empty(&ubi
->works
)) {
1409 struct ubi_work
*wrk
;
1411 wrk
= list_entry(ubi
->works
.next
, struct ubi_work
, list
);
1412 list_del(&wrk
->list
);
1413 wrk
->func(ubi
, wrk
, 1);
1414 ubi
->works_count
-= 1;
1415 ubi_assert(ubi
->works_count
>= 0);
1420 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1421 * @ubi: UBI device description object
1422 * @si: scanning information
1424 * This function returns zero in case of success, and a negative error code in
1427 int ubi_wl_init_scan(struct ubi_device
*ubi
, struct ubi_scan_info
*si
)
1430 struct rb_node
*rb1
, *rb2
;
1431 struct ubi_scan_volume
*sv
;
1432 struct ubi_scan_leb
*seb
, *tmp
;
1433 struct ubi_wl_entry
*e
;
1435 ubi
->used
= ubi
->erroneous
= ubi
->free
= ubi
->scrub
= RB_ROOT
;
1436 spin_lock_init(&ubi
->wl_lock
);
1437 mutex_init(&ubi
->move_mutex
);
1438 init_rwsem(&ubi
->work_sem
);
1439 ubi
->max_ec
= si
->max_ec
;
1440 INIT_LIST_HEAD(&ubi
->works
);
1442 sprintf(ubi
->bgt_name
, UBI_BGT_NAME_PATTERN
, ubi
->ubi_num
);
1445 ubi
->lookuptbl
= kzalloc(ubi
->peb_count
* sizeof(void *), GFP_KERNEL
);
1446 if (!ubi
->lookuptbl
)
1449 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; i
++)
1450 INIT_LIST_HEAD(&ubi
->pq
[i
]);
1453 list_for_each_entry_safe(seb
, tmp
, &si
->erase
, u
.list
) {
1456 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1460 e
->pnum
= seb
->pnum
;
1462 ubi
->lookuptbl
[e
->pnum
] = e
;
1463 if (schedule_erase(ubi
, e
, 0)) {
1464 kmem_cache_free(ubi_wl_entry_slab
, e
);
1469 list_for_each_entry(seb
, &si
->free
, u
.list
) {
1472 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1476 e
->pnum
= seb
->pnum
;
1478 ubi_assert(e
->ec
>= 0);
1479 wl_tree_add(e
, &ubi
->free
);
1480 ubi
->lookuptbl
[e
->pnum
] = e
;
1483 ubi_rb_for_each_entry(rb1
, sv
, &si
->volumes
, rb
) {
1484 ubi_rb_for_each_entry(rb2
, seb
, &sv
->root
, u
.rb
) {
1487 e
= kmem_cache_alloc(ubi_wl_entry_slab
, GFP_KERNEL
);
1491 e
->pnum
= seb
->pnum
;
1493 ubi
->lookuptbl
[e
->pnum
] = e
;
1495 dbg_wl("add PEB %d EC %d to the used tree",
1497 wl_tree_add(e
, &ubi
->used
);
1499 dbg_wl("add PEB %d EC %d to the scrub tree",
1501 wl_tree_add(e
, &ubi
->scrub
);
1506 if (ubi
->avail_pebs
< WL_RESERVED_PEBS
) {
1507 ubi_err("no enough physical eraseblocks (%d, need %d)",
1508 ubi
->avail_pebs
, WL_RESERVED_PEBS
);
1509 if (ubi
->corr_peb_count
)
1510 ubi_err("%d PEBs are corrupted and not used",
1511 ubi
->corr_peb_count
);
1514 ubi
->avail_pebs
-= WL_RESERVED_PEBS
;
1515 ubi
->rsvd_pebs
+= WL_RESERVED_PEBS
;
1517 /* Schedule wear-leveling if needed */
1518 err
= ensure_wear_leveling(ubi
);
1525 cancel_pending(ubi
);
1526 tree_destroy(&ubi
->used
);
1527 tree_destroy(&ubi
->free
);
1528 tree_destroy(&ubi
->scrub
);
1529 kfree(ubi
->lookuptbl
);
1534 * protection_queue_destroy - destroy the protection queue.
1535 * @ubi: UBI device description object
1537 static void protection_queue_destroy(struct ubi_device
*ubi
)
1540 struct ubi_wl_entry
*e
, *tmp
;
1542 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
) {
1543 list_for_each_entry_safe(e
, tmp
, &ubi
->pq
[i
], u
.list
) {
1544 list_del(&e
->u
.list
);
1545 kmem_cache_free(ubi_wl_entry_slab
, e
);
1551 * ubi_wl_close - close the wear-leveling sub-system.
1552 * @ubi: UBI device description object
1554 void ubi_wl_close(struct ubi_device
*ubi
)
1556 dbg_wl("close the WL sub-system");
1557 cancel_pending(ubi
);
1558 protection_queue_destroy(ubi
);
1559 tree_destroy(&ubi
->used
);
1560 tree_destroy(&ubi
->erroneous
);
1561 tree_destroy(&ubi
->free
);
1562 tree_destroy(&ubi
->scrub
);
1563 kfree(ubi
->lookuptbl
);
1566 #ifdef CONFIG_MTD_UBI_DEBUG
1569 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1570 * @ubi: UBI device description object
1571 * @pnum: the physical eraseblock number to check
1572 * @ec: the erase counter to check
1574 * This function returns zero if the erase counter of physical eraseblock @pnum
1575 * is equivalent to @ec, and a negative error code if not or if an error
1578 static int paranoid_check_ec(struct ubi_device
*ubi
, int pnum
, int ec
)
1582 struct ubi_ec_hdr
*ec_hdr
;
1584 if (!(ubi_chk_flags
& UBI_CHK_GEN
))
1587 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1591 err
= ubi_io_read_ec_hdr(ubi
, pnum
, ec_hdr
, 0);
1592 if (err
&& err
!= UBI_IO_BITFLIPS
) {
1593 /* The header does not have to exist */
1598 read_ec
= be64_to_cpu(ec_hdr
->ec
);
1599 if (ec
!= read_ec
) {
1600 ubi_err("paranoid check failed for PEB %d", pnum
);
1601 ubi_err("read EC is %lld, should be %d", read_ec
, ec
);
1602 ubi_dbg_dump_stack();
1613 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1614 * @e: the wear-leveling entry to check
1615 * @root: the root of the tree
1617 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1620 static int paranoid_check_in_wl_tree(struct ubi_wl_entry
*e
,
1621 struct rb_root
*root
)
1623 if (!(ubi_chk_flags
& UBI_CHK_GEN
))
1626 if (in_wl_tree(e
, root
))
1629 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1630 e
->pnum
, e
->ec
, root
);
1631 ubi_dbg_dump_stack();
1636 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1638 * @ubi: UBI device description object
1639 * @e: the wear-leveling entry to check
1641 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1643 static int paranoid_check_in_pq(struct ubi_device
*ubi
, struct ubi_wl_entry
*e
)
1645 struct ubi_wl_entry
*p
;
1648 if (!(ubi_chk_flags
& UBI_CHK_GEN
))
1651 for (i
= 0; i
< UBI_PROT_QUEUE_LEN
; ++i
)
1652 list_for_each_entry(p
, &ubi
->pq
[i
], u
.list
)
1656 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1658 ubi_dbg_dump_stack();
1662 #endif /* CONFIG_MTD_UBI_DEBUG */