4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74 #include <linux/cpuacct.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
80 #include "sched_cpupri.h"
81 #include "workqueue_sched.h"
82 #include "sched_autogroup.h"
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/sched.h>
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
101 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106 * Helpers for converting nanosecond timing to jiffy resolution
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
110 #define NICE_0_LOAD SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
114 * These are the 'tuning knobs' of the scheduler:
116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117 * Timeslices get refilled after they expire.
119 #define DEF_TIMESLICE (100 * HZ / 1000)
122 * single value that denotes runtime == period, ie unlimited time.
124 #define RUNTIME_INF ((u64)~0ULL)
126 static inline int rt_policy(int policy
)
128 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
133 static inline int task_has_rt_policy(struct task_struct
*p
)
135 return rt_policy(p
->policy
);
139 * This is the priority-queue data structure of the RT scheduling class:
141 struct rt_prio_array
{
142 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
143 struct list_head queue
[MAX_RT_PRIO
];
146 struct rt_bandwidth
{
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock
;
151 struct hrtimer rt_period_timer
;
154 static struct rt_bandwidth def_rt_bandwidth
;
156 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
158 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
160 struct rt_bandwidth
*rt_b
=
161 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
167 now
= hrtimer_cb_get_time(timer
);
168 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
173 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
176 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
180 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
182 rt_b
->rt_period
= ns_to_ktime(period
);
183 rt_b
->rt_runtime
= runtime
;
185 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
187 hrtimer_init(&rt_b
->rt_period_timer
,
188 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
189 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
192 static inline int rt_bandwidth_enabled(void)
194 return sysctl_sched_rt_runtime
>= 0;
197 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
201 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
204 if (hrtimer_active(&rt_b
->rt_period_timer
))
207 raw_spin_lock(&rt_b
->rt_runtime_lock
);
212 if (hrtimer_active(&rt_b
->rt_period_timer
))
215 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
216 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
218 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
219 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
220 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
221 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
222 HRTIMER_MODE_ABS_PINNED
, 0);
224 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
227 #ifdef CONFIG_RT_GROUP_SCHED
228 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
230 hrtimer_cancel(&rt_b
->rt_period_timer
);
235 * sched_domains_mutex serializes calls to init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
238 static DEFINE_MUTEX(sched_domains_mutex
);
240 #ifdef CONFIG_CGROUP_SCHED
242 #include <linux/cgroup.h>
246 static LIST_HEAD(task_groups
);
248 /* task group related information */
250 struct cgroup_subsys_state css
;
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity
**se
;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq
**cfs_rq
;
257 unsigned long shares
;
259 atomic_t load_weight
;
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity
**rt_se
;
264 struct rt_rq
**rt_rq
;
266 struct rt_bandwidth rt_bandwidth
;
270 struct list_head list
;
272 struct task_group
*parent
;
273 struct list_head siblings
;
274 struct list_head children
;
276 #ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup
*autogroup
;
281 /* task_group_lock serializes the addition/removal of task groups */
282 static DEFINE_SPINLOCK(task_group_lock
);
284 #ifdef CONFIG_FAIR_GROUP_SCHED
286 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
296 #define MIN_SHARES (1UL << 1)
297 #define MAX_SHARES (1UL << 18)
299 static int root_task_group_load
= ROOT_TASK_GROUP_LOAD
;
302 /* Default task group.
303 * Every task in system belong to this group at bootup.
305 struct task_group root_task_group
;
307 #endif /* CONFIG_CGROUP_SCHED */
309 /* CFS-related fields in a runqueue */
311 struct load_weight load
;
312 unsigned long nr_running
;
317 u64 min_vruntime_copy
;
320 struct rb_root tasks_timeline
;
321 struct rb_node
*rb_leftmost
;
323 struct list_head tasks
;
324 struct list_head
*balance_iterator
;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity
*curr
, *next
, *last
, *skip
;
332 #ifdef CONFIG_SCHED_DEBUG
333 unsigned int nr_spread_over
;
336 #ifdef CONFIG_FAIR_GROUP_SCHED
337 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
340 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
341 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
342 * (like users, containers etc.)
344 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
345 * list is used during load balance.
348 struct list_head leaf_cfs_rq_list
;
349 struct task_group
*tg
; /* group that "owns" this runqueue */
353 * the part of load.weight contributed by tasks
355 unsigned long task_weight
;
358 * h_load = weight * f(tg)
360 * Where f(tg) is the recursive weight fraction assigned to
363 unsigned long h_load
;
366 * Maintaining per-cpu shares distribution for group scheduling
368 * load_stamp is the last time we updated the load average
369 * load_last is the last time we updated the load average and saw load
370 * load_unacc_exec_time is currently unaccounted execution time
374 u64 load_stamp
, load_last
, load_unacc_exec_time
;
376 unsigned long load_contribution
;
381 /* Real-Time classes' related field in a runqueue: */
383 struct rt_prio_array active
;
384 unsigned long rt_nr_running
;
385 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
387 int curr
; /* highest queued rt task prio */
389 int next
; /* next highest */
394 unsigned long rt_nr_migratory
;
395 unsigned long rt_nr_total
;
397 struct plist_head pushable_tasks
;
402 /* Nests inside the rq lock: */
403 raw_spinlock_t rt_runtime_lock
;
405 #ifdef CONFIG_RT_GROUP_SCHED
406 unsigned long rt_nr_boosted
;
409 struct list_head leaf_rt_rq_list
;
410 struct task_group
*tg
;
417 * We add the notion of a root-domain which will be used to define per-domain
418 * variables. Each exclusive cpuset essentially defines an island domain by
419 * fully partitioning the member cpus from any other cpuset. Whenever a new
420 * exclusive cpuset is created, we also create and attach a new root-domain
428 cpumask_var_t online
;
431 * The "RT overload" flag: it gets set if a CPU has more than
432 * one runnable RT task.
434 cpumask_var_t rto_mask
;
436 struct cpupri cpupri
;
440 * By default the system creates a single root-domain with all cpus as
441 * members (mimicking the global state we have today).
443 static struct root_domain def_root_domain
;
445 #endif /* CONFIG_SMP */
448 * This is the main, per-CPU runqueue data structure.
450 * Locking rule: those places that want to lock multiple runqueues
451 * (such as the load balancing or the thread migration code), lock
452 * acquire operations must be ordered by ascending &runqueue.
459 * nr_running and cpu_load should be in the same cacheline because
460 * remote CPUs use both these fields when doing load calculation.
462 unsigned long nr_running
;
463 #define CPU_LOAD_IDX_MAX 5
464 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
465 unsigned long last_load_update_tick
;
468 unsigned char nohz_balance_kick
;
470 int skip_clock_update
;
472 /* capture load from *all* tasks on this cpu: */
473 struct load_weight load
;
474 unsigned long nr_load_updates
;
480 #ifdef CONFIG_FAIR_GROUP_SCHED
481 /* list of leaf cfs_rq on this cpu: */
482 struct list_head leaf_cfs_rq_list
;
484 #ifdef CONFIG_RT_GROUP_SCHED
485 struct list_head leaf_rt_rq_list
;
489 * This is part of a global counter where only the total sum
490 * over all CPUs matters. A task can increase this counter on
491 * one CPU and if it got migrated afterwards it may decrease
492 * it on another CPU. Always updated under the runqueue lock:
494 unsigned long nr_uninterruptible
;
496 struct task_struct
*curr
, *idle
, *stop
;
497 unsigned long next_balance
;
498 struct mm_struct
*prev_mm
;
506 struct root_domain
*rd
;
507 struct sched_domain
*sd
;
509 unsigned long cpu_power
;
511 unsigned char idle_at_tick
;
512 /* For active balancing */
516 struct cpu_stop_work active_balance_work
;
517 /* cpu of this runqueue: */
521 unsigned long avg_load_per_task
;
529 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
533 /* calc_load related fields */
534 unsigned long calc_load_update
;
535 long calc_load_active
;
537 #ifdef CONFIG_SCHED_HRTICK
539 int hrtick_csd_pending
;
540 struct call_single_data hrtick_csd
;
542 struct hrtimer hrtick_timer
;
545 #ifdef CONFIG_SCHEDSTATS
547 struct sched_info rq_sched_info
;
548 unsigned long long rq_cpu_time
;
549 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
551 /* sys_sched_yield() stats */
552 unsigned int yld_count
;
554 /* schedule() stats */
555 unsigned int sched_switch
;
556 unsigned int sched_count
;
557 unsigned int sched_goidle
;
559 /* try_to_wake_up() stats */
560 unsigned int ttwu_count
;
561 unsigned int ttwu_local
;
565 struct task_struct
*wake_list
;
569 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
572 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
);
574 static inline int cpu_of(struct rq
*rq
)
583 #define rcu_dereference_check_sched_domain(p) \
584 rcu_dereference_check((p), \
585 rcu_read_lock_held() || \
586 lockdep_is_held(&sched_domains_mutex))
589 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
590 * See detach_destroy_domains: synchronize_sched for details.
592 * The domain tree of any CPU may only be accessed from within
593 * preempt-disabled sections.
595 #define for_each_domain(cpu, __sd) \
596 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
598 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
599 #define this_rq() (&__get_cpu_var(runqueues))
600 #define task_rq(p) cpu_rq(task_cpu(p))
601 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
602 #define raw_rq() (&__raw_get_cpu_var(runqueues))
604 #ifdef CONFIG_CGROUP_SCHED
607 * Return the group to which this tasks belongs.
609 * We use task_subsys_state_check() and extend the RCU verification with
610 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
611 * task it moves into the cgroup. Therefore by holding either of those locks,
612 * we pin the task to the current cgroup.
614 static inline struct task_group
*task_group(struct task_struct
*p
)
616 struct task_group
*tg
;
617 struct cgroup_subsys_state
*css
;
619 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
620 lockdep_is_held(&p
->pi_lock
) ||
621 lockdep_is_held(&task_rq(p
)->lock
));
622 tg
= container_of(css
, struct task_group
, css
);
624 return autogroup_task_group(p
, tg
);
627 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
628 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
630 #ifdef CONFIG_FAIR_GROUP_SCHED
631 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
632 p
->se
.parent
= task_group(p
)->se
[cpu
];
635 #ifdef CONFIG_RT_GROUP_SCHED
636 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
637 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
641 #else /* CONFIG_CGROUP_SCHED */
643 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
644 static inline struct task_group
*task_group(struct task_struct
*p
)
649 #endif /* CONFIG_CGROUP_SCHED */
651 static void update_rq_clock_task(struct rq
*rq
, s64 delta
);
653 static void update_rq_clock(struct rq
*rq
)
657 if (rq
->skip_clock_update
> 0)
660 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
662 update_rq_clock_task(rq
, delta
);
666 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
668 #ifdef CONFIG_SCHED_DEBUG
669 # define const_debug __read_mostly
671 # define const_debug static const
675 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
676 * @cpu: the processor in question.
678 * This interface allows printk to be called with the runqueue lock
679 * held and know whether or not it is OK to wake up the klogd.
681 int runqueue_is_locked(int cpu
)
683 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
687 * Debugging: various feature bits
690 #define SCHED_FEAT(name, enabled) \
691 __SCHED_FEAT_##name ,
694 #include "sched_features.h"
699 #define SCHED_FEAT(name, enabled) \
700 (1UL << __SCHED_FEAT_##name) * enabled |
702 const_debug
unsigned int sysctl_sched_features
=
703 #include "sched_features.h"
708 #ifdef CONFIG_SCHED_DEBUG
709 #define SCHED_FEAT(name, enabled) \
712 static __read_mostly
char *sched_feat_names
[] = {
713 #include "sched_features.h"
719 static int sched_feat_show(struct seq_file
*m
, void *v
)
723 for (i
= 0; sched_feat_names
[i
]; i
++) {
724 if (!(sysctl_sched_features
& (1UL << i
)))
726 seq_printf(m
, "%s ", sched_feat_names
[i
]);
734 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
735 size_t cnt
, loff_t
*ppos
)
745 if (copy_from_user(&buf
, ubuf
, cnt
))
751 if (strncmp(cmp
, "NO_", 3) == 0) {
756 for (i
= 0; sched_feat_names
[i
]; i
++) {
757 if (strcmp(cmp
, sched_feat_names
[i
]) == 0) {
759 sysctl_sched_features
&= ~(1UL << i
);
761 sysctl_sched_features
|= (1UL << i
);
766 if (!sched_feat_names
[i
])
774 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
776 return single_open(filp
, sched_feat_show
, NULL
);
779 static const struct file_operations sched_feat_fops
= {
780 .open
= sched_feat_open
,
781 .write
= sched_feat_write
,
784 .release
= single_release
,
787 static __init
int sched_init_debug(void)
789 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
794 late_initcall(sched_init_debug
);
798 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
801 * Number of tasks to iterate in a single balance run.
802 * Limited because this is done with IRQs disabled.
804 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
807 * period over which we average the RT time consumption, measured
812 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
815 * period over which we measure -rt task cpu usage in us.
818 unsigned int sysctl_sched_rt_period
= 1000000;
820 static __read_mostly
int scheduler_running
;
823 * part of the period that we allow rt tasks to run in us.
826 int sysctl_sched_rt_runtime
= 950000;
828 static inline u64
global_rt_period(void)
830 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
833 static inline u64
global_rt_runtime(void)
835 if (sysctl_sched_rt_runtime
< 0)
838 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
841 #ifndef prepare_arch_switch
842 # define prepare_arch_switch(next) do { } while (0)
844 #ifndef finish_arch_switch
845 # define finish_arch_switch(prev) do { } while (0)
848 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
850 return rq
->curr
== p
;
853 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
858 return task_current(rq
, p
);
862 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
863 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
867 * We can optimise this out completely for !SMP, because the
868 * SMP rebalancing from interrupt is the only thing that cares
875 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
879 * After ->on_cpu is cleared, the task can be moved to a different CPU.
880 * We must ensure this doesn't happen until the switch is completely
886 #ifdef CONFIG_DEBUG_SPINLOCK
887 /* this is a valid case when another task releases the spinlock */
888 rq
->lock
.owner
= current
;
891 * If we are tracking spinlock dependencies then we have to
892 * fix up the runqueue lock - which gets 'carried over' from
895 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
897 raw_spin_unlock_irq(&rq
->lock
);
900 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
901 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
905 * We can optimise this out completely for !SMP, because the
906 * SMP rebalancing from interrupt is the only thing that cares
911 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
912 raw_spin_unlock_irq(&rq
->lock
);
914 raw_spin_unlock(&rq
->lock
);
918 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
922 * After ->on_cpu is cleared, the task can be moved to a different CPU.
923 * We must ensure this doesn't happen until the switch is completely
929 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
933 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
936 * __task_rq_lock - lock the rq @p resides on.
938 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
943 lockdep_assert_held(&p
->pi_lock
);
947 raw_spin_lock(&rq
->lock
);
948 if (likely(rq
== task_rq(p
)))
950 raw_spin_unlock(&rq
->lock
);
955 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
957 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
958 __acquires(p
->pi_lock
)
964 raw_spin_lock_irqsave(&p
->pi_lock
, *flags
);
966 raw_spin_lock(&rq
->lock
);
967 if (likely(rq
== task_rq(p
)))
969 raw_spin_unlock(&rq
->lock
);
970 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
974 static void __task_rq_unlock(struct rq
*rq
)
977 raw_spin_unlock(&rq
->lock
);
981 task_rq_unlock(struct rq
*rq
, struct task_struct
*p
, unsigned long *flags
)
983 __releases(p
->pi_lock
)
985 raw_spin_unlock(&rq
->lock
);
986 raw_spin_unlock_irqrestore(&p
->pi_lock
, *flags
);
990 * this_rq_lock - lock this runqueue and disable interrupts.
992 static struct rq
*this_rq_lock(void)
999 raw_spin_lock(&rq
->lock
);
1004 #ifdef CONFIG_SCHED_HRTICK
1006 * Use HR-timers to deliver accurate preemption points.
1008 * Its all a bit involved since we cannot program an hrt while holding the
1009 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * When we get rescheduled we reprogram the hrtick_timer outside of the
1018 * - enabled by features
1019 * - hrtimer is actually high res
1021 static inline int hrtick_enabled(struct rq
*rq
)
1023 if (!sched_feat(HRTICK
))
1025 if (!cpu_active(cpu_of(rq
)))
1027 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1030 static void hrtick_clear(struct rq
*rq
)
1032 if (hrtimer_active(&rq
->hrtick_timer
))
1033 hrtimer_cancel(&rq
->hrtick_timer
);
1037 * High-resolution timer tick.
1038 * Runs from hardirq context with interrupts disabled.
1040 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1042 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1044 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1046 raw_spin_lock(&rq
->lock
);
1047 update_rq_clock(rq
);
1048 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1049 raw_spin_unlock(&rq
->lock
);
1051 return HRTIMER_NORESTART
;
1056 * called from hardirq (IPI) context
1058 static void __hrtick_start(void *arg
)
1060 struct rq
*rq
= arg
;
1062 raw_spin_lock(&rq
->lock
);
1063 hrtimer_restart(&rq
->hrtick_timer
);
1064 rq
->hrtick_csd_pending
= 0;
1065 raw_spin_unlock(&rq
->lock
);
1069 * Called to set the hrtick timer state.
1071 * called with rq->lock held and irqs disabled
1073 static void hrtick_start(struct rq
*rq
, u64 delay
)
1075 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1076 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1078 hrtimer_set_expires(timer
, time
);
1080 if (rq
== this_rq()) {
1081 hrtimer_restart(timer
);
1082 } else if (!rq
->hrtick_csd_pending
) {
1083 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1084 rq
->hrtick_csd_pending
= 1;
1089 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1091 int cpu
= (int)(long)hcpu
;
1094 case CPU_UP_CANCELED
:
1095 case CPU_UP_CANCELED_FROZEN
:
1096 case CPU_DOWN_PREPARE
:
1097 case CPU_DOWN_PREPARE_FROZEN
:
1099 case CPU_DEAD_FROZEN
:
1100 hrtick_clear(cpu_rq(cpu
));
1107 static __init
void init_hrtick(void)
1109 hotcpu_notifier(hotplug_hrtick
, 0);
1113 * Called to set the hrtick timer state.
1115 * called with rq->lock held and irqs disabled
1117 static void hrtick_start(struct rq
*rq
, u64 delay
)
1119 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1120 HRTIMER_MODE_REL_PINNED
, 0);
1123 static inline void init_hrtick(void)
1126 #endif /* CONFIG_SMP */
1128 static void init_rq_hrtick(struct rq
*rq
)
1131 rq
->hrtick_csd_pending
= 0;
1133 rq
->hrtick_csd
.flags
= 0;
1134 rq
->hrtick_csd
.func
= __hrtick_start
;
1135 rq
->hrtick_csd
.info
= rq
;
1138 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1139 rq
->hrtick_timer
.function
= hrtick
;
1141 #else /* CONFIG_SCHED_HRTICK */
1142 static inline void hrtick_clear(struct rq
*rq
)
1146 static inline void init_rq_hrtick(struct rq
*rq
)
1150 static inline void init_hrtick(void)
1153 #endif /* CONFIG_SCHED_HRTICK */
1156 * resched_task - mark a task 'to be rescheduled now'.
1158 * On UP this means the setting of the need_resched flag, on SMP it
1159 * might also involve a cross-CPU call to trigger the scheduler on
1164 #ifndef tsk_is_polling
1165 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168 static void resched_task(struct task_struct
*p
)
1172 assert_raw_spin_locked(&task_rq(p
)->lock
);
1174 if (test_tsk_need_resched(p
))
1177 set_tsk_need_resched(p
);
1180 if (cpu
== smp_processor_id())
1183 /* NEED_RESCHED must be visible before we test polling */
1185 if (!tsk_is_polling(p
))
1186 smp_send_reschedule(cpu
);
1189 static void resched_cpu(int cpu
)
1191 struct rq
*rq
= cpu_rq(cpu
);
1192 unsigned long flags
;
1194 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1196 resched_task(cpu_curr(cpu
));
1197 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1200 void force_cpu_resched(int cpu
)
1202 struct rq
*rq
= cpu_rq(cpu
);
1203 unsigned long flags
;
1205 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1206 resched_task(cpu_curr(cpu
));
1207 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1212 * In the semi idle case, use the nearest busy cpu for migrating timers
1213 * from an idle cpu. This is good for power-savings.
1215 * We don't do similar optimization for completely idle system, as
1216 * selecting an idle cpu will add more delays to the timers than intended
1217 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1219 int get_nohz_timer_target(void)
1221 int cpu
= smp_processor_id();
1223 struct sched_domain
*sd
;
1226 for_each_domain(cpu
, sd
) {
1227 for_each_cpu(i
, sched_domain_span(sd
)) {
1239 * When add_timer_on() enqueues a timer into the timer wheel of an
1240 * idle CPU then this timer might expire before the next timer event
1241 * which is scheduled to wake up that CPU. In case of a completely
1242 * idle system the next event might even be infinite time into the
1243 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1244 * leaves the inner idle loop so the newly added timer is taken into
1245 * account when the CPU goes back to idle and evaluates the timer
1246 * wheel for the next timer event.
1248 void wake_up_idle_cpu(int cpu
)
1250 struct rq
*rq
= cpu_rq(cpu
);
1252 if (cpu
== smp_processor_id())
1256 * This is safe, as this function is called with the timer
1257 * wheel base lock of (cpu) held. When the CPU is on the way
1258 * to idle and has not yet set rq->curr to idle then it will
1259 * be serialized on the timer wheel base lock and take the new
1260 * timer into account automatically.
1262 if (rq
->curr
!= rq
->idle
)
1266 * We can set TIF_RESCHED on the idle task of the other CPU
1267 * lockless. The worst case is that the other CPU runs the
1268 * idle task through an additional NOOP schedule()
1270 set_tsk_need_resched(rq
->idle
);
1272 /* NEED_RESCHED must be visible before we test polling */
1274 if (!tsk_is_polling(rq
->idle
))
1275 smp_send_reschedule(cpu
);
1278 #endif /* CONFIG_NO_HZ */
1280 static u64
sched_avg_period(void)
1282 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1285 static void sched_avg_update(struct rq
*rq
)
1287 s64 period
= sched_avg_period();
1289 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1291 * Inline assembly required to prevent the compiler
1292 * optimising this loop into a divmod call.
1293 * See __iter_div_u64_rem() for another example of this.
1295 asm("" : "+rm" (rq
->age_stamp
));
1296 rq
->age_stamp
+= period
;
1301 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1303 rq
->rt_avg
+= rt_delta
;
1304 sched_avg_update(rq
);
1307 #else /* !CONFIG_SMP */
1308 static void resched_task(struct task_struct
*p
)
1310 assert_raw_spin_locked(&task_rq(p
)->lock
);
1311 set_tsk_need_resched(p
);
1314 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1318 static void sched_avg_update(struct rq
*rq
)
1322 void force_cpu_resched(int cpu
)
1326 #endif /* CONFIG_SMP */
1328 #if BITS_PER_LONG == 32
1329 # define WMULT_CONST (~0UL)
1331 # define WMULT_CONST (1UL << 32)
1334 #define WMULT_SHIFT 32
1337 * Shift right and round:
1339 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1342 * delta *= weight / lw
1344 static unsigned long
1345 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1346 struct load_weight
*lw
)
1351 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1352 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1353 * 2^SCHED_LOAD_RESOLUTION.
1355 if (likely(weight
> (1UL << SCHED_LOAD_RESOLUTION
)))
1356 tmp
= (u64
)delta_exec
* scale_load_down(weight
);
1358 tmp
= (u64
)delta_exec
;
1360 if (!lw
->inv_weight
) {
1361 unsigned long w
= scale_load_down(lw
->weight
);
1363 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
1365 else if (unlikely(!w
))
1366 lw
->inv_weight
= WMULT_CONST
;
1368 lw
->inv_weight
= WMULT_CONST
/ w
;
1372 * Check whether we'd overflow the 64-bit multiplication:
1374 if (unlikely(tmp
> WMULT_CONST
))
1375 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1378 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1380 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1383 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1389 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1395 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
1402 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1403 * of tasks with abnormal "nice" values across CPUs the contribution that
1404 * each task makes to its run queue's load is weighted according to its
1405 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1406 * scaled version of the new time slice allocation that they receive on time
1410 #define WEIGHT_IDLEPRIO 3
1411 #define WMULT_IDLEPRIO 1431655765
1414 * Nice levels are multiplicative, with a gentle 10% change for every
1415 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1416 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1417 * that remained on nice 0.
1419 * The "10% effect" is relative and cumulative: from _any_ nice level,
1420 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1421 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1422 * If a task goes up by ~10% and another task goes down by ~10% then
1423 * the relative distance between them is ~25%.)
1425 static const int prio_to_weight
[40] = {
1426 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1427 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1428 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1429 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1430 /* 0 */ 1024, 820, 655, 526, 423,
1431 /* 5 */ 335, 272, 215, 172, 137,
1432 /* 10 */ 110, 87, 70, 56, 45,
1433 /* 15 */ 36, 29, 23, 18, 15,
1437 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1439 * In cases where the weight does not change often, we can use the
1440 * precalculated inverse to speed up arithmetics by turning divisions
1441 * into multiplications:
1443 static const u32 prio_to_wmult
[40] = {
1444 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1445 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1446 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1447 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1448 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1449 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1450 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1451 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1454 /* Time spent by the tasks of the cpu accounting group executing in ... */
1455 enum cpuacct_stat_index
{
1456 CPUACCT_STAT_USER
, /* ... user mode */
1457 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1459 CPUACCT_STAT_NSTATS
,
1462 #ifdef CONFIG_CGROUP_CPUACCT
1463 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1464 static void cpuacct_update_stats(struct task_struct
*tsk
,
1465 enum cpuacct_stat_index idx
, cputime_t val
);
1467 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1468 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1469 enum cpuacct_stat_index idx
, cputime_t val
) {}
1472 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1474 update_load_add(&rq
->load
, load
);
1477 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1479 update_load_sub(&rq
->load
, load
);
1482 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1483 typedef int (*tg_visitor
)(struct task_group
*, void *);
1486 * Iterate the full tree, calling @down when first entering a node and @up when
1487 * leaving it for the final time.
1489 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1491 struct task_group
*parent
, *child
;
1495 parent
= &root_task_group
;
1497 ret
= (*down
)(parent
, data
);
1500 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1507 ret
= (*up
)(parent
, data
);
1512 parent
= parent
->parent
;
1521 static int tg_nop(struct task_group
*tg
, void *data
)
1528 /* Used instead of source_load when we know the type == 0 */
1529 static unsigned long weighted_cpuload(const int cpu
)
1531 return cpu_rq(cpu
)->load
.weight
;
1535 * Return a low guess at the load of a migration-source cpu weighted
1536 * according to the scheduling class and "nice" value.
1538 * We want to under-estimate the load of migration sources, to
1539 * balance conservatively.
1541 static unsigned long source_load(int cpu
, int type
)
1543 struct rq
*rq
= cpu_rq(cpu
);
1544 unsigned long total
= weighted_cpuload(cpu
);
1546 if (type
== 0 || !sched_feat(LB_BIAS
))
1549 return min(rq
->cpu_load
[type
-1], total
);
1553 * Return a high guess at the load of a migration-target cpu weighted
1554 * according to the scheduling class and "nice" value.
1556 static unsigned long target_load(int cpu
, int type
)
1558 struct rq
*rq
= cpu_rq(cpu
);
1559 unsigned long total
= weighted_cpuload(cpu
);
1561 if (type
== 0 || !sched_feat(LB_BIAS
))
1564 return max(rq
->cpu_load
[type
-1], total
);
1567 static unsigned long power_of(int cpu
)
1569 return cpu_rq(cpu
)->cpu_power
;
1572 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1574 static unsigned long cpu_avg_load_per_task(int cpu
)
1576 struct rq
*rq
= cpu_rq(cpu
);
1577 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1580 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1582 rq
->avg_load_per_task
= 0;
1584 return rq
->avg_load_per_task
;
1587 #ifdef CONFIG_FAIR_GROUP_SCHED
1590 * Compute the cpu's hierarchical load factor for each task group.
1591 * This needs to be done in a top-down fashion because the load of a child
1592 * group is a fraction of its parents load.
1594 static int tg_load_down(struct task_group
*tg
, void *data
)
1597 long cpu
= (long)data
;
1600 load
= cpu_rq(cpu
)->load
.weight
;
1602 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1603 load
*= tg
->se
[cpu
]->load
.weight
;
1604 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1607 tg
->cfs_rq
[cpu
]->h_load
= load
;
1612 static void update_h_load(long cpu
)
1614 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1619 #ifdef CONFIG_PREEMPT
1621 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1624 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1625 * way at the expense of forcing extra atomic operations in all
1626 * invocations. This assures that the double_lock is acquired using the
1627 * same underlying policy as the spinlock_t on this architecture, which
1628 * reduces latency compared to the unfair variant below. However, it
1629 * also adds more overhead and therefore may reduce throughput.
1631 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1632 __releases(this_rq
->lock
)
1633 __acquires(busiest
->lock
)
1634 __acquires(this_rq
->lock
)
1636 raw_spin_unlock(&this_rq
->lock
);
1637 double_rq_lock(this_rq
, busiest
);
1644 * Unfair double_lock_balance: Optimizes throughput at the expense of
1645 * latency by eliminating extra atomic operations when the locks are
1646 * already in proper order on entry. This favors lower cpu-ids and will
1647 * grant the double lock to lower cpus over higher ids under contention,
1648 * regardless of entry order into the function.
1650 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1651 __releases(this_rq
->lock
)
1652 __acquires(busiest
->lock
)
1653 __acquires(this_rq
->lock
)
1657 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1658 if (busiest
< this_rq
) {
1659 raw_spin_unlock(&this_rq
->lock
);
1660 raw_spin_lock(&busiest
->lock
);
1661 raw_spin_lock_nested(&this_rq
->lock
,
1662 SINGLE_DEPTH_NESTING
);
1665 raw_spin_lock_nested(&busiest
->lock
,
1666 SINGLE_DEPTH_NESTING
);
1671 #endif /* CONFIG_PREEMPT */
1674 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1676 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1678 if (unlikely(!irqs_disabled())) {
1679 /* printk() doesn't work good under rq->lock */
1680 raw_spin_unlock(&this_rq
->lock
);
1684 return _double_lock_balance(this_rq
, busiest
);
1687 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1688 __releases(busiest
->lock
)
1690 raw_spin_unlock(&busiest
->lock
);
1691 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1695 * double_rq_lock - safely lock two runqueues
1697 * Note this does not disable interrupts like task_rq_lock,
1698 * you need to do so manually before calling.
1700 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1701 __acquires(rq1
->lock
)
1702 __acquires(rq2
->lock
)
1704 BUG_ON(!irqs_disabled());
1706 raw_spin_lock(&rq1
->lock
);
1707 __acquire(rq2
->lock
); /* Fake it out ;) */
1710 raw_spin_lock(&rq1
->lock
);
1711 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1713 raw_spin_lock(&rq2
->lock
);
1714 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1720 * double_rq_unlock - safely unlock two runqueues
1722 * Note this does not restore interrupts like task_rq_unlock,
1723 * you need to do so manually after calling.
1725 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1726 __releases(rq1
->lock
)
1727 __releases(rq2
->lock
)
1729 raw_spin_unlock(&rq1
->lock
);
1731 raw_spin_unlock(&rq2
->lock
);
1733 __release(rq2
->lock
);
1736 #else /* CONFIG_SMP */
1739 * double_rq_lock - safely lock two runqueues
1741 * Note this does not disable interrupts like task_rq_lock,
1742 * you need to do so manually before calling.
1744 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1745 __acquires(rq1
->lock
)
1746 __acquires(rq2
->lock
)
1748 BUG_ON(!irqs_disabled());
1750 raw_spin_lock(&rq1
->lock
);
1751 __acquire(rq2
->lock
); /* Fake it out ;) */
1755 * double_rq_unlock - safely unlock two runqueues
1757 * Note this does not restore interrupts like task_rq_unlock,
1758 * you need to do so manually after calling.
1760 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1761 __releases(rq1
->lock
)
1762 __releases(rq2
->lock
)
1765 raw_spin_unlock(&rq1
->lock
);
1766 __release(rq2
->lock
);
1771 static void calc_load_account_idle(struct rq
*this_rq
);
1772 static void update_sysctl(void);
1773 static int get_update_sysctl_factor(void);
1774 static void update_cpu_load(struct rq
*this_rq
);
1776 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1778 set_task_rq(p
, cpu
);
1781 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1782 * successfuly executed on another CPU. We must ensure that updates of
1783 * per-task data have been completed by this moment.
1786 task_thread_info(p
)->cpu
= cpu
;
1790 static const struct sched_class rt_sched_class
;
1792 #define sched_class_highest (&stop_sched_class)
1793 #define for_each_class(class) \
1794 for (class = sched_class_highest; class; class = class->next)
1796 #include "sched_stats.h"
1798 static void inc_nr_running(struct rq
*rq
)
1803 static void dec_nr_running(struct rq
*rq
)
1808 static void set_load_weight(struct task_struct
*p
)
1810 int prio
= p
->static_prio
- MAX_RT_PRIO
;
1811 struct load_weight
*load
= &p
->se
.load
;
1814 * SCHED_IDLE tasks get minimal weight:
1816 if (p
->policy
== SCHED_IDLE
) {
1817 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
1818 load
->inv_weight
= WMULT_IDLEPRIO
;
1822 load
->weight
= scale_load(prio_to_weight
[prio
]);
1823 load
->inv_weight
= prio_to_wmult
[prio
];
1826 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1828 update_rq_clock(rq
);
1829 sched_info_queued(p
);
1830 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1833 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1835 update_rq_clock(rq
);
1836 sched_info_dequeued(p
);
1837 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1841 * activate_task - move a task to the runqueue.
1843 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1845 if (task_contributes_to_load(p
))
1846 rq
->nr_uninterruptible
--;
1848 enqueue_task(rq
, p
, flags
);
1853 * deactivate_task - remove a task from the runqueue.
1855 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1857 if (task_contributes_to_load(p
))
1858 rq
->nr_uninterruptible
++;
1860 dequeue_task(rq
, p
, flags
);
1864 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1867 * There are no locks covering percpu hardirq/softirq time.
1868 * They are only modified in account_system_vtime, on corresponding CPU
1869 * with interrupts disabled. So, writes are safe.
1870 * They are read and saved off onto struct rq in update_rq_clock().
1871 * This may result in other CPU reading this CPU's irq time and can
1872 * race with irq/account_system_vtime on this CPU. We would either get old
1873 * or new value with a side effect of accounting a slice of irq time to wrong
1874 * task when irq is in progress while we read rq->clock. That is a worthy
1875 * compromise in place of having locks on each irq in account_system_time.
1877 static DEFINE_PER_CPU(u64
, cpu_hardirq_time
);
1878 static DEFINE_PER_CPU(u64
, cpu_softirq_time
);
1880 static DEFINE_PER_CPU(u64
, irq_start_time
);
1881 static int sched_clock_irqtime
;
1883 void enable_sched_clock_irqtime(void)
1885 sched_clock_irqtime
= 1;
1888 void disable_sched_clock_irqtime(void)
1890 sched_clock_irqtime
= 0;
1893 #ifndef CONFIG_64BIT
1894 static DEFINE_PER_CPU(seqcount_t
, irq_time_seq
);
1896 static inline void irq_time_write_begin(void)
1898 __this_cpu_inc(irq_time_seq
.sequence
);
1902 static inline void irq_time_write_end(void)
1905 __this_cpu_inc(irq_time_seq
.sequence
);
1908 static inline u64
irq_time_read(int cpu
)
1914 seq
= read_seqcount_begin(&per_cpu(irq_time_seq
, cpu
));
1915 irq_time
= per_cpu(cpu_softirq_time
, cpu
) +
1916 per_cpu(cpu_hardirq_time
, cpu
);
1917 } while (read_seqcount_retry(&per_cpu(irq_time_seq
, cpu
), seq
));
1921 #else /* CONFIG_64BIT */
1922 static inline void irq_time_write_begin(void)
1926 static inline void irq_time_write_end(void)
1930 static inline u64
irq_time_read(int cpu
)
1932 return per_cpu(cpu_softirq_time
, cpu
) + per_cpu(cpu_hardirq_time
, cpu
);
1934 #endif /* CONFIG_64BIT */
1937 * Called before incrementing preempt_count on {soft,}irq_enter
1938 * and before decrementing preempt_count on {soft,}irq_exit.
1940 void account_system_vtime(struct task_struct
*curr
)
1942 unsigned long flags
;
1946 if (!sched_clock_irqtime
)
1949 local_irq_save(flags
);
1951 cpu
= smp_processor_id();
1952 delta
= sched_clock_cpu(cpu
) - __this_cpu_read(irq_start_time
);
1953 __this_cpu_add(irq_start_time
, delta
);
1955 irq_time_write_begin();
1957 * We do not account for softirq time from ksoftirqd here.
1958 * We want to continue accounting softirq time to ksoftirqd thread
1959 * in that case, so as not to confuse scheduler with a special task
1960 * that do not consume any time, but still wants to run.
1962 if (hardirq_count())
1963 __this_cpu_add(cpu_hardirq_time
, delta
);
1964 else if (in_serving_softirq() && curr
!= this_cpu_ksoftirqd())
1965 __this_cpu_add(cpu_softirq_time
, delta
);
1967 irq_time_write_end();
1968 local_irq_restore(flags
);
1970 EXPORT_SYMBOL_GPL(account_system_vtime
);
1972 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
1976 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
1979 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1980 * this case when a previous update_rq_clock() happened inside a
1981 * {soft,}irq region.
1983 * When this happens, we stop ->clock_task and only update the
1984 * prev_irq_time stamp to account for the part that fit, so that a next
1985 * update will consume the rest. This ensures ->clock_task is
1988 * It does however cause some slight miss-attribution of {soft,}irq
1989 * time, a more accurate solution would be to update the irq_time using
1990 * the current rq->clock timestamp, except that would require using
1993 if (irq_delta
> delta
)
1996 rq
->prev_irq_time
+= irq_delta
;
1998 rq
->clock_task
+= delta
;
2000 if (irq_delta
&& sched_feat(NONIRQ_POWER
))
2001 sched_rt_avg_update(rq
, irq_delta
);
2004 static int irqtime_account_hi_update(void)
2006 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2007 unsigned long flags
;
2011 local_irq_save(flags
);
2012 latest_ns
= this_cpu_read(cpu_hardirq_time
);
2013 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->irq
))
2015 local_irq_restore(flags
);
2019 static int irqtime_account_si_update(void)
2021 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2022 unsigned long flags
;
2026 local_irq_save(flags
);
2027 latest_ns
= this_cpu_read(cpu_softirq_time
);
2028 if (cputime64_gt(nsecs_to_cputime64(latest_ns
), cpustat
->softirq
))
2030 local_irq_restore(flags
);
2034 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2036 #define sched_clock_irqtime (0)
2038 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
2040 rq
->clock_task
+= delta
;
2043 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2045 #include "sched_idletask.c"
2046 #include "sched_fair.c"
2047 #include "sched_rt.c"
2048 #include "sched_autogroup.c"
2049 #include "sched_stoptask.c"
2050 #ifdef CONFIG_SCHED_DEBUG
2051 # include "sched_debug.c"
2054 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
2056 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
2057 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
2061 * Make it appear like a SCHED_FIFO task, its something
2062 * userspace knows about and won't get confused about.
2064 * Also, it will make PI more or less work without too
2065 * much confusion -- but then, stop work should not
2066 * rely on PI working anyway.
2068 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
2070 stop
->sched_class
= &stop_sched_class
;
2073 cpu_rq(cpu
)->stop
= stop
;
2077 * Reset it back to a normal scheduling class so that
2078 * it can die in pieces.
2080 old_stop
->sched_class
= &rt_sched_class
;
2085 * __normal_prio - return the priority that is based on the static prio
2087 static inline int __normal_prio(struct task_struct
*p
)
2089 return p
->static_prio
;
2093 * Calculate the expected normal priority: i.e. priority
2094 * without taking RT-inheritance into account. Might be
2095 * boosted by interactivity modifiers. Changes upon fork,
2096 * setprio syscalls, and whenever the interactivity
2097 * estimator recalculates.
2099 static inline int normal_prio(struct task_struct
*p
)
2103 if (task_has_rt_policy(p
))
2104 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
2106 prio
= __normal_prio(p
);
2111 * Calculate the current priority, i.e. the priority
2112 * taken into account by the scheduler. This value might
2113 * be boosted by RT tasks, or might be boosted by
2114 * interactivity modifiers. Will be RT if the task got
2115 * RT-boosted. If not then it returns p->normal_prio.
2117 static int effective_prio(struct task_struct
*p
)
2119 p
->normal_prio
= normal_prio(p
);
2121 * If we are RT tasks or we were boosted to RT priority,
2122 * keep the priority unchanged. Otherwise, update priority
2123 * to the normal priority:
2125 if (!rt_prio(p
->prio
))
2126 return p
->normal_prio
;
2131 * task_curr - is this task currently executing on a CPU?
2132 * @p: the task in question.
2134 inline int task_curr(const struct task_struct
*p
)
2136 return cpu_curr(task_cpu(p
)) == p
;
2139 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
2140 const struct sched_class
*prev_class
,
2143 if (prev_class
!= p
->sched_class
) {
2144 if (prev_class
->switched_from
)
2145 prev_class
->switched_from(rq
, p
);
2146 p
->sched_class
->switched_to(rq
, p
);
2147 } else if (oldprio
!= p
->prio
)
2148 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
2151 static void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
2153 const struct sched_class
*class;
2155 if (p
->sched_class
== rq
->curr
->sched_class
) {
2156 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
2158 for_each_class(class) {
2159 if (class == rq
->curr
->sched_class
)
2161 if (class == p
->sched_class
) {
2162 resched_task(rq
->curr
);
2169 * A queue event has occurred, and we're going to schedule. In
2170 * this case, we can save a useless back to back clock update.
2172 if (rq
->curr
->on_rq
&& test_tsk_need_resched(rq
->curr
))
2173 rq
->skip_clock_update
= 1;
2178 * Is this task likely cache-hot:
2181 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2185 if (p
->sched_class
!= &fair_sched_class
)
2188 if (unlikely(p
->policy
== SCHED_IDLE
))
2192 * Buddy candidates are cache hot:
2194 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2195 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2196 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2199 if (sysctl_sched_migration_cost
== -1)
2201 if (sysctl_sched_migration_cost
== 0)
2204 delta
= now
- p
->se
.exec_start
;
2206 return delta
< (s64
)sysctl_sched_migration_cost
;
2209 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2211 #ifdef CONFIG_SCHED_DEBUG
2213 * We should never call set_task_cpu() on a blocked task,
2214 * ttwu() will sort out the placement.
2216 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2217 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2219 #ifdef CONFIG_LOCKDEP
2221 * The caller should hold either p->pi_lock or rq->lock, when changing
2222 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2224 * sched_move_task() holds both and thus holding either pins the cgroup,
2225 * see set_task_rq().
2227 * Furthermore, all task_rq users should acquire both locks, see
2230 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
2231 lockdep_is_held(&task_rq(p
)->lock
)));
2235 trace_sched_migrate_task(p
, new_cpu
);
2237 if (task_cpu(p
) != new_cpu
) {
2238 p
->se
.nr_migrations
++;
2239 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2242 __set_task_cpu(p
, new_cpu
);
2245 struct migration_arg
{
2246 struct task_struct
*task
;
2250 static int migration_cpu_stop(void *data
);
2253 * wait_task_inactive - wait for a thread to unschedule.
2255 * If @match_state is nonzero, it's the @p->state value just checked and
2256 * not expected to change. If it changes, i.e. @p might have woken up,
2257 * then return zero. When we succeed in waiting for @p to be off its CPU,
2258 * we return a positive number (its total switch count). If a second call
2259 * a short while later returns the same number, the caller can be sure that
2260 * @p has remained unscheduled the whole time.
2262 * The caller must ensure that the task *will* unschedule sometime soon,
2263 * else this function might spin for a *long* time. This function can't
2264 * be called with interrupts off, or it may introduce deadlock with
2265 * smp_call_function() if an IPI is sent by the same process we are
2266 * waiting to become inactive.
2268 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2270 unsigned long flags
;
2277 * We do the initial early heuristics without holding
2278 * any task-queue locks at all. We'll only try to get
2279 * the runqueue lock when things look like they will
2285 * If the task is actively running on another CPU
2286 * still, just relax and busy-wait without holding
2289 * NOTE! Since we don't hold any locks, it's not
2290 * even sure that "rq" stays as the right runqueue!
2291 * But we don't care, since "task_running()" will
2292 * return false if the runqueue has changed and p
2293 * is actually now running somewhere else!
2295 while (task_running(rq
, p
)) {
2296 if (match_state
&& unlikely(p
->state
!= match_state
))
2302 * Ok, time to look more closely! We need the rq
2303 * lock now, to be *sure*. If we're wrong, we'll
2304 * just go back and repeat.
2306 rq
= task_rq_lock(p
, &flags
);
2307 trace_sched_wait_task(p
);
2308 running
= task_running(rq
, p
);
2311 if (!match_state
|| p
->state
== match_state
)
2312 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2313 task_rq_unlock(rq
, p
, &flags
);
2316 * If it changed from the expected state, bail out now.
2318 if (unlikely(!ncsw
))
2322 * Was it really running after all now that we
2323 * checked with the proper locks actually held?
2325 * Oops. Go back and try again..
2327 if (unlikely(running
)) {
2333 * It's not enough that it's not actively running,
2334 * it must be off the runqueue _entirely_, and not
2337 * So if it was still runnable (but just not actively
2338 * running right now), it's preempted, and we should
2339 * yield - it could be a while.
2341 if (unlikely(on_rq
)) {
2342 ktime_t to
= ktime_set(0, NSEC_PER_SEC
/HZ
);
2344 set_current_state(TASK_UNINTERRUPTIBLE
);
2345 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
2350 * Ahh, all good. It wasn't running, and it wasn't
2351 * runnable, which means that it will never become
2352 * running in the future either. We're all done!
2361 * kick_process - kick a running thread to enter/exit the kernel
2362 * @p: the to-be-kicked thread
2364 * Cause a process which is running on another CPU to enter
2365 * kernel-mode, without any delay. (to get signals handled.)
2367 * NOTE: this function doesn't have to take the runqueue lock,
2368 * because all it wants to ensure is that the remote task enters
2369 * the kernel. If the IPI races and the task has been migrated
2370 * to another CPU then no harm is done and the purpose has been
2373 void kick_process(struct task_struct
*p
)
2379 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2380 smp_send_reschedule(cpu
);
2383 EXPORT_SYMBOL_GPL(kick_process
);
2384 #endif /* CONFIG_SMP */
2388 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2390 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2392 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2393 enum { cpuset
, possible
, fail
} state
= cpuset
;
2396 /* Look for allowed, online CPU in same node. */
2397 for_each_cpu_mask(dest_cpu
, *nodemask
) {
2398 if (!cpu_online(dest_cpu
))
2400 if (!cpu_active(dest_cpu
))
2402 if (cpumask_test_cpu(dest_cpu
, tsk_cpus_allowed(p
)))
2407 /* Any allowed, online CPU? */
2408 for_each_cpu_mask(dest_cpu
, *tsk_cpus_allowed(p
)) {
2409 if (!cpu_online(dest_cpu
))
2411 if (!cpu_active(dest_cpu
))
2418 /* No more Mr. Nice Guy. */
2419 cpuset_cpus_allowed_fallback(p
);
2424 do_set_cpus_allowed(p
, cpu_possible_mask
);
2435 if (state
!= cpuset
) {
2437 * Don't tell them about moving exiting tasks or
2438 * kernel threads (both mm NULL), since they never
2441 if (p
->mm
&& printk_ratelimit()) {
2442 printk(KERN_INFO
"process %d (%s) no longer affine to cpu%d\n",
2443 task_pid_nr(p
), p
->comm
, cpu
);
2451 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2454 int select_task_rq(struct task_struct
*p
, int sd_flags
, int wake_flags
)
2456 int cpu
= p
->sched_class
->select_task_rq(p
, sd_flags
, wake_flags
);
2459 * In order not to call set_task_cpu() on a blocking task we need
2460 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2463 * Since this is common to all placement strategies, this lives here.
2465 * [ this allows ->select_task() to simply return task_cpu(p) and
2466 * not worry about this generic constraint ]
2468 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2470 cpu
= select_fallback_rq(task_cpu(p
), p
);
2475 static void update_avg(u64
*avg
, u64 sample
)
2477 s64 diff
= sample
- *avg
;
2483 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
2485 #ifdef CONFIG_SCHEDSTATS
2486 struct rq
*rq
= this_rq();
2489 int this_cpu
= smp_processor_id();
2491 if (cpu
== this_cpu
) {
2492 schedstat_inc(rq
, ttwu_local
);
2493 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2495 struct sched_domain
*sd
;
2497 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2499 for_each_domain(this_cpu
, sd
) {
2500 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2501 schedstat_inc(sd
, ttwu_wake_remote
);
2508 if (wake_flags
& WF_MIGRATED
)
2509 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2511 #endif /* CONFIG_SMP */
2513 schedstat_inc(rq
, ttwu_count
);
2514 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2516 if (wake_flags
& WF_SYNC
)
2517 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2519 #endif /* CONFIG_SCHEDSTATS */
2522 static void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
2524 activate_task(rq
, p
, en_flags
);
2527 /* if a worker is waking up, notify workqueue */
2528 if (p
->flags
& PF_WQ_WORKER
)
2529 wq_worker_waking_up(p
, cpu_of(rq
));
2533 * Mark the task runnable and perform wakeup-preemption.
2536 ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2538 trace_sched_wakeup(p
, true);
2539 check_preempt_curr(rq
, p
, wake_flags
);
2541 p
->state
= TASK_RUNNING
;
2543 if (p
->sched_class
->task_woken
)
2544 p
->sched_class
->task_woken(rq
, p
);
2546 if (unlikely(rq
->idle_stamp
)) {
2547 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2548 u64 max
= 2*sysctl_sched_migration_cost
;
2553 update_avg(&rq
->avg_idle
, delta
);
2560 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
2563 if (p
->sched_contributes_to_load
)
2564 rq
->nr_uninterruptible
--;
2567 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_WAKING
);
2568 ttwu_do_wakeup(rq
, p
, wake_flags
);
2572 * Called in case the task @p isn't fully descheduled from its runqueue,
2573 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2574 * since all we need to do is flip p->state to TASK_RUNNING, since
2575 * the task is still ->on_rq.
2577 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
2582 rq
= __task_rq_lock(p
);
2584 ttwu_do_wakeup(rq
, p
, wake_flags
);
2587 __task_rq_unlock(rq
);
2593 static void sched_ttwu_do_pending(struct task_struct
*list
)
2595 struct rq
*rq
= this_rq();
2597 raw_spin_lock(&rq
->lock
);
2600 struct task_struct
*p
= list
;
2601 list
= list
->wake_entry
;
2602 ttwu_do_activate(rq
, p
, 0);
2605 raw_spin_unlock(&rq
->lock
);
2608 #ifdef CONFIG_HOTPLUG_CPU
2610 static void sched_ttwu_pending(void)
2612 struct rq
*rq
= this_rq();
2613 struct task_struct
*list
= xchg(&rq
->wake_list
, NULL
);
2618 sched_ttwu_do_pending(list
);
2621 #endif /* CONFIG_HOTPLUG_CPU */
2623 void scheduler_ipi(void)
2625 struct rq
*rq
= this_rq();
2626 struct task_struct
*list
= xchg(&rq
->wake_list
, NULL
);
2632 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2633 * traditionally all their work was done from the interrupt return
2634 * path. Now that we actually do some work, we need to make sure
2637 * Some archs already do call them, luckily irq_enter/exit nest
2640 * Arguably we should visit all archs and update all handlers,
2641 * however a fair share of IPIs are still resched only so this would
2642 * somewhat pessimize the simple resched case.
2645 sched_ttwu_do_pending(list
);
2649 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
)
2651 struct rq
*rq
= cpu_rq(cpu
);
2652 struct task_struct
*next
= rq
->wake_list
;
2655 struct task_struct
*old
= next
;
2657 p
->wake_entry
= next
;
2658 next
= cmpxchg(&rq
->wake_list
, old
, p
);
2664 smp_send_reschedule(cpu
);
2667 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2668 static int ttwu_activate_remote(struct task_struct
*p
, int wake_flags
)
2673 rq
= __task_rq_lock(p
);
2675 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2676 ttwu_do_wakeup(rq
, p
, wake_flags
);
2679 __task_rq_unlock(rq
);
2684 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2685 #endif /* CONFIG_SMP */
2687 static void ttwu_queue(struct task_struct
*p
, int cpu
)
2689 struct rq
*rq
= cpu_rq(cpu
);
2691 #if defined(CONFIG_SMP)
2692 if (sched_feat(TTWU_QUEUE
) && cpu
!= smp_processor_id()) {
2693 sched_clock_cpu(cpu
); /* sync clocks x-cpu */
2694 ttwu_queue_remote(p
, cpu
);
2699 raw_spin_lock(&rq
->lock
);
2700 ttwu_do_activate(rq
, p
, 0);
2701 raw_spin_unlock(&rq
->lock
);
2705 * try_to_wake_up - wake up a thread
2706 * @p: the thread to be awakened
2707 * @state: the mask of task states that can be woken
2708 * @wake_flags: wake modifier flags (WF_*)
2710 * Put it on the run-queue if it's not already there. The "current"
2711 * thread is always on the run-queue (except when the actual
2712 * re-schedule is in progress), and as such you're allowed to do
2713 * the simpler "current->state = TASK_RUNNING" to mark yourself
2714 * runnable without the overhead of this.
2716 * Returns %true if @p was woken up, %false if it was already running
2717 * or @state didn't match @p's state.
2720 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
2722 unsigned long flags
;
2723 int cpu
, success
= 0;
2726 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2727 if (!(p
->state
& state
))
2730 success
= 1; /* we're going to change ->state */
2733 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2738 * If the owning (remote) cpu is still in the middle of schedule() with
2739 * this task as prev, wait until its done referencing the task.
2742 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2744 * In case the architecture enables interrupts in
2745 * context_switch(), we cannot busy wait, since that
2746 * would lead to deadlocks when an interrupt hits and
2747 * tries to wake up @prev. So bail and do a complete
2750 if (ttwu_activate_remote(p
, wake_flags
))
2757 * Pairs with the smp_wmb() in finish_lock_switch().
2761 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2762 p
->state
= TASK_WAKING
;
2764 if (p
->sched_class
->task_waking
)
2765 p
->sched_class
->task_waking(p
);
2767 cpu
= select_task_rq(p
, SD_BALANCE_WAKE
, wake_flags
);
2768 if (task_cpu(p
) != cpu
) {
2769 wake_flags
|= WF_MIGRATED
;
2770 set_task_cpu(p
, cpu
);
2772 #endif /* CONFIG_SMP */
2776 ttwu_stat(p
, cpu
, wake_flags
);
2778 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2784 * try_to_wake_up_local - try to wake up a local task with rq lock held
2785 * @p: the thread to be awakened
2787 * Put @p on the run-queue if it's not already there. The caller must
2788 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2791 static void try_to_wake_up_local(struct task_struct
*p
)
2793 struct rq
*rq
= task_rq(p
);
2795 BUG_ON(rq
!= this_rq());
2796 BUG_ON(p
== current
);
2797 lockdep_assert_held(&rq
->lock
);
2799 if (!raw_spin_trylock(&p
->pi_lock
)) {
2800 raw_spin_unlock(&rq
->lock
);
2801 raw_spin_lock(&p
->pi_lock
);
2802 raw_spin_lock(&rq
->lock
);
2805 if (!(p
->state
& TASK_NORMAL
))
2809 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
);
2811 ttwu_do_wakeup(rq
, p
, 0);
2812 ttwu_stat(p
, smp_processor_id(), 0);
2814 raw_spin_unlock(&p
->pi_lock
);
2818 * wake_up_process - Wake up a specific process
2819 * @p: The process to be woken up.
2821 * Attempt to wake up the nominated process and move it to the set of runnable
2822 * processes. Returns 1 if the process was woken up, 0 if it was already
2825 * It may be assumed that this function implies a write memory barrier before
2826 * changing the task state if and only if any tasks are woken up.
2828 int wake_up_process(struct task_struct
*p
)
2830 return try_to_wake_up(p
, TASK_ALL
, 0);
2832 EXPORT_SYMBOL(wake_up_process
);
2834 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2836 return try_to_wake_up(p
, state
, 0);
2840 * Perform scheduler related setup for a newly forked process p.
2841 * p is forked by current.
2843 * __sched_fork() is basic setup used by init_idle() too:
2845 static void __sched_fork(struct task_struct
*p
)
2850 p
->se
.exec_start
= 0;
2851 p
->se
.sum_exec_runtime
= 0;
2852 p
->se
.prev_sum_exec_runtime
= 0;
2853 p
->se
.nr_migrations
= 0;
2855 INIT_LIST_HEAD(&p
->se
.group_node
);
2857 #ifdef CONFIG_SCHEDSTATS
2858 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2861 INIT_LIST_HEAD(&p
->rt
.run_list
);
2863 #ifdef CONFIG_PREEMPT_NOTIFIERS
2864 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2869 * fork()/clone()-time setup:
2871 void sched_fork(struct task_struct
*p
)
2873 unsigned long flags
;
2874 int cpu
= get_cpu();
2878 * We mark the process as running here. This guarantees that
2879 * nobody will actually run it, and a signal or other external
2880 * event cannot wake it up and insert it on the runqueue either.
2882 p
->state
= TASK_RUNNING
;
2885 * Revert to default priority/policy on fork if requested.
2887 if (unlikely(p
->sched_reset_on_fork
)) {
2888 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2889 p
->policy
= SCHED_NORMAL
;
2890 p
->normal_prio
= p
->static_prio
;
2893 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2894 p
->static_prio
= NICE_TO_PRIO(0);
2895 p
->normal_prio
= p
->static_prio
;
2900 * We don't need the reset flag anymore after the fork. It has
2901 * fulfilled its duty:
2903 p
->sched_reset_on_fork
= 0;
2907 * Make sure we do not leak PI boosting priority to the child.
2909 p
->prio
= current
->normal_prio
;
2911 if (!rt_prio(p
->prio
))
2912 p
->sched_class
= &fair_sched_class
;
2914 if (p
->sched_class
->task_fork
)
2915 p
->sched_class
->task_fork(p
);
2918 * The child is not yet in the pid-hash so no cgroup attach races,
2919 * and the cgroup is pinned to this child due to cgroup_fork()
2920 * is ran before sched_fork().
2922 * Silence PROVE_RCU.
2924 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2925 set_task_cpu(p
, cpu
);
2926 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2928 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2929 if (likely(sched_info_on()))
2930 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2932 #if defined(CONFIG_SMP)
2935 #ifdef CONFIG_PREEMPT
2936 /* Want to start with kernel preemption disabled. */
2937 task_thread_info(p
)->preempt_count
= 1;
2940 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2946 #ifdef CONFIG_PREEMPT_COUNT_CPU
2949 * Fetch the preempt count of some cpu's current task. Must be called
2950 * with interrupts blocked. Stale return value.
2952 * No locking needed as this always wins the race with context-switch-out
2953 * + task destruction, since that is so heavyweight. The smp_rmb() is
2954 * to protect the pointers in that race, not the data being pointed to
2955 * (which, being guaranteed stale, can stand a bit of fuzziness).
2957 int preempt_count_cpu(int cpu
)
2959 smp_rmb(); /* stop data prefetch until program ctr gets here */
2960 return task_thread_info(cpu_curr(cpu
))->preempt_count
;
2965 * wake_up_new_task - wake up a newly created task for the first time.
2967 * This function will do some initial scheduler statistics housekeeping
2968 * that must be done for every newly created context, then puts the task
2969 * on the runqueue and wakes it.
2971 void wake_up_new_task(struct task_struct
*p
)
2973 unsigned long flags
;
2976 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2979 * Fork balancing, do it here and not earlier because:
2980 * - cpus_allowed can change in the fork path
2981 * - any previously selected cpu might disappear through hotplug
2983 set_task_cpu(p
, select_task_rq(p
, SD_BALANCE_FORK
, 0));
2986 rq
= __task_rq_lock(p
);
2987 activate_task(rq
, p
, 0);
2989 trace_sched_wakeup_new(p
, true);
2990 check_preempt_curr(rq
, p
, WF_FORK
);
2992 if (p
->sched_class
->task_woken
)
2993 p
->sched_class
->task_woken(rq
, p
);
2995 task_rq_unlock(rq
, p
, &flags
);
2998 #ifdef CONFIG_PREEMPT_NOTIFIERS
3001 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3002 * @notifier: notifier struct to register
3004 void preempt_notifier_register(struct preempt_notifier
*notifier
)
3006 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
3008 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
3011 * preempt_notifier_unregister - no longer interested in preemption notifications
3012 * @notifier: notifier struct to unregister
3014 * This is safe to call from within a preemption notifier.
3016 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
3018 hlist_del(¬ifier
->link
);
3020 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
3022 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
3024 struct preempt_notifier
*notifier
;
3025 struct hlist_node
*node
;
3027 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
3028 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
3032 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
3033 struct task_struct
*next
)
3035 struct preempt_notifier
*notifier
;
3036 struct hlist_node
*node
;
3038 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
3039 notifier
->ops
->sched_out(notifier
, next
);
3042 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3044 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
3049 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
3050 struct task_struct
*next
)
3054 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3057 * prepare_task_switch - prepare to switch tasks
3058 * @rq: the runqueue preparing to switch
3059 * @prev: the current task that is being switched out
3060 * @next: the task we are going to switch to.
3062 * This is called with the rq lock held and interrupts off. It must
3063 * be paired with a subsequent finish_task_switch after the context
3066 * prepare_task_switch sets up locking and calls architecture specific
3070 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
3071 struct task_struct
*next
)
3073 sched_info_switch(prev
, next
);
3074 perf_event_task_sched_out(prev
, next
);
3075 fire_sched_out_preempt_notifiers(prev
, next
);
3076 prepare_lock_switch(rq
, next
);
3077 prepare_arch_switch(next
);
3078 trace_sched_switch(prev
, next
);
3082 * finish_task_switch - clean up after a task-switch
3083 * @rq: runqueue associated with task-switch
3084 * @prev: the thread we just switched away from.
3086 * finish_task_switch must be called after the context switch, paired
3087 * with a prepare_task_switch call before the context switch.
3088 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3089 * and do any other architecture-specific cleanup actions.
3091 * Note that we may have delayed dropping an mm in context_switch(). If
3092 * so, we finish that here outside of the runqueue lock. (Doing it
3093 * with the lock held can cause deadlocks; see schedule() for
3096 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
3097 __releases(rq
->lock
)
3099 struct mm_struct
*mm
= rq
->prev_mm
;
3105 * A task struct has one reference for the use as "current".
3106 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3107 * schedule one last time. The schedule call will never return, and
3108 * the scheduled task must drop that reference.
3109 * The test for TASK_DEAD must occur while the runqueue locks are
3110 * still held, otherwise prev could be scheduled on another cpu, die
3111 * there before we look at prev->state, and then the reference would
3113 * Manfred Spraul <manfred@colorfullife.com>
3115 prev_state
= prev
->state
;
3116 finish_arch_switch(prev
);
3117 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3118 local_irq_disable();
3119 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3120 perf_event_task_sched_in(current
);
3121 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3123 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3124 finish_lock_switch(rq
, prev
);
3126 fire_sched_in_preempt_notifiers(current
);
3129 if (unlikely(prev_state
== TASK_DEAD
)) {
3131 * Remove function-return probe instances associated with this
3132 * task and put them back on the free list.
3134 kprobe_flush_task(prev
);
3135 put_task_struct(prev
);
3141 /* assumes rq->lock is held */
3142 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
3144 if (prev
->sched_class
->pre_schedule
)
3145 prev
->sched_class
->pre_schedule(rq
, prev
);
3148 /* rq->lock is NOT held, but preemption is disabled */
3149 static inline void post_schedule(struct rq
*rq
)
3151 if (rq
->post_schedule
) {
3152 unsigned long flags
;
3154 raw_spin_lock_irqsave(&rq
->lock
, flags
);
3155 if (rq
->curr
->sched_class
->post_schedule
)
3156 rq
->curr
->sched_class
->post_schedule(rq
);
3157 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
3159 rq
->post_schedule
= 0;
3165 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
3169 static inline void post_schedule(struct rq
*rq
)
3176 * schedule_tail - first thing a freshly forked thread must call.
3177 * @prev: the thread we just switched away from.
3179 asmlinkage
void schedule_tail(struct task_struct
*prev
)
3180 __releases(rq
->lock
)
3182 struct rq
*rq
= this_rq();
3184 finish_task_switch(rq
, prev
);
3187 * FIXME: do we need to worry about rq being invalidated by the
3192 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3193 /* In this case, finish_task_switch does not reenable preemption */
3196 if (current
->set_child_tid
)
3197 put_user(task_pid_vnr(current
), current
->set_child_tid
);
3201 * context_switch - switch to the new MM and the new
3202 * thread's register state.
3205 context_switch(struct rq
*rq
, struct task_struct
*prev
,
3206 struct task_struct
*next
)
3208 struct mm_struct
*mm
, *oldmm
;
3210 prepare_task_switch(rq
, prev
, next
);
3213 oldmm
= prev
->active_mm
;
3215 * For paravirt, this is coupled with an exit in switch_to to
3216 * combine the page table reload and the switch backend into
3219 arch_start_context_switch(prev
);
3222 next
->active_mm
= oldmm
;
3223 atomic_inc(&oldmm
->mm_count
);
3224 enter_lazy_tlb(oldmm
, next
);
3226 switch_mm(oldmm
, mm
, next
);
3229 prev
->active_mm
= NULL
;
3230 rq
->prev_mm
= oldmm
;
3233 * Since the runqueue lock will be released by the next
3234 * task (which is an invalid locking op but in the case
3235 * of the scheduler it's an obvious special-case), so we
3236 * do an early lockdep release here:
3238 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3239 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
3242 /* Here we just switch the register state and the stack. */
3243 switch_to(prev
, next
, prev
);
3247 * this_rq must be evaluated again because prev may have moved
3248 * CPUs since it called schedule(), thus the 'rq' on its stack
3249 * frame will be invalid.
3251 finish_task_switch(this_rq(), prev
);
3255 * nr_running, nr_uninterruptible and nr_context_switches:
3257 * externally visible scheduler statistics: current number of runnable
3258 * threads, current number of uninterruptible-sleeping threads, total
3259 * number of context switches performed since bootup.
3261 unsigned long nr_running(void)
3263 unsigned long i
, sum
= 0;
3265 for_each_online_cpu(i
)
3266 sum
+= cpu_rq(i
)->nr_running
;
3270 EXPORT_SYMBOL_GPL(nr_running
);
3272 unsigned long nr_uninterruptible(void)
3274 unsigned long i
, sum
= 0;
3276 for_each_possible_cpu(i
)
3277 sum
+= cpu_rq(i
)->nr_uninterruptible
;
3280 * Since we read the counters lockless, it might be slightly
3281 * inaccurate. Do not allow it to go below zero though:
3283 if (unlikely((long)sum
< 0))
3289 unsigned long long nr_context_switches(void)
3292 unsigned long long sum
= 0;
3294 for_each_possible_cpu(i
)
3295 sum
+= cpu_rq(i
)->nr_switches
;
3300 unsigned long nr_iowait(void)
3302 unsigned long i
, sum
= 0;
3304 for_each_possible_cpu(i
)
3305 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
3310 unsigned long nr_iowait_cpu(int cpu
)
3312 struct rq
*this = cpu_rq(cpu
);
3313 return atomic_read(&this->nr_iowait
);
3316 unsigned long this_cpu_load(void)
3318 struct rq
*this = this_rq();
3319 return this->cpu_load
[0];
3323 /* Variables and functions for calc_load */
3324 static atomic_long_t calc_load_tasks
;
3325 static unsigned long calc_load_update
;
3326 unsigned long avenrun
[3];
3327 EXPORT_SYMBOL(avenrun
);
3329 static long calc_load_fold_active(struct rq
*this_rq
)
3331 long nr_active
, delta
= 0;
3333 nr_active
= this_rq
->nr_running
;
3334 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3336 if (nr_active
!= this_rq
->calc_load_active
) {
3337 delta
= nr_active
- this_rq
->calc_load_active
;
3338 this_rq
->calc_load_active
= nr_active
;
3344 static unsigned long
3345 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3348 load
+= active
* (FIXED_1
- exp
);
3349 load
+= 1UL << (FSHIFT
- 1);
3350 return load
>> FSHIFT
;
3355 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3357 * When making the ILB scale, we should try to pull this in as well.
3359 static atomic_long_t calc_load_tasks_idle
;
3361 static void calc_load_account_idle(struct rq
*this_rq
)
3365 delta
= calc_load_fold_active(this_rq
);
3367 atomic_long_add(delta
, &calc_load_tasks_idle
);
3370 static long calc_load_fold_idle(void)
3375 * Its got a race, we don't care...
3377 if (atomic_long_read(&calc_load_tasks_idle
))
3378 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3384 * fixed_power_int - compute: x^n, in O(log n) time
3386 * @x: base of the power
3387 * @frac_bits: fractional bits of @x
3388 * @n: power to raise @x to.
3390 * By exploiting the relation between the definition of the natural power
3391 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3392 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3393 * (where: n_i \elem {0, 1}, the binary vector representing n),
3394 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3395 * of course trivially computable in O(log_2 n), the length of our binary
3398 static unsigned long
3399 fixed_power_int(unsigned long x
, unsigned int frac_bits
, unsigned int n
)
3401 unsigned long result
= 1UL << frac_bits
;
3406 result
+= 1UL << (frac_bits
- 1);
3407 result
>>= frac_bits
;
3413 x
+= 1UL << (frac_bits
- 1);
3421 * a1 = a0 * e + a * (1 - e)
3423 * a2 = a1 * e + a * (1 - e)
3424 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3425 * = a0 * e^2 + a * (1 - e) * (1 + e)
3427 * a3 = a2 * e + a * (1 - e)
3428 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3429 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3433 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3434 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3435 * = a0 * e^n + a * (1 - e^n)
3437 * [1] application of the geometric series:
3440 * S_n := \Sum x^i = -------------
3443 static unsigned long
3444 calc_load_n(unsigned long load
, unsigned long exp
,
3445 unsigned long active
, unsigned int n
)
3448 return calc_load(load
, fixed_power_int(exp
, FSHIFT
, n
), active
);
3452 * NO_HZ can leave us missing all per-cpu ticks calling
3453 * calc_load_account_active(), but since an idle CPU folds its delta into
3454 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3455 * in the pending idle delta if our idle period crossed a load cycle boundary.
3457 * Once we've updated the global active value, we need to apply the exponential
3458 * weights adjusted to the number of cycles missed.
3460 static void calc_global_nohz(void)
3462 long delta
, active
, n
;
3465 * If we crossed a calc_load_update boundary, make sure to fold
3466 * any pending idle changes, the respective CPUs might have
3467 * missed the tick driven calc_load_account_active() update
3470 delta
= calc_load_fold_idle();
3472 atomic_long_add(delta
, &calc_load_tasks
);
3475 * It could be the one fold was all it took, we done!
3477 if (time_before(jiffies
, calc_load_update
+ 10))
3481 * Catch-up, fold however many we are behind still
3483 delta
= jiffies
- calc_load_update
- 10;
3484 n
= 1 + (delta
/ LOAD_FREQ
);
3486 active
= atomic_long_read(&calc_load_tasks
);
3487 active
= active
> 0 ? active
* FIXED_1
: 0;
3489 avenrun
[0] = calc_load_n(avenrun
[0], EXP_1
, active
, n
);
3490 avenrun
[1] = calc_load_n(avenrun
[1], EXP_5
, active
, n
);
3491 avenrun
[2] = calc_load_n(avenrun
[2], EXP_15
, active
, n
);
3493 calc_load_update
+= n
* LOAD_FREQ
;
3496 static void calc_load_account_idle(struct rq
*this_rq
)
3500 static inline long calc_load_fold_idle(void)
3505 static void calc_global_nohz(void)
3511 * get_avenrun - get the load average array
3512 * @loads: pointer to dest load array
3513 * @offset: offset to add
3514 * @shift: shift count to shift the result left
3516 * These values are estimates at best, so no need for locking.
3518 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3520 loads
[0] = (avenrun
[0] + offset
) << shift
;
3521 loads
[1] = (avenrun
[1] + offset
) << shift
;
3522 loads
[2] = (avenrun
[2] + offset
) << shift
;
3526 * calc_load - update the avenrun load estimates 10 ticks after the
3527 * CPUs have updated calc_load_tasks.
3529 void calc_global_load(unsigned long ticks
)
3533 if (time_before(jiffies
, calc_load_update
+ 10))
3536 active
= atomic_long_read(&calc_load_tasks
);
3537 active
= active
> 0 ? active
* FIXED_1
: 0;
3539 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3540 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3541 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3543 calc_load_update
+= LOAD_FREQ
;
3546 * Account one period with whatever state we found before
3547 * folding in the nohz state and ageing the entire idle period.
3549 * This avoids loosing a sample when we go idle between
3550 * calc_load_account_active() (10 ticks ago) and now and thus
3557 * Called from update_cpu_load() to periodically update this CPU's
3560 static void calc_load_account_active(struct rq
*this_rq
)
3564 if (time_before(jiffies
, this_rq
->calc_load_update
))
3567 delta
= calc_load_fold_active(this_rq
);
3568 delta
+= calc_load_fold_idle();
3570 atomic_long_add(delta
, &calc_load_tasks
);
3572 this_rq
->calc_load_update
+= LOAD_FREQ
;
3576 * The exact cpuload at various idx values, calculated at every tick would be
3577 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3579 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3580 * on nth tick when cpu may be busy, then we have:
3581 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3582 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3584 * decay_load_missed() below does efficient calculation of
3585 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3586 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3588 * The calculation is approximated on a 128 point scale.
3589 * degrade_zero_ticks is the number of ticks after which load at any
3590 * particular idx is approximated to be zero.
3591 * degrade_factor is a precomputed table, a row for each load idx.
3592 * Each column corresponds to degradation factor for a power of two ticks,
3593 * based on 128 point scale.
3595 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3596 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3598 * With this power of 2 load factors, we can degrade the load n times
3599 * by looking at 1 bits in n and doing as many mult/shift instead of
3600 * n mult/shifts needed by the exact degradation.
3602 #define DEGRADE_SHIFT 7
3603 static const unsigned char
3604 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3605 static const unsigned char
3606 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3607 {0, 0, 0, 0, 0, 0, 0, 0},
3608 {64, 32, 8, 0, 0, 0, 0, 0},
3609 {96, 72, 40, 12, 1, 0, 0},
3610 {112, 98, 75, 43, 15, 1, 0},
3611 {120, 112, 98, 76, 45, 16, 2} };
3614 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3615 * would be when CPU is idle and so we just decay the old load without
3616 * adding any new load.
3618 static unsigned long
3619 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3623 if (!missed_updates
)
3626 if (missed_updates
>= degrade_zero_ticks
[idx
])
3630 return load
>> missed_updates
;
3632 while (missed_updates
) {
3633 if (missed_updates
% 2)
3634 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3636 missed_updates
>>= 1;
3643 * Update rq->cpu_load[] statistics. This function is usually called every
3644 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3645 * every tick. We fix it up based on jiffies.
3647 static void update_cpu_load(struct rq
*this_rq
)
3649 unsigned long this_load
= this_rq
->load
.weight
;
3650 unsigned long curr_jiffies
= jiffies
;
3651 unsigned long pending_updates
;
3654 this_rq
->nr_load_updates
++;
3656 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3657 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3660 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3661 this_rq
->last_load_update_tick
= curr_jiffies
;
3663 /* Update our load: */
3664 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3665 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3666 unsigned long old_load
, new_load
;
3668 /* scale is effectively 1 << i now, and >> i divides by scale */
3670 old_load
= this_rq
->cpu_load
[i
];
3671 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3672 new_load
= this_load
;
3674 * Round up the averaging division if load is increasing. This
3675 * prevents us from getting stuck on 9 if the load is 10, for
3678 if (new_load
> old_load
)
3679 new_load
+= scale
- 1;
3681 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3684 sched_avg_update(this_rq
);
3687 static void update_cpu_load_active(struct rq
*this_rq
)
3689 update_cpu_load(this_rq
);
3691 calc_load_account_active(this_rq
);
3697 * sched_exec - execve() is a valuable balancing opportunity, because at
3698 * this point the task has the smallest effective memory and cache footprint.
3700 void sched_exec(void)
3702 struct task_struct
*p
= current
;
3703 unsigned long flags
;
3706 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
3707 dest_cpu
= p
->sched_class
->select_task_rq(p
, SD_BALANCE_EXEC
, 0);
3708 if (dest_cpu
== smp_processor_id())
3711 if (likely(cpu_active(dest_cpu
))) {
3712 struct migration_arg arg
= { p
, dest_cpu
};
3714 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3715 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
3719 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
3724 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3726 EXPORT_PER_CPU_SYMBOL(kstat
);
3729 * Return any ns on the sched_clock that have not yet been accounted in
3730 * @p in case that task is currently running.
3732 * Called with task_rq_lock() held on @rq.
3734 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3738 if (task_current(rq
, p
)) {
3739 update_rq_clock(rq
);
3740 ns
= rq
->clock_task
- p
->se
.exec_start
;
3748 unsigned long long task_delta_exec(struct task_struct
*p
)
3750 unsigned long flags
;
3754 rq
= task_rq_lock(p
, &flags
);
3755 ns
= do_task_delta_exec(p
, rq
);
3756 task_rq_unlock(rq
, p
, &flags
);
3762 * Return accounted runtime for the task.
3763 * In case the task is currently running, return the runtime plus current's
3764 * pending runtime that have not been accounted yet.
3766 unsigned long long task_sched_runtime(struct task_struct
*p
)
3768 unsigned long flags
;
3772 rq
= task_rq_lock(p
, &flags
);
3773 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3774 task_rq_unlock(rq
, p
, &flags
);
3780 * Account user cpu time to a process.
3781 * @p: the process that the cpu time gets accounted to
3782 * @cputime: the cpu time spent in user space since the last update
3783 * @cputime_scaled: cputime scaled by cpu frequency
3785 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3786 cputime_t cputime_scaled
)
3788 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3791 /* Add user time to process. */
3792 p
->utime
= cputime_add(p
->utime
, cputime
);
3793 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3794 account_group_user_time(p
, cputime
);
3796 /* Add user time to cpustat. */
3797 tmp
= cputime_to_cputime64(cputime
);
3798 if (TASK_NICE(p
) > 0)
3799 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3801 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3803 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3804 /* Account for user time used */
3805 acct_update_integrals(p
);
3809 * Account guest cpu time to a process.
3810 * @p: the process that the cpu time gets accounted to
3811 * @cputime: the cpu time spent in virtual machine since the last update
3812 * @cputime_scaled: cputime scaled by cpu frequency
3814 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3815 cputime_t cputime_scaled
)
3818 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3820 tmp
= cputime_to_cputime64(cputime
);
3822 /* Add guest time to process. */
3823 p
->utime
= cputime_add(p
->utime
, cputime
);
3824 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3825 account_group_user_time(p
, cputime
);
3826 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3828 /* Add guest time to cpustat. */
3829 if (TASK_NICE(p
) > 0) {
3830 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3831 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3833 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3834 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3839 * Account system cpu time to a process and desired cpustat field
3840 * @p: the process that the cpu time gets accounted to
3841 * @cputime: the cpu time spent in kernel space since the last update
3842 * @cputime_scaled: cputime scaled by cpu frequency
3843 * @target_cputime64: pointer to cpustat field that has to be updated
3846 void __account_system_time(struct task_struct
*p
, cputime_t cputime
,
3847 cputime_t cputime_scaled
, cputime64_t
*target_cputime64
)
3849 cputime64_t tmp
= cputime_to_cputime64(cputime
);
3851 /* Add system time to process. */
3852 p
->stime
= cputime_add(p
->stime
, cputime
);
3853 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3854 account_group_system_time(p
, cputime
);
3856 /* Add system time to cpustat. */
3857 *target_cputime64
= cputime64_add(*target_cputime64
, tmp
);
3858 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3860 /* Account for system time used */
3861 acct_update_integrals(p
);
3865 * Account system cpu time to a process.
3866 * @p: the process that the cpu time gets accounted to
3867 * @hardirq_offset: the offset to subtract from hardirq_count()
3868 * @cputime: the cpu time spent in kernel space since the last update
3869 * @cputime_scaled: cputime scaled by cpu frequency
3871 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3872 cputime_t cputime
, cputime_t cputime_scaled
)
3874 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3875 cputime64_t
*target_cputime64
;
3877 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3878 account_guest_time(p
, cputime
, cputime_scaled
);
3882 if (hardirq_count() - hardirq_offset
)
3883 target_cputime64
= &cpustat
->irq
;
3884 else if (in_serving_softirq())
3885 target_cputime64
= &cpustat
->softirq
;
3887 target_cputime64
= &cpustat
->system
;
3889 __account_system_time(p
, cputime
, cputime_scaled
, target_cputime64
);
3893 * Account for involuntary wait time.
3894 * @cputime: the cpu time spent in involuntary wait
3896 void account_steal_time(cputime_t cputime
)
3898 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3899 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3901 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3905 * Account for idle time.
3906 * @cputime: the cpu time spent in idle wait
3908 void account_idle_time(cputime_t cputime
)
3910 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3911 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3912 struct rq
*rq
= this_rq();
3914 if (atomic_read(&rq
->nr_iowait
) > 0)
3915 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3917 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3920 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3922 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3924 * Account a tick to a process and cpustat
3925 * @p: the process that the cpu time gets accounted to
3926 * @user_tick: is the tick from userspace
3927 * @rq: the pointer to rq
3929 * Tick demultiplexing follows the order
3930 * - pending hardirq update
3931 * - pending softirq update
3935 * - check for guest_time
3936 * - else account as system_time
3938 * Check for hardirq is done both for system and user time as there is
3939 * no timer going off while we are on hardirq and hence we may never get an
3940 * opportunity to update it solely in system time.
3941 * p->stime and friends are only updated on system time and not on irq
3942 * softirq as those do not count in task exec_runtime any more.
3944 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3947 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3948 cputime64_t tmp
= cputime_to_cputime64(cputime_one_jiffy
);
3949 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3951 if (irqtime_account_hi_update()) {
3952 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3953 } else if (irqtime_account_si_update()) {
3954 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3955 } else if (this_cpu_ksoftirqd() == p
) {
3957 * ksoftirqd time do not get accounted in cpu_softirq_time.
3958 * So, we have to handle it separately here.
3959 * Also, p->stime needs to be updated for ksoftirqd.
3961 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3963 } else if (user_tick
) {
3964 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3965 } else if (p
== rq
->idle
) {
3966 account_idle_time(cputime_one_jiffy
);
3967 } else if (p
->flags
& PF_VCPU
) { /* System time or guest time */
3968 account_guest_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3970 __account_system_time(p
, cputime_one_jiffy
, one_jiffy_scaled
,
3975 static void irqtime_account_idle_ticks(int ticks
)
3978 struct rq
*rq
= this_rq();
3980 for (i
= 0; i
< ticks
; i
++)
3981 irqtime_account_process_tick(current
, 0, rq
);
3983 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3984 static void irqtime_account_idle_ticks(int ticks
) {}
3985 static void irqtime_account_process_tick(struct task_struct
*p
, int user_tick
,
3987 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3990 * Account a single tick of cpu time.
3991 * @p: the process that the cpu time gets accounted to
3992 * @user_tick: indicates if the tick is a user or a system tick
3994 void account_process_tick(struct task_struct
*p
, int user_tick
)
3996 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3997 struct rq
*rq
= this_rq();
3999 if (sched_clock_irqtime
) {
4000 irqtime_account_process_tick(p
, user_tick
, rq
);
4005 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
4006 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
4007 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
4010 account_idle_time(cputime_one_jiffy
);
4014 * Account multiple ticks of steal time.
4015 * @p: the process from which the cpu time has been stolen
4016 * @ticks: number of stolen ticks
4018 void account_steal_ticks(unsigned long ticks
)
4020 account_steal_time(jiffies_to_cputime(ticks
));
4024 * Account multiple ticks of idle time.
4025 * @ticks: number of stolen ticks
4027 void account_idle_ticks(unsigned long ticks
)
4030 if (sched_clock_irqtime
) {
4031 irqtime_account_idle_ticks(ticks
);
4035 account_idle_time(jiffies_to_cputime(ticks
));
4041 * Use precise platform statistics if available:
4043 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4044 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4050 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4052 struct task_cputime cputime
;
4054 thread_group_cputime(p
, &cputime
);
4056 *ut
= cputime
.utime
;
4057 *st
= cputime
.stime
;
4061 #ifndef nsecs_to_cputime
4062 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4065 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4067 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
4070 * Use CFS's precise accounting:
4072 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
4078 do_div(temp
, total
);
4079 utime
= (cputime_t
)temp
;
4084 * Compare with previous values, to keep monotonicity:
4086 p
->prev_utime
= max(p
->prev_utime
, utime
);
4087 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
4089 *ut
= p
->prev_utime
;
4090 *st
= p
->prev_stime
;
4094 * Must be called with siglock held.
4096 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
4098 struct signal_struct
*sig
= p
->signal
;
4099 struct task_cputime cputime
;
4100 cputime_t rtime
, utime
, total
;
4102 thread_group_cputime(p
, &cputime
);
4104 total
= cputime_add(cputime
.utime
, cputime
.stime
);
4105 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
4110 temp
*= cputime
.utime
;
4111 do_div(temp
, total
);
4112 utime
= (cputime_t
)temp
;
4116 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
4117 sig
->prev_stime
= max(sig
->prev_stime
,
4118 cputime_sub(rtime
, sig
->prev_utime
));
4120 *ut
= sig
->prev_utime
;
4121 *st
= sig
->prev_stime
;
4126 * This function gets called by the timer code, with HZ frequency.
4127 * We call it with interrupts disabled.
4129 void scheduler_tick(void)
4131 int cpu
= smp_processor_id();
4132 struct rq
*rq
= cpu_rq(cpu
);
4133 struct task_struct
*curr
= rq
->curr
;
4137 raw_spin_lock(&rq
->lock
);
4138 update_rq_clock(rq
);
4139 update_cpu_load_active(rq
);
4140 curr
->sched_class
->task_tick(rq
, curr
, 0);
4141 raw_spin_unlock(&rq
->lock
);
4143 perf_event_task_tick();
4146 rq
->idle_at_tick
= idle_cpu(cpu
);
4147 trigger_load_balance(rq
, cpu
);
4151 notrace
unsigned long get_parent_ip(unsigned long addr
)
4153 if (in_lock_functions(addr
)) {
4154 addr
= CALLER_ADDR2
;
4155 if (in_lock_functions(addr
))
4156 addr
= CALLER_ADDR3
;
4161 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4162 defined(CONFIG_PREEMPT_TRACER))
4164 void __kprobes
add_preempt_count(int val
)
4166 #ifdef CONFIG_DEBUG_PREEMPT
4170 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4173 __add_preempt_count(val
);
4174 #ifdef CONFIG_DEBUG_PREEMPT
4176 * Spinlock count overflowing soon?
4178 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
4181 if (preempt_count() == val
)
4182 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4184 EXPORT_SYMBOL(add_preempt_count
);
4186 void __kprobes
sub_preempt_count(int val
)
4188 #ifdef CONFIG_DEBUG_PREEMPT
4192 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
4195 * Is the spinlock portion underflowing?
4197 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
4198 !(preempt_count() & PREEMPT_MASK
)))
4202 if (preempt_count() == val
)
4203 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
4204 __sub_preempt_count(val
);
4206 EXPORT_SYMBOL(sub_preempt_count
);
4211 * Print scheduling while atomic bug:
4213 static noinline
void __schedule_bug(struct task_struct
*prev
)
4215 struct pt_regs
*regs
= get_irq_regs();
4217 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
4218 prev
->comm
, prev
->pid
, preempt_count());
4220 debug_show_held_locks(prev
);
4222 if (irqs_disabled())
4223 print_irqtrace_events(prev
);
4232 * Various schedule()-time debugging checks and statistics:
4234 static inline void schedule_debug(struct task_struct
*prev
)
4237 * Test if we are atomic. Since do_exit() needs to call into
4238 * schedule() atomically, we ignore that path for now.
4239 * Otherwise, whine if we are scheduling when we should not be.
4241 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
4242 __schedule_bug(prev
);
4244 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
4246 schedstat_inc(this_rq(), sched_count
);
4249 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
4251 if (prev
->on_rq
|| rq
->skip_clock_update
< 0)
4252 update_rq_clock(rq
);
4253 prev
->sched_class
->put_prev_task(rq
, prev
);
4257 * Pick up the highest-prio task:
4259 static inline struct task_struct
*
4260 pick_next_task(struct rq
*rq
)
4262 const struct sched_class
*class;
4263 struct task_struct
*p
;
4266 * Optimization: we know that if all tasks are in
4267 * the fair class we can call that function directly:
4269 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
4270 p
= fair_sched_class
.pick_next_task(rq
);
4275 for_each_class(class) {
4276 p
= class->pick_next_task(rq
);
4281 BUG(); /* the idle class will always have a runnable task */
4285 * __schedule() is the main scheduler function.
4287 static void __sched
__schedule(void)
4289 struct task_struct
*prev
, *next
;
4290 unsigned long *switch_count
;
4296 cpu
= smp_processor_id();
4298 rcu_note_context_switch(cpu
);
4301 schedule_debug(prev
);
4303 if (sched_feat(HRTICK
))
4306 raw_spin_lock_irq(&rq
->lock
);
4308 switch_count
= &prev
->nivcsw
;
4309 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
4310 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
4311 prev
->state
= TASK_RUNNING
;
4313 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
4317 * If a worker went to sleep, notify and ask workqueue
4318 * whether it wants to wake up a task to maintain
4321 if (prev
->flags
& PF_WQ_WORKER
) {
4322 struct task_struct
*to_wakeup
;
4324 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
4326 try_to_wake_up_local(to_wakeup
);
4329 switch_count
= &prev
->nvcsw
;
4332 pre_schedule(rq
, prev
);
4334 if (unlikely(!rq
->nr_running
))
4335 idle_balance(cpu
, rq
);
4337 put_prev_task(rq
, prev
);
4338 next
= pick_next_task(rq
);
4339 clear_tsk_need_resched(prev
);
4340 rq
->skip_clock_update
= 0;
4342 if (likely(prev
!= next
)) {
4345 #ifdef CONFIG_PREEMPT_COUNT_CPU
4350 context_switch(rq
, prev
, next
); /* unlocks the rq */
4352 * The context switch have flipped the stack from under us
4353 * and restored the local variables which were saved when
4354 * this task called schedule() in the past. prev == current
4355 * is still correct, but it can be moved to another cpu/rq.
4357 cpu
= smp_processor_id();
4360 raw_spin_unlock_irq(&rq
->lock
);
4364 preempt_enable_no_resched();
4369 static inline void sched_submit_work(struct task_struct
*tsk
)
4374 * If we are going to sleep and we have plugged IO queued,
4375 * make sure to submit it to avoid deadlocks.
4377 if (blk_needs_flush_plug(tsk
))
4378 blk_schedule_flush_plug(tsk
);
4381 asmlinkage
void __sched
schedule(void)
4383 struct task_struct
*tsk
= current
;
4385 sched_submit_work(tsk
);
4388 EXPORT_SYMBOL(schedule
);
4390 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4392 static inline bool owner_running(struct mutex
*lock
, struct task_struct
*owner
)
4397 if (lock
->owner
!= owner
)
4401 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4402 * lock->owner still matches owner, if that fails, owner might
4403 * point to free()d memory, if it still matches, the rcu_read_lock()
4404 * ensures the memory stays valid.
4408 ret
= owner
->on_cpu
;
4416 * Look out! "owner" is an entirely speculative pointer
4417 * access and not reliable.
4419 int mutex_spin_on_owner(struct mutex
*lock
, struct task_struct
*owner
)
4421 if (!sched_feat(OWNER_SPIN
))
4424 while (owner_running(lock
, owner
)) {
4428 arch_mutex_cpu_relax();
4432 * If the owner changed to another task there is likely
4433 * heavy contention, stop spinning.
4442 #ifdef CONFIG_PREEMPT
4444 * this is the entry point to schedule() from in-kernel preemption
4445 * off of preempt_enable. Kernel preemptions off return from interrupt
4446 * occur there and call schedule directly.
4448 asmlinkage
void __sched notrace
preempt_schedule(void)
4450 struct thread_info
*ti
= current_thread_info();
4453 * If there is a non-zero preempt_count or interrupts are disabled,
4454 * we do not want to preempt the current task. Just return..
4456 if (likely(ti
->preempt_count
|| irqs_disabled()))
4460 add_preempt_count_notrace(PREEMPT_ACTIVE
);
4462 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
4465 * Check again in case we missed a preemption opportunity
4466 * between schedule and now.
4469 } while (need_resched());
4471 EXPORT_SYMBOL(preempt_schedule
);
4474 * this is the entry point to schedule() from kernel preemption
4475 * off of irq context.
4476 * Note, that this is called and return with irqs disabled. This will
4477 * protect us against recursive calling from irq.
4479 asmlinkage
void __sched
preempt_schedule_irq(void)
4481 struct thread_info
*ti
= current_thread_info();
4483 /* Catch callers which need to be fixed */
4484 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
4487 add_preempt_count(PREEMPT_ACTIVE
);
4490 local_irq_disable();
4491 sub_preempt_count(PREEMPT_ACTIVE
);
4494 * Check again in case we missed a preemption opportunity
4495 * between schedule and now.
4498 } while (need_resched());
4501 #endif /* CONFIG_PREEMPT */
4503 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
4506 return try_to_wake_up(curr
->private, mode
, wake_flags
);
4508 EXPORT_SYMBOL(default_wake_function
);
4511 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4512 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4513 * number) then we wake all the non-exclusive tasks and one exclusive task.
4515 * There are circumstances in which we can try to wake a task which has already
4516 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4517 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4519 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
4520 int nr_exclusive
, int wake_flags
, void *key
)
4522 wait_queue_t
*curr
, *next
;
4524 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
4525 unsigned flags
= curr
->flags
;
4527 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
4528 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
4534 * __wake_up - wake up threads blocked on a waitqueue.
4536 * @mode: which threads
4537 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4538 * @key: is directly passed to the wakeup function
4540 * It may be assumed that this function implies a write memory barrier before
4541 * changing the task state if and only if any tasks are woken up.
4543 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
4544 int nr_exclusive
, void *key
)
4546 unsigned long flags
;
4548 spin_lock_irqsave(&q
->lock
, flags
);
4549 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
4550 spin_unlock_irqrestore(&q
->lock
, flags
);
4552 EXPORT_SYMBOL(__wake_up
);
4555 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4557 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4559 __wake_up_common(q
, mode
, 1, 0, NULL
);
4561 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4563 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4565 __wake_up_common(q
, mode
, 1, 0, key
);
4567 EXPORT_SYMBOL_GPL(__wake_up_locked_key
);
4570 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4572 * @mode: which threads
4573 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4574 * @key: opaque value to be passed to wakeup targets
4576 * The sync wakeup differs that the waker knows that it will schedule
4577 * away soon, so while the target thread will be woken up, it will not
4578 * be migrated to another CPU - ie. the two threads are 'synchronized'
4579 * with each other. This can prevent needless bouncing between CPUs.
4581 * On UP it can prevent extra preemption.
4583 * It may be assumed that this function implies a write memory barrier before
4584 * changing the task state if and only if any tasks are woken up.
4586 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4587 int nr_exclusive
, void *key
)
4589 unsigned long flags
;
4590 int wake_flags
= WF_SYNC
;
4595 if (unlikely(!nr_exclusive
))
4598 spin_lock_irqsave(&q
->lock
, flags
);
4599 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4600 spin_unlock_irqrestore(&q
->lock
, flags
);
4602 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4605 * __wake_up_sync - see __wake_up_sync_key()
4607 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4609 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4611 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4614 * complete: - signals a single thread waiting on this completion
4615 * @x: holds the state of this particular completion
4617 * This will wake up a single thread waiting on this completion. Threads will be
4618 * awakened in the same order in which they were queued.
4620 * See also complete_all(), wait_for_completion() and related routines.
4622 * It may be assumed that this function implies a write memory barrier before
4623 * changing the task state if and only if any tasks are woken up.
4625 void complete(struct completion
*x
)
4627 unsigned long flags
;
4629 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4631 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4632 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4634 EXPORT_SYMBOL(complete
);
4637 * complete_all: - signals all threads waiting on this completion
4638 * @x: holds the state of this particular completion
4640 * This will wake up all threads waiting on this particular completion event.
4642 * It may be assumed that this function implies a write memory barrier before
4643 * changing the task state if and only if any tasks are woken up.
4645 void complete_all(struct completion
*x
)
4647 unsigned long flags
;
4649 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4650 x
->done
+= UINT_MAX
/2;
4651 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4652 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4654 EXPORT_SYMBOL(complete_all
);
4656 static inline long __sched
4657 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4660 DECLARE_WAITQUEUE(wait
, current
);
4662 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4664 if (signal_pending_state(state
, current
)) {
4665 timeout
= -ERESTARTSYS
;
4668 __set_current_state(state
);
4669 spin_unlock_irq(&x
->wait
.lock
);
4670 timeout
= schedule_timeout(timeout
);
4671 spin_lock_irq(&x
->wait
.lock
);
4672 } while (!x
->done
&& timeout
);
4673 __remove_wait_queue(&x
->wait
, &wait
);
4678 return timeout
?: 1;
4682 wait_for_common(struct completion
*x
, long timeout
, int state
)
4686 spin_lock_irq(&x
->wait
.lock
);
4687 timeout
= do_wait_for_common(x
, timeout
, state
);
4688 spin_unlock_irq(&x
->wait
.lock
);
4693 * wait_for_completion: - waits for completion of a task
4694 * @x: holds the state of this particular completion
4696 * This waits to be signaled for completion of a specific task. It is NOT
4697 * interruptible and there is no timeout.
4699 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4700 * and interrupt capability. Also see complete().
4702 void __sched
wait_for_completion(struct completion
*x
)
4704 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4706 EXPORT_SYMBOL(wait_for_completion
);
4709 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4710 * @x: holds the state of this particular completion
4711 * @timeout: timeout value in jiffies
4713 * This waits for either a completion of a specific task to be signaled or for a
4714 * specified timeout to expire. The timeout is in jiffies. It is not
4717 unsigned long __sched
4718 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4720 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4722 EXPORT_SYMBOL(wait_for_completion_timeout
);
4725 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4726 * @x: holds the state of this particular completion
4728 * This waits for completion of a specific task to be signaled. It is
4731 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4733 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4734 if (t
== -ERESTARTSYS
)
4738 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4741 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4742 * @x: holds the state of this particular completion
4743 * @timeout: timeout value in jiffies
4745 * This waits for either a completion of a specific task to be signaled or for a
4746 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4749 wait_for_completion_interruptible_timeout(struct completion
*x
,
4750 unsigned long timeout
)
4752 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4754 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4757 * wait_for_completion_killable: - waits for completion of a task (killable)
4758 * @x: holds the state of this particular completion
4760 * This waits to be signaled for completion of a specific task. It can be
4761 * interrupted by a kill signal.
4763 int __sched
wait_for_completion_killable(struct completion
*x
)
4765 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4766 if (t
== -ERESTARTSYS
)
4770 EXPORT_SYMBOL(wait_for_completion_killable
);
4773 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4774 * @x: holds the state of this particular completion
4775 * @timeout: timeout value in jiffies
4777 * This waits for either a completion of a specific task to be
4778 * signaled or for a specified timeout to expire. It can be
4779 * interrupted by a kill signal. The timeout is in jiffies.
4782 wait_for_completion_killable_timeout(struct completion
*x
,
4783 unsigned long timeout
)
4785 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4787 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4790 * try_wait_for_completion - try to decrement a completion without blocking
4791 * @x: completion structure
4793 * Returns: 0 if a decrement cannot be done without blocking
4794 * 1 if a decrement succeeded.
4796 * If a completion is being used as a counting completion,
4797 * attempt to decrement the counter without blocking. This
4798 * enables us to avoid waiting if the resource the completion
4799 * is protecting is not available.
4801 bool try_wait_for_completion(struct completion
*x
)
4803 unsigned long flags
;
4806 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4811 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4814 EXPORT_SYMBOL(try_wait_for_completion
);
4817 * completion_done - Test to see if a completion has any waiters
4818 * @x: completion structure
4820 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4821 * 1 if there are no waiters.
4824 bool completion_done(struct completion
*x
)
4826 unsigned long flags
;
4829 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4832 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4835 EXPORT_SYMBOL(completion_done
);
4838 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4840 unsigned long flags
;
4843 init_waitqueue_entry(&wait
, current
);
4845 __set_current_state(state
);
4847 spin_lock_irqsave(&q
->lock
, flags
);
4848 __add_wait_queue(q
, &wait
);
4849 spin_unlock(&q
->lock
);
4850 timeout
= schedule_timeout(timeout
);
4851 spin_lock_irq(&q
->lock
);
4852 __remove_wait_queue(q
, &wait
);
4853 spin_unlock_irqrestore(&q
->lock
, flags
);
4858 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4860 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4862 EXPORT_SYMBOL(interruptible_sleep_on
);
4865 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4867 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4869 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4871 void __sched
sleep_on(wait_queue_head_t
*q
)
4873 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4875 EXPORT_SYMBOL(sleep_on
);
4877 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4879 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4881 EXPORT_SYMBOL(sleep_on_timeout
);
4883 #ifdef CONFIG_RT_MUTEXES
4886 * rt_mutex_setprio - set the current priority of a task
4888 * @prio: prio value (kernel-internal form)
4890 * This function changes the 'effective' priority of a task. It does
4891 * not touch ->normal_prio like __setscheduler().
4893 * Used by the rt_mutex code to implement priority inheritance logic.
4895 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4897 int oldprio
, on_rq
, running
;
4899 const struct sched_class
*prev_class
;
4901 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4903 rq
= __task_rq_lock(p
);
4905 trace_sched_pi_setprio(p
, prio
);
4907 prev_class
= p
->sched_class
;
4909 running
= task_current(rq
, p
);
4911 dequeue_task(rq
, p
, 0);
4913 p
->sched_class
->put_prev_task(rq
, p
);
4916 p
->sched_class
= &rt_sched_class
;
4918 p
->sched_class
= &fair_sched_class
;
4923 p
->sched_class
->set_curr_task(rq
);
4925 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4927 check_class_changed(rq
, p
, prev_class
, oldprio
);
4928 __task_rq_unlock(rq
);
4933 void set_user_nice(struct task_struct
*p
, long nice
)
4935 int old_prio
, delta
, on_rq
;
4936 unsigned long flags
;
4939 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4942 * We have to be careful, if called from sys_setpriority(),
4943 * the task might be in the middle of scheduling on another CPU.
4945 rq
= task_rq_lock(p
, &flags
);
4947 * The RT priorities are set via sched_setscheduler(), but we still
4948 * allow the 'normal' nice value to be set - but as expected
4949 * it wont have any effect on scheduling until the task is
4950 * SCHED_FIFO/SCHED_RR:
4952 if (task_has_rt_policy(p
)) {
4953 p
->static_prio
= NICE_TO_PRIO(nice
);
4958 dequeue_task(rq
, p
, 0);
4960 p
->static_prio
= NICE_TO_PRIO(nice
);
4963 p
->prio
= effective_prio(p
);
4964 delta
= p
->prio
- old_prio
;
4967 enqueue_task(rq
, p
, 0);
4969 * If the task increased its priority or is running and
4970 * lowered its priority, then reschedule its CPU:
4972 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4973 resched_task(rq
->curr
);
4976 task_rq_unlock(rq
, p
, &flags
);
4978 EXPORT_SYMBOL(set_user_nice
);
4981 * can_nice - check if a task can reduce its nice value
4985 int can_nice(const struct task_struct
*p
, const int nice
)
4987 /* convert nice value [19,-20] to rlimit style value [1,40] */
4988 int nice_rlim
= 20 - nice
;
4990 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4991 capable(CAP_SYS_NICE
));
4994 #ifdef __ARCH_WANT_SYS_NICE
4997 * sys_nice - change the priority of the current process.
4998 * @increment: priority increment
5000 * sys_setpriority is a more generic, but much slower function that
5001 * does similar things.
5003 SYSCALL_DEFINE1(nice
, int, increment
)
5008 * Setpriority might change our priority at the same moment.
5009 * We don't have to worry. Conceptually one call occurs first
5010 * and we have a single winner.
5012 if (increment
< -40)
5017 nice
= TASK_NICE(current
) + increment
;
5023 if (increment
< 0 && !can_nice(current
, nice
))
5026 retval
= security_task_setnice(current
, nice
);
5030 set_user_nice(current
, nice
);
5037 * task_prio - return the priority value of a given task.
5038 * @p: the task in question.
5040 * This is the priority value as seen by users in /proc.
5041 * RT tasks are offset by -200. Normal tasks are centered
5042 * around 0, value goes from -16 to +15.
5044 int task_prio(const struct task_struct
*p
)
5046 return p
->prio
- MAX_RT_PRIO
;
5050 * task_nice - return the nice value of a given task.
5051 * @p: the task in question.
5053 int task_nice(const struct task_struct
*p
)
5055 return TASK_NICE(p
);
5057 EXPORT_SYMBOL(task_nice
);
5060 * idle_cpu - is a given cpu idle currently?
5061 * @cpu: the processor in question.
5063 int idle_cpu(int cpu
)
5065 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
5069 * idle_task - return the idle task for a given cpu.
5070 * @cpu: the processor in question.
5072 struct task_struct
*idle_task(int cpu
)
5074 return cpu_rq(cpu
)->idle
;
5078 * find_process_by_pid - find a process with a matching PID value.
5079 * @pid: the pid in question.
5081 static struct task_struct
*find_process_by_pid(pid_t pid
)
5083 return pid
? find_task_by_vpid(pid
) : current
;
5086 /* Actually do priority change: must hold rq lock. */
5088 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
5091 p
->rt_priority
= prio
;
5092 p
->normal_prio
= normal_prio(p
);
5093 /* we are holding p->pi_lock already */
5094 p
->prio
= rt_mutex_getprio(p
);
5095 if (rt_prio(p
->prio
))
5096 p
->sched_class
= &rt_sched_class
;
5098 p
->sched_class
= &fair_sched_class
;
5103 * check the target process has a UID that matches the current process's
5105 static bool check_same_owner(struct task_struct
*p
)
5107 const struct cred
*cred
= current_cred(), *pcred
;
5111 pcred
= __task_cred(p
);
5112 if (cred
->user
->user_ns
== pcred
->user
->user_ns
)
5113 match
= (cred
->euid
== pcred
->euid
||
5114 cred
->euid
== pcred
->uid
);
5121 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
5122 const struct sched_param
*param
, bool user
)
5124 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
5125 unsigned long flags
;
5126 const struct sched_class
*prev_class
;
5130 /* may grab non-irq protected spin_locks */
5131 BUG_ON(in_interrupt());
5133 /* double check policy once rq lock held */
5135 reset_on_fork
= p
->sched_reset_on_fork
;
5136 policy
= oldpolicy
= p
->policy
;
5138 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
5139 policy
&= ~SCHED_RESET_ON_FORK
;
5141 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
5142 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
5143 policy
!= SCHED_IDLE
)
5148 * Valid priorities for SCHED_FIFO and SCHED_RR are
5149 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5150 * SCHED_BATCH and SCHED_IDLE is 0.
5152 if (param
->sched_priority
< 0 ||
5153 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
5154 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
5156 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
5160 * Allow unprivileged RT tasks to decrease priority:
5162 if (user
&& !capable(CAP_SYS_NICE
)) {
5163 if (rt_policy(policy
)) {
5164 unsigned long rlim_rtprio
=
5165 task_rlimit(p
, RLIMIT_RTPRIO
);
5167 /* can't set/change the rt policy */
5168 if (policy
!= p
->policy
&& !rlim_rtprio
)
5171 /* can't increase priority */
5172 if (param
->sched_priority
> p
->rt_priority
&&
5173 param
->sched_priority
> rlim_rtprio
)
5178 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5179 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5181 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
) {
5182 if (!can_nice(p
, TASK_NICE(p
)))
5186 /* can't change other user's priorities */
5187 if (!check_same_owner(p
))
5190 /* Normal users shall not reset the sched_reset_on_fork flag */
5191 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
5196 retval
= security_task_setscheduler(p
);
5202 * make sure no PI-waiters arrive (or leave) while we are
5203 * changing the priority of the task:
5205 * To be able to change p->policy safely, the appropriate
5206 * runqueue lock must be held.
5208 rq
= task_rq_lock(p
, &flags
);
5211 * Changing the policy of the stop threads its a very bad idea
5213 if (p
== rq
->stop
) {
5214 task_rq_unlock(rq
, p
, &flags
);
5219 * If not changing anything there's no need to proceed further:
5221 if (unlikely(policy
== p
->policy
&& (!rt_policy(policy
) ||
5222 param
->sched_priority
== p
->rt_priority
))) {
5224 __task_rq_unlock(rq
);
5225 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5229 #ifdef CONFIG_RT_GROUP_SCHED
5232 * Do not allow realtime tasks into groups that have no runtime
5235 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
5236 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
5237 !task_group_is_autogroup(task_group(p
))) {
5238 task_rq_unlock(rq
, p
, &flags
);
5244 /* recheck policy now with rq lock held */
5245 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
5246 policy
= oldpolicy
= -1;
5247 task_rq_unlock(rq
, p
, &flags
);
5251 running
= task_current(rq
, p
);
5253 deactivate_task(rq
, p
, 0);
5255 p
->sched_class
->put_prev_task(rq
, p
);
5257 p
->sched_reset_on_fork
= reset_on_fork
;
5260 prev_class
= p
->sched_class
;
5261 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
5264 p
->sched_class
->set_curr_task(rq
);
5266 activate_task(rq
, p
, 0);
5268 check_class_changed(rq
, p
, prev_class
, oldprio
);
5269 task_rq_unlock(rq
, p
, &flags
);
5271 rt_mutex_adjust_pi(p
);
5277 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5278 * @p: the task in question.
5279 * @policy: new policy.
5280 * @param: structure containing the new RT priority.
5282 * NOTE that the task may be already dead.
5284 int sched_setscheduler(struct task_struct
*p
, int policy
,
5285 const struct sched_param
*param
)
5287 return __sched_setscheduler(p
, policy
, param
, true);
5289 EXPORT_SYMBOL_GPL(sched_setscheduler
);
5292 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5293 * @p: the task in question.
5294 * @policy: new policy.
5295 * @param: structure containing the new RT priority.
5297 * Just like sched_setscheduler, only don't bother checking if the
5298 * current context has permission. For example, this is needed in
5299 * stop_machine(): we create temporary high priority worker threads,
5300 * but our caller might not have that capability.
5302 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
5303 const struct sched_param
*param
)
5305 return __sched_setscheduler(p
, policy
, param
, false);
5309 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
5311 struct sched_param lparam
;
5312 struct task_struct
*p
;
5315 if (!param
|| pid
< 0)
5317 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
5322 p
= find_process_by_pid(pid
);
5324 retval
= sched_setscheduler(p
, policy
, &lparam
);
5331 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5332 * @pid: the pid in question.
5333 * @policy: new policy.
5334 * @param: structure containing the new RT priority.
5336 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
5337 struct sched_param __user
*, param
)
5339 /* negative values for policy are not valid */
5343 return do_sched_setscheduler(pid
, policy
, param
);
5347 * sys_sched_setparam - set/change the RT priority of a thread
5348 * @pid: the pid in question.
5349 * @param: structure containing the new RT priority.
5351 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5353 return do_sched_setscheduler(pid
, -1, param
);
5357 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5358 * @pid: the pid in question.
5360 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
5362 struct task_struct
*p
;
5370 p
= find_process_by_pid(pid
);
5372 retval
= security_task_getscheduler(p
);
5375 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
5382 * sys_sched_getparam - get the RT priority of a thread
5383 * @pid: the pid in question.
5384 * @param: structure containing the RT priority.
5386 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
5388 struct sched_param lp
;
5389 struct task_struct
*p
;
5392 if (!param
|| pid
< 0)
5396 p
= find_process_by_pid(pid
);
5401 retval
= security_task_getscheduler(p
);
5405 lp
.sched_priority
= p
->rt_priority
;
5409 * This one might sleep, we cannot do it with a spinlock held ...
5411 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
5420 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
5422 cpumask_var_t cpus_allowed
, new_mask
;
5423 struct task_struct
*p
;
5429 p
= find_process_by_pid(pid
);
5436 /* Prevent p going away */
5440 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
5444 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
5446 goto out_free_cpus_allowed
;
5449 if (!check_same_owner(p
) && !task_ns_capable(p
, CAP_SYS_NICE
))
5452 retval
= security_task_setscheduler(p
);
5456 cpuset_cpus_allowed(p
, cpus_allowed
);
5457 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
5459 retval
= set_cpus_allowed_ptr(p
, new_mask
);
5462 cpuset_cpus_allowed(p
, cpus_allowed
);
5463 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
5465 * We must have raced with a concurrent cpuset
5466 * update. Just reset the cpus_allowed to the
5467 * cpuset's cpus_allowed
5469 cpumask_copy(new_mask
, cpus_allowed
);
5474 free_cpumask_var(new_mask
);
5475 out_free_cpus_allowed
:
5476 free_cpumask_var(cpus_allowed
);
5483 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
5484 struct cpumask
*new_mask
)
5486 if (len
< cpumask_size())
5487 cpumask_clear(new_mask
);
5488 else if (len
> cpumask_size())
5489 len
= cpumask_size();
5491 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
5495 * sys_sched_setaffinity - set the cpu affinity of a process
5496 * @pid: pid of the process
5497 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5498 * @user_mask_ptr: user-space pointer to the new cpu mask
5500 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
5501 unsigned long __user
*, user_mask_ptr
)
5503 cpumask_var_t new_mask
;
5506 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
5509 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
5511 retval
= sched_setaffinity(pid
, new_mask
);
5512 free_cpumask_var(new_mask
);
5516 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
5518 struct task_struct
*p
;
5519 unsigned long flags
;
5526 p
= find_process_by_pid(pid
);
5530 retval
= security_task_getscheduler(p
);
5534 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
5535 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
5536 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
5546 * sys_sched_getaffinity - get the cpu affinity of a process
5547 * @pid: pid of the process
5548 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5549 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5551 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
5552 unsigned long __user
*, user_mask_ptr
)
5557 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
5559 if (len
& (sizeof(unsigned long)-1))
5562 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
5565 ret
= sched_getaffinity(pid
, mask
);
5567 size_t retlen
= min_t(size_t, len
, cpumask_size());
5569 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
5574 free_cpumask_var(mask
);
5580 * sys_sched_yield - yield the current processor to other threads.
5582 * This function yields the current CPU to other tasks. If there are no
5583 * other threads running on this CPU then this function will return.
5585 SYSCALL_DEFINE0(sched_yield
)
5587 struct rq
*rq
= this_rq_lock();
5589 schedstat_inc(rq
, yld_count
);
5590 current
->sched_class
->yield_task(rq
);
5593 * Since we are going to call schedule() anyway, there's
5594 * no need to preempt or enable interrupts:
5596 __release(rq
->lock
);
5597 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5598 do_raw_spin_unlock(&rq
->lock
);
5599 preempt_enable_no_resched();
5606 static inline int should_resched(void)
5608 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5611 static void __cond_resched(void)
5613 add_preempt_count(PREEMPT_ACTIVE
);
5615 sub_preempt_count(PREEMPT_ACTIVE
);
5618 int __sched
_cond_resched(void)
5620 if (should_resched()) {
5626 EXPORT_SYMBOL(_cond_resched
);
5629 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5630 * call schedule, and on return reacquire the lock.
5632 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5633 * operations here to prevent schedule() from being called twice (once via
5634 * spin_unlock(), once by hand).
5636 int __cond_resched_lock(spinlock_t
*lock
)
5638 int resched
= should_resched();
5641 lockdep_assert_held(lock
);
5643 if (spin_needbreak(lock
) || resched
) {
5654 EXPORT_SYMBOL(__cond_resched_lock
);
5656 int __sched
__cond_resched_softirq(void)
5658 BUG_ON(!in_softirq());
5660 if (should_resched()) {
5668 EXPORT_SYMBOL(__cond_resched_softirq
);
5671 * yield - yield the current processor to other threads.
5673 * This is a shortcut for kernel-space yielding - it marks the
5674 * thread runnable and calls sys_sched_yield().
5676 void __sched
yield(void)
5678 set_current_state(TASK_RUNNING
);
5681 EXPORT_SYMBOL(yield
);
5684 * yield_to - yield the current processor to another thread in
5685 * your thread group, or accelerate that thread toward the
5686 * processor it's on.
5688 * @preempt: whether task preemption is allowed or not
5690 * It's the caller's job to ensure that the target task struct
5691 * can't go away on us before we can do any checks.
5693 * Returns true if we indeed boosted the target task.
5695 bool __sched
yield_to(struct task_struct
*p
, bool preempt
)
5697 struct task_struct
*curr
= current
;
5698 struct rq
*rq
, *p_rq
;
5699 unsigned long flags
;
5702 local_irq_save(flags
);
5707 double_rq_lock(rq
, p_rq
);
5708 while (task_rq(p
) != p_rq
) {
5709 double_rq_unlock(rq
, p_rq
);
5713 if (!curr
->sched_class
->yield_to_task
)
5716 if (curr
->sched_class
!= p
->sched_class
)
5719 if (task_running(p_rq
, p
) || p
->state
)
5722 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5724 schedstat_inc(rq
, yld_count
);
5726 * Make p's CPU reschedule; pick_next_entity takes care of
5729 if (preempt
&& rq
!= p_rq
)
5730 resched_task(p_rq
->curr
);
5734 double_rq_unlock(rq
, p_rq
);
5735 local_irq_restore(flags
);
5742 EXPORT_SYMBOL_GPL(yield_to
);
5745 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5746 * that process accounting knows that this is a task in IO wait state.
5748 void __sched
io_schedule(void)
5750 struct rq
*rq
= raw_rq();
5752 delayacct_blkio_start();
5753 atomic_inc(&rq
->nr_iowait
);
5754 blk_flush_plug(current
);
5755 current
->in_iowait
= 1;
5757 current
->in_iowait
= 0;
5758 atomic_dec(&rq
->nr_iowait
);
5759 delayacct_blkio_end();
5761 EXPORT_SYMBOL(io_schedule
);
5763 long __sched
io_schedule_timeout(long timeout
)
5765 struct rq
*rq
= raw_rq();
5768 delayacct_blkio_start();
5769 atomic_inc(&rq
->nr_iowait
);
5770 blk_flush_plug(current
);
5771 current
->in_iowait
= 1;
5772 ret
= schedule_timeout(timeout
);
5773 current
->in_iowait
= 0;
5774 atomic_dec(&rq
->nr_iowait
);
5775 delayacct_blkio_end();
5780 * sys_sched_get_priority_max - return maximum RT priority.
5781 * @policy: scheduling class.
5783 * this syscall returns the maximum rt_priority that can be used
5784 * by a given scheduling class.
5786 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5793 ret
= MAX_USER_RT_PRIO
-1;
5805 * sys_sched_get_priority_min - return minimum RT priority.
5806 * @policy: scheduling class.
5808 * this syscall returns the minimum rt_priority that can be used
5809 * by a given scheduling class.
5811 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5829 * sys_sched_rr_get_interval - return the default timeslice of a process.
5830 * @pid: pid of the process.
5831 * @interval: userspace pointer to the timeslice value.
5833 * this syscall writes the default timeslice value of a given process
5834 * into the user-space timespec buffer. A value of '0' means infinity.
5836 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5837 struct timespec __user
*, interval
)
5839 struct task_struct
*p
;
5840 unsigned int time_slice
;
5841 unsigned long flags
;
5851 p
= find_process_by_pid(pid
);
5855 retval
= security_task_getscheduler(p
);
5859 rq
= task_rq_lock(p
, &flags
);
5860 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5861 task_rq_unlock(rq
, p
, &flags
);
5864 jiffies_to_timespec(time_slice
, &t
);
5865 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5873 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5875 void sched_show_task(struct task_struct
*p
)
5877 unsigned long free
= 0;
5880 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5881 printk(KERN_INFO
"%-15.15s %c", p
->comm
,
5882 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5883 #if BITS_PER_LONG == 32
5884 if (state
== TASK_RUNNING
)
5885 printk(KERN_CONT
" running ");
5887 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5889 if (state
== TASK_RUNNING
)
5890 printk(KERN_CONT
" running task ");
5892 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5894 #ifdef CONFIG_DEBUG_STACK_USAGE
5895 free
= stack_not_used(p
);
5897 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5898 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5899 (unsigned long)task_thread_info(p
)->flags
);
5901 show_stack(p
, NULL
);
5904 void show_state_filter(unsigned long state_filter
)
5906 struct task_struct
*g
, *p
;
5908 #if BITS_PER_LONG == 32
5910 " task PC stack pid father\n");
5913 " task PC stack pid father\n");
5915 read_lock(&tasklist_lock
);
5916 do_each_thread(g
, p
) {
5918 * reset the NMI-timeout, listing all files on a slow
5919 * console might take a lot of time:
5921 touch_nmi_watchdog();
5922 if (!state_filter
|| (p
->state
& state_filter
))
5924 } while_each_thread(g
, p
);
5926 touch_all_softlockup_watchdogs();
5928 #ifdef CONFIG_SCHED_DEBUG
5929 sysrq_sched_debug_show();
5931 read_unlock(&tasklist_lock
);
5933 * Only show locks if all tasks are dumped:
5936 debug_show_all_locks();
5939 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5941 idle
->sched_class
= &idle_sched_class
;
5945 * init_idle - set up an idle thread for a given CPU
5946 * @idle: task in question
5947 * @cpu: cpu the idle task belongs to
5949 * NOTE: this function does not set the idle thread's NEED_RESCHED
5950 * flag, to make booting more robust.
5952 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5954 struct rq
*rq
= cpu_rq(cpu
);
5955 unsigned long flags
;
5957 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5960 idle
->state
= TASK_RUNNING
;
5961 idle
->se
.exec_start
= sched_clock();
5963 do_set_cpus_allowed(idle
, cpumask_of(cpu
));
5965 * We're having a chicken and egg problem, even though we are
5966 * holding rq->lock, the cpu isn't yet set to this cpu so the
5967 * lockdep check in task_group() will fail.
5969 * Similar case to sched_fork(). / Alternatively we could
5970 * use task_rq_lock() here and obtain the other rq->lock.
5975 __set_task_cpu(idle
, cpu
);
5978 rq
->curr
= rq
->idle
= idle
;
5979 #if defined(CONFIG_SMP)
5982 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5984 /* Set the preempt count _outside_ the spinlocks! */
5985 task_thread_info(idle
)->preempt_count
= 0;
5988 * The idle tasks have their own, simple scheduling class:
5990 idle
->sched_class
= &idle_sched_class
;
5991 ftrace_graph_init_idle_task(idle
, cpu
);
5995 * In a system that switches off the HZ timer nohz_cpu_mask
5996 * indicates which cpus entered this state. This is used
5997 * in the rcu update to wait only for active cpus. For system
5998 * which do not switch off the HZ timer nohz_cpu_mask should
5999 * always be CPU_BITS_NONE.
6001 cpumask_var_t nohz_cpu_mask
;
6004 * Increase the granularity value when there are more CPUs,
6005 * because with more CPUs the 'effective latency' as visible
6006 * to users decreases. But the relationship is not linear,
6007 * so pick a second-best guess by going with the log2 of the
6010 * This idea comes from the SD scheduler of Con Kolivas:
6012 static int get_update_sysctl_factor(void)
6014 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
6015 unsigned int factor
;
6017 switch (sysctl_sched_tunable_scaling
) {
6018 case SCHED_TUNABLESCALING_NONE
:
6021 case SCHED_TUNABLESCALING_LINEAR
:
6024 case SCHED_TUNABLESCALING_LOG
:
6026 factor
= 1 + ilog2(cpus
);
6033 static void update_sysctl(void)
6035 unsigned int factor
= get_update_sysctl_factor();
6037 #define SET_SYSCTL(name) \
6038 (sysctl_##name = (factor) * normalized_sysctl_##name)
6039 SET_SYSCTL(sched_min_granularity
);
6040 SET_SYSCTL(sched_latency
);
6041 SET_SYSCTL(sched_wakeup_granularity
);
6045 static inline void sched_init_granularity(void)
6051 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
6053 if (p
->sched_class
&& p
->sched_class
->set_cpus_allowed
)
6054 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
6056 cpumask_copy(&p
->cpus_allowed
, new_mask
);
6057 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
6062 * This is how migration works:
6064 * 1) we invoke migration_cpu_stop() on the target CPU using
6066 * 2) stopper starts to run (implicitly forcing the migrated thread
6068 * 3) it checks whether the migrated task is still in the wrong runqueue.
6069 * 4) if it's in the wrong runqueue then the migration thread removes
6070 * it and puts it into the right queue.
6071 * 5) stopper completes and stop_one_cpu() returns and the migration
6076 * Change a given task's CPU affinity. Migrate the thread to a
6077 * proper CPU and schedule it away if the CPU it's executing on
6078 * is removed from the allowed bitmask.
6080 * NOTE: the caller must have a valid reference to the task, the
6081 * task must not exit() & deallocate itself prematurely. The
6082 * call is not atomic; no spinlocks may be held.
6084 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
6086 unsigned long flags
;
6088 unsigned int dest_cpu
;
6091 rq
= task_rq_lock(p
, &flags
);
6093 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
6096 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
6101 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
)) {
6106 do_set_cpus_allowed(p
, new_mask
);
6108 /* Can the task run on the task's current CPU? If so, we're done */
6109 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
6112 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
6114 struct migration_arg arg
= { p
, dest_cpu
};
6115 /* Need help from migration thread: drop lock and wait. */
6116 task_rq_unlock(rq
, p
, &flags
);
6117 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
6118 tlb_migrate_finish(p
->mm
);
6122 task_rq_unlock(rq
, p
, &flags
);
6126 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
6129 * Move (not current) task off this cpu, onto dest cpu. We're doing
6130 * this because either it can't run here any more (set_cpus_allowed()
6131 * away from this CPU, or CPU going down), or because we're
6132 * attempting to rebalance this task on exec (sched_exec).
6134 * So we race with normal scheduler movements, but that's OK, as long
6135 * as the task is no longer on this CPU.
6137 * Returns non-zero if task was successfully migrated.
6139 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
6141 struct rq
*rq_dest
, *rq_src
;
6144 if (unlikely(!cpu_active(dest_cpu
)))
6147 rq_src
= cpu_rq(src_cpu
);
6148 rq_dest
= cpu_rq(dest_cpu
);
6150 raw_spin_lock(&p
->pi_lock
);
6151 double_rq_lock(rq_src
, rq_dest
);
6152 /* Already moved. */
6153 if (task_cpu(p
) != src_cpu
)
6155 /* Affinity changed (again). */
6156 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
6160 * If we're not on a rq, the next wake-up will ensure we're
6164 deactivate_task(rq_src
, p
, 0);
6165 set_task_cpu(p
, dest_cpu
);
6166 activate_task(rq_dest
, p
, 0);
6167 check_preempt_curr(rq_dest
, p
, 0);
6172 double_rq_unlock(rq_src
, rq_dest
);
6173 raw_spin_unlock(&p
->pi_lock
);
6178 * migration_cpu_stop - this will be executed by a highprio stopper thread
6179 * and performs thread migration by bumping thread off CPU then
6180 * 'pushing' onto another runqueue.
6182 static int migration_cpu_stop(void *data
)
6184 struct migration_arg
*arg
= data
;
6187 * The original target cpu might have gone down and we might
6188 * be on another cpu but it doesn't matter.
6190 local_irq_disable();
6191 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
6196 #ifdef CONFIG_HOTPLUG_CPU
6199 * Ensures that the idle task is using init_mm right before its cpu goes
6202 void idle_task_exit(void)
6204 struct mm_struct
*mm
= current
->active_mm
;
6206 BUG_ON(cpu_online(smp_processor_id()));
6209 switch_mm(mm
, &init_mm
, current
);
6214 * While a dead CPU has no uninterruptible tasks queued at this point,
6215 * it might still have a nonzero ->nr_uninterruptible counter, because
6216 * for performance reasons the counter is not stricly tracking tasks to
6217 * their home CPUs. So we just add the counter to another CPU's counter,
6218 * to keep the global sum constant after CPU-down:
6220 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
6222 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
6224 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
6225 rq_src
->nr_uninterruptible
= 0;
6229 * remove the tasks which were accounted by rq from calc_load_tasks.
6231 static void calc_global_load_remove(struct rq
*rq
)
6233 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
6234 rq
->calc_load_active
= 0;
6238 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6239 * try_to_wake_up()->select_task_rq().
6241 * Called with rq->lock held even though we'er in stop_machine() and
6242 * there's no concurrency possible, we hold the required locks anyway
6243 * because of lock validation efforts.
6245 static void migrate_tasks(unsigned int dead_cpu
)
6247 struct rq
*rq
= cpu_rq(dead_cpu
);
6248 struct task_struct
*next
, *stop
= rq
->stop
;
6252 * Fudge the rq selection such that the below task selection loop
6253 * doesn't get stuck on the currently eligible stop task.
6255 * We're currently inside stop_machine() and the rq is either stuck
6256 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6257 * either way we should never end up calling schedule() until we're
6264 * There's this thread running, bail when that's the only
6267 if (rq
->nr_running
== 1)
6270 next
= pick_next_task(rq
);
6272 next
->sched_class
->put_prev_task(rq
, next
);
6274 /* Find suitable destination for @next, with force if needed. */
6275 dest_cpu
= select_fallback_rq(dead_cpu
, next
);
6276 raw_spin_unlock(&rq
->lock
);
6278 __migrate_task(next
, dead_cpu
, dest_cpu
);
6280 raw_spin_lock(&rq
->lock
);
6286 #endif /* CONFIG_HOTPLUG_CPU */
6288 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6290 static struct ctl_table sd_ctl_dir
[] = {
6292 .procname
= "sched_domain",
6298 static struct ctl_table sd_ctl_root
[] = {
6300 .procname
= "kernel",
6302 .child
= sd_ctl_dir
,
6307 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
6309 struct ctl_table
*entry
=
6310 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
6315 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
6317 struct ctl_table
*entry
;
6320 * In the intermediate directories, both the child directory and
6321 * procname are dynamically allocated and could fail but the mode
6322 * will always be set. In the lowest directory the names are
6323 * static strings and all have proc handlers.
6325 for (entry
= *tablep
; entry
->mode
; entry
++) {
6327 sd_free_ctl_entry(&entry
->child
);
6328 if (entry
->proc_handler
== NULL
)
6329 kfree(entry
->procname
);
6337 set_table_entry(struct ctl_table
*entry
,
6338 const char *procname
, void *data
, int maxlen
,
6339 mode_t mode
, proc_handler
*proc_handler
)
6341 entry
->procname
= procname
;
6343 entry
->maxlen
= maxlen
;
6345 entry
->proc_handler
= proc_handler
;
6348 static struct ctl_table
*
6349 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
6351 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
6356 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
6357 sizeof(long), 0644, proc_doulongvec_minmax
);
6358 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
6359 sizeof(long), 0644, proc_doulongvec_minmax
);
6360 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
6361 sizeof(int), 0644, proc_dointvec_minmax
);
6362 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
6363 sizeof(int), 0644, proc_dointvec_minmax
);
6364 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
6365 sizeof(int), 0644, proc_dointvec_minmax
);
6366 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
6367 sizeof(int), 0644, proc_dointvec_minmax
);
6368 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
6369 sizeof(int), 0644, proc_dointvec_minmax
);
6370 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
6371 sizeof(int), 0644, proc_dointvec_minmax
);
6372 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
6373 sizeof(int), 0644, proc_dointvec_minmax
);
6374 set_table_entry(&table
[9], "cache_nice_tries",
6375 &sd
->cache_nice_tries
,
6376 sizeof(int), 0644, proc_dointvec_minmax
);
6377 set_table_entry(&table
[10], "flags", &sd
->flags
,
6378 sizeof(int), 0644, proc_dointvec_minmax
);
6379 set_table_entry(&table
[11], "name", sd
->name
,
6380 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
6381 /* &table[12] is terminator */
6386 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
6388 struct ctl_table
*entry
, *table
;
6389 struct sched_domain
*sd
;
6390 int domain_num
= 0, i
;
6393 for_each_domain(cpu
, sd
)
6395 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
6400 for_each_domain(cpu
, sd
) {
6401 snprintf(buf
, 32, "domain%d", i
);
6402 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6404 entry
->child
= sd_alloc_ctl_domain_table(sd
);
6411 static struct ctl_table_header
*sd_sysctl_header
;
6412 static void register_sched_domain_sysctl(void)
6414 int i
, cpu_num
= num_possible_cpus();
6415 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
6418 WARN_ON(sd_ctl_dir
[0].child
);
6419 sd_ctl_dir
[0].child
= entry
;
6424 for_each_possible_cpu(i
) {
6425 snprintf(buf
, 32, "cpu%d", i
);
6426 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
6428 entry
->child
= sd_alloc_ctl_cpu_table(i
);
6432 WARN_ON(sd_sysctl_header
);
6433 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
6436 /* may be called multiple times per register */
6437 static void unregister_sched_domain_sysctl(void)
6439 if (sd_sysctl_header
)
6440 unregister_sysctl_table(sd_sysctl_header
);
6441 sd_sysctl_header
= NULL
;
6442 if (sd_ctl_dir
[0].child
)
6443 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
6446 static void register_sched_domain_sysctl(void)
6449 static void unregister_sched_domain_sysctl(void)
6454 static void set_rq_online(struct rq
*rq
)
6457 const struct sched_class
*class;
6459 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
6462 for_each_class(class) {
6463 if (class->rq_online
)
6464 class->rq_online(rq
);
6469 static void set_rq_offline(struct rq
*rq
)
6472 const struct sched_class
*class;
6474 for_each_class(class) {
6475 if (class->rq_offline
)
6476 class->rq_offline(rq
);
6479 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
6485 * migration_call - callback that gets triggered when a CPU is added.
6486 * Here we can start up the necessary migration thread for the new CPU.
6488 static int __cpuinit
6489 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
6491 int cpu
= (long)hcpu
;
6492 unsigned long flags
;
6493 struct rq
*rq
= cpu_rq(cpu
);
6495 switch (action
& ~CPU_TASKS_FROZEN
) {
6497 case CPU_UP_PREPARE
:
6498 rq
->calc_load_update
= calc_load_update
;
6502 /* Update our root-domain */
6503 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6505 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6509 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6512 #ifdef CONFIG_HOTPLUG_CPU
6514 sched_ttwu_pending();
6515 /* Update our root-domain */
6516 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6518 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
6522 BUG_ON(rq
->nr_running
!= 1); /* the migration thread */
6523 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6525 migrate_nr_uninterruptible(rq
);
6526 calc_global_load_remove(rq
);
6531 update_max_interval();
6537 * Register at high priority so that task migration (migrate_all_tasks)
6538 * happens before everything else. This has to be lower priority than
6539 * the notifier in the perf_event subsystem, though.
6541 static struct notifier_block __cpuinitdata migration_notifier
= {
6542 .notifier_call
= migration_call
,
6543 .priority
= CPU_PRI_MIGRATION
,
6546 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
6547 unsigned long action
, void *hcpu
)
6549 switch (action
& ~CPU_TASKS_FROZEN
) {
6551 case CPU_DOWN_FAILED
:
6552 set_cpu_active((long)hcpu
, true);
6559 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
6560 unsigned long action
, void *hcpu
)
6562 switch (action
& ~CPU_TASKS_FROZEN
) {
6563 case CPU_DOWN_PREPARE
:
6564 set_cpu_active((long)hcpu
, false);
6571 static int __init
migration_init(void)
6573 void *cpu
= (void *)(long)smp_processor_id();
6576 /* Initialize migration for the boot CPU */
6577 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6578 BUG_ON(err
== NOTIFY_BAD
);
6579 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6580 register_cpu_notifier(&migration_notifier
);
6582 /* Register cpu active notifiers */
6583 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6584 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6588 early_initcall(migration_init
);
6593 static cpumask_var_t sched_domains_tmpmask
; /* sched_domains_mutex */
6595 #ifdef CONFIG_SCHED_DEBUG
6597 static __read_mostly
int sched_domain_debug_enabled
;
6599 static int __init
sched_domain_debug_setup(char *str
)
6601 sched_domain_debug_enabled
= 1;
6605 early_param("sched_debug", sched_domain_debug_setup
);
6607 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6608 struct cpumask
*groupmask
)
6610 struct sched_group
*group
= sd
->groups
;
6613 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6614 cpumask_clear(groupmask
);
6616 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6618 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6619 printk("does not load-balance\n");
6621 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6626 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6628 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6629 printk(KERN_ERR
"ERROR: domain->span does not contain "
6632 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6633 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6637 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6641 printk(KERN_ERR
"ERROR: group is NULL\n");
6645 if (!group
->sgp
->power
) {
6646 printk(KERN_CONT
"\n");
6647 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6652 if (!cpumask_weight(sched_group_cpus(group
))) {
6653 printk(KERN_CONT
"\n");
6654 printk(KERN_ERR
"ERROR: empty group\n");
6658 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6659 printk(KERN_CONT
"\n");
6660 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6664 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6666 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6668 printk(KERN_CONT
" %s", str
);
6669 if (group
->sgp
->power
!= SCHED_POWER_SCALE
) {
6670 printk(KERN_CONT
" (cpu_power = %d)",
6674 group
= group
->next
;
6675 } while (group
!= sd
->groups
);
6676 printk(KERN_CONT
"\n");
6678 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6679 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6682 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6683 printk(KERN_ERR
"ERROR: parent span is not a superset "
6684 "of domain->span\n");
6688 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6692 if (!sched_domain_debug_enabled
)
6696 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6700 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6703 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
6711 #else /* !CONFIG_SCHED_DEBUG */
6712 # define sched_domain_debug(sd, cpu) do { } while (0)
6713 #endif /* CONFIG_SCHED_DEBUG */
6715 static int sd_degenerate(struct sched_domain
*sd
)
6717 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6720 /* Following flags need at least 2 groups */
6721 if (sd
->flags
& (SD_LOAD_BALANCE
|
6722 SD_BALANCE_NEWIDLE
|
6726 SD_SHARE_PKG_RESOURCES
)) {
6727 if (sd
->groups
!= sd
->groups
->next
)
6731 /* Following flags don't use groups */
6732 if (sd
->flags
& (SD_WAKE_AFFINE
))
6739 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6741 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6743 if (sd_degenerate(parent
))
6746 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6749 /* Flags needing groups don't count if only 1 group in parent */
6750 if (parent
->groups
== parent
->groups
->next
) {
6751 pflags
&= ~(SD_LOAD_BALANCE
|
6752 SD_BALANCE_NEWIDLE
|
6756 SD_SHARE_PKG_RESOURCES
);
6757 if (nr_node_ids
== 1)
6758 pflags
&= ~SD_SERIALIZE
;
6760 if (~cflags
& pflags
)
6766 static void free_rootdomain(struct rcu_head
*rcu
)
6768 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
6770 cpupri_cleanup(&rd
->cpupri
);
6771 free_cpumask_var(rd
->rto_mask
);
6772 free_cpumask_var(rd
->online
);
6773 free_cpumask_var(rd
->span
);
6777 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6779 struct root_domain
*old_rd
= NULL
;
6780 unsigned long flags
;
6782 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6787 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6790 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6793 * If we dont want to free the old_rt yet then
6794 * set old_rd to NULL to skip the freeing later
6797 if (!atomic_dec_and_test(&old_rd
->refcount
))
6801 atomic_inc(&rd
->refcount
);
6804 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6805 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6808 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6811 call_rcu_sched(&old_rd
->rcu
, free_rootdomain
);
6814 static int init_rootdomain(struct root_domain
*rd
)
6816 memset(rd
, 0, sizeof(*rd
));
6818 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6820 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6822 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6825 if (cpupri_init(&rd
->cpupri
) != 0)
6830 free_cpumask_var(rd
->rto_mask
);
6832 free_cpumask_var(rd
->online
);
6834 free_cpumask_var(rd
->span
);
6839 static void init_defrootdomain(void)
6841 init_rootdomain(&def_root_domain
);
6843 atomic_set(&def_root_domain
.refcount
, 1);
6846 static struct root_domain
*alloc_rootdomain(void)
6848 struct root_domain
*rd
;
6850 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6854 if (init_rootdomain(rd
) != 0) {
6862 static void free_sched_groups(struct sched_group
*sg
, int free_sgp
)
6864 struct sched_group
*tmp
, *first
;
6873 if (free_sgp
&& atomic_dec_and_test(&sg
->sgp
->ref
))
6878 } while (sg
!= first
);
6881 static void free_sched_domain(struct rcu_head
*rcu
)
6883 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
6886 * If its an overlapping domain it has private groups, iterate and
6889 if (sd
->flags
& SD_OVERLAP
) {
6890 free_sched_groups(sd
->groups
, 1);
6891 } else if (atomic_dec_and_test(&sd
->groups
->ref
)) {
6892 kfree(sd
->groups
->sgp
);
6898 static void destroy_sched_domain(struct sched_domain
*sd
, int cpu
)
6900 call_rcu(&sd
->rcu
, free_sched_domain
);
6903 static void destroy_sched_domains(struct sched_domain
*sd
, int cpu
)
6905 for (; sd
; sd
= sd
->parent
)
6906 destroy_sched_domain(sd
, cpu
);
6910 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6911 * hold the hotplug lock.
6914 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6916 struct rq
*rq
= cpu_rq(cpu
);
6917 struct sched_domain
*tmp
;
6919 /* Remove the sched domains which do not contribute to scheduling. */
6920 for (tmp
= sd
; tmp
; ) {
6921 struct sched_domain
*parent
= tmp
->parent
;
6925 if (sd_parent_degenerate(tmp
, parent
)) {
6926 tmp
->parent
= parent
->parent
;
6928 parent
->parent
->child
= tmp
;
6929 destroy_sched_domain(parent
, cpu
);
6934 if (sd
&& sd_degenerate(sd
)) {
6937 destroy_sched_domain(tmp
, cpu
);
6942 sched_domain_debug(sd
, cpu
);
6944 rq_attach_root(rq
, rd
);
6946 rcu_assign_pointer(rq
->sd
, sd
);
6947 destroy_sched_domains(tmp
, cpu
);
6950 /* cpus with isolated domains */
6951 static cpumask_var_t cpu_isolated_map
;
6953 /* Setup the mask of cpus configured for isolated domains */
6954 static int __init
isolated_cpu_setup(char *str
)
6956 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6957 cpulist_parse(str
, cpu_isolated_map
);
6961 __setup("isolcpus=", isolated_cpu_setup
);
6963 #define SD_NODES_PER_DOMAIN 16
6968 * find_next_best_node - find the next node to include in a sched_domain
6969 * @node: node whose sched_domain we're building
6970 * @used_nodes: nodes already in the sched_domain
6972 * Find the next node to include in a given scheduling domain. Simply
6973 * finds the closest node not already in the @used_nodes map.
6975 * Should use nodemask_t.
6977 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6979 int i
, n
, val
, min_val
, best_node
= -1;
6983 for (i
= 0; i
< nr_node_ids
; i
++) {
6984 /* Start at @node */
6985 n
= (node
+ i
) % nr_node_ids
;
6987 if (!nr_cpus_node(n
))
6990 /* Skip already used nodes */
6991 if (node_isset(n
, *used_nodes
))
6994 /* Simple min distance search */
6995 val
= node_distance(node
, n
);
6997 if (val
< min_val
) {
7003 if (best_node
!= -1)
7004 node_set(best_node
, *used_nodes
);
7009 * sched_domain_node_span - get a cpumask for a node's sched_domain
7010 * @node: node whose cpumask we're constructing
7011 * @span: resulting cpumask
7013 * Given a node, construct a good cpumask for its sched_domain to span. It
7014 * should be one that prevents unnecessary balancing, but also spreads tasks
7017 static void sched_domain_node_span(int node
, struct cpumask
*span
)
7019 nodemask_t used_nodes
;
7022 cpumask_clear(span
);
7023 nodes_clear(used_nodes
);
7025 cpumask_or(span
, span
, cpumask_of_node(node
));
7026 node_set(node
, used_nodes
);
7028 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
7029 int next_node
= find_next_best_node(node
, &used_nodes
);
7032 cpumask_or(span
, span
, cpumask_of_node(next_node
));
7036 static const struct cpumask
*cpu_node_mask(int cpu
)
7038 lockdep_assert_held(&sched_domains_mutex
);
7040 sched_domain_node_span(cpu_to_node(cpu
), sched_domains_tmpmask
);
7042 return sched_domains_tmpmask
;
7045 static const struct cpumask
*cpu_allnodes_mask(int cpu
)
7047 return cpu_possible_mask
;
7049 #endif /* CONFIG_NUMA */
7051 static const struct cpumask
*cpu_cpu_mask(int cpu
)
7053 return cpumask_of_node(cpu_to_node(cpu
));
7056 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
7059 struct sched_domain
**__percpu sd
;
7060 struct sched_group
**__percpu sg
;
7061 struct sched_group_power
**__percpu sgp
;
7065 struct sched_domain
** __percpu sd
;
7066 struct root_domain
*rd
;
7076 struct sched_domain_topology_level
;
7078 typedef struct sched_domain
*(*sched_domain_init_f
)(struct sched_domain_topology_level
*tl
, int cpu
);
7079 typedef const struct cpumask
*(*sched_domain_mask_f
)(int cpu
);
7081 #define SDTL_OVERLAP 0x01
7083 struct sched_domain_topology_level
{
7084 sched_domain_init_f init
;
7085 sched_domain_mask_f mask
;
7087 struct sd_data data
;
7091 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
7093 struct sched_group
*first
= NULL
, *last
= NULL
, *groups
= NULL
, *sg
;
7094 const struct cpumask
*span
= sched_domain_span(sd
);
7095 struct cpumask
*covered
= sched_domains_tmpmask
;
7096 struct sd_data
*sdd
= sd
->private;
7097 struct sched_domain
*child
;
7100 cpumask_clear(covered
);
7102 for_each_cpu(i
, span
) {
7103 struct cpumask
*sg_span
;
7105 if (cpumask_test_cpu(i
, covered
))
7108 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7109 GFP_KERNEL
, cpu_to_node(i
));
7114 sg_span
= sched_group_cpus(sg
);
7116 child
= *per_cpu_ptr(sdd
->sd
, i
);
7118 child
= child
->child
;
7119 cpumask_copy(sg_span
, sched_domain_span(child
));
7121 cpumask_set_cpu(i
, sg_span
);
7123 cpumask_or(covered
, covered
, sg_span
);
7125 sg
->sgp
= *per_cpu_ptr(sdd
->sgp
, cpumask_first(sg_span
));
7126 atomic_inc(&sg
->sgp
->ref
);
7128 if (cpumask_test_cpu(cpu
, sg_span
))
7138 sd
->groups
= groups
;
7143 free_sched_groups(first
, 0);
7148 static int get_group(int cpu
, struct sd_data
*sdd
, struct sched_group
**sg
)
7150 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
7151 struct sched_domain
*child
= sd
->child
;
7154 cpu
= cpumask_first(sched_domain_span(child
));
7157 *sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
7158 (*sg
)->sgp
= *per_cpu_ptr(sdd
->sgp
, cpu
);
7159 atomic_set(&(*sg
)->sgp
->ref
, 1); /* for claim_allocations */
7166 * build_sched_groups will build a circular linked list of the groups
7167 * covered by the given span, and will set each group's ->cpumask correctly,
7168 * and ->cpu_power to 0.
7170 * Assumes the sched_domain tree is fully constructed
7173 build_sched_groups(struct sched_domain
*sd
, int cpu
)
7175 struct sched_group
*first
= NULL
, *last
= NULL
;
7176 struct sd_data
*sdd
= sd
->private;
7177 const struct cpumask
*span
= sched_domain_span(sd
);
7178 struct cpumask
*covered
;
7181 get_group(cpu
, sdd
, &sd
->groups
);
7182 atomic_inc(&sd
->groups
->ref
);
7184 if (cpu
!= cpumask_first(sched_domain_span(sd
)))
7187 lockdep_assert_held(&sched_domains_mutex
);
7188 covered
= sched_domains_tmpmask
;
7190 cpumask_clear(covered
);
7192 for_each_cpu(i
, span
) {
7193 struct sched_group
*sg
;
7194 int group
= get_group(i
, sdd
, &sg
);
7197 if (cpumask_test_cpu(i
, covered
))
7200 cpumask_clear(sched_group_cpus(sg
));
7203 for_each_cpu(j
, span
) {
7204 if (get_group(j
, sdd
, NULL
) != group
)
7207 cpumask_set_cpu(j
, covered
);
7208 cpumask_set_cpu(j
, sched_group_cpus(sg
));
7223 * Initialize sched groups cpu_power.
7225 * cpu_power indicates the capacity of sched group, which is used while
7226 * distributing the load between different sched groups in a sched domain.
7227 * Typically cpu_power for all the groups in a sched domain will be same unless
7228 * there are asymmetries in the topology. If there are asymmetries, group
7229 * having more cpu_power will pickup more load compared to the group having
7232 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
7234 struct sched_group
*sg
= sd
->groups
;
7236 WARN_ON(!sd
|| !sg
);
7239 sg
->group_weight
= cpumask_weight(sched_group_cpus(sg
));
7241 } while (sg
!= sd
->groups
);
7243 if (cpu
!= group_first_cpu(sg
))
7246 update_group_power(sd
, cpu
);
7250 * Initializers for schedule domains
7251 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7254 #ifdef CONFIG_SCHED_DEBUG
7255 # define SD_INIT_NAME(sd, type) sd->name = #type
7257 # define SD_INIT_NAME(sd, type) do { } while (0)
7260 #define SD_INIT_FUNC(type) \
7261 static noinline struct sched_domain * \
7262 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7264 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7265 *sd = SD_##type##_INIT; \
7266 SD_INIT_NAME(sd, type); \
7267 sd->private = &tl->data; \
7273 SD_INIT_FUNC(ALLNODES
)
7276 #ifdef CONFIG_SCHED_SMT
7277 SD_INIT_FUNC(SIBLING
)
7279 #ifdef CONFIG_SCHED_MC
7282 #ifdef CONFIG_SCHED_BOOK
7286 static int default_relax_domain_level
= -1;
7287 int sched_domain_level_max
;
7289 static int __init
setup_relax_domain_level(char *str
)
7291 if (kstrtoint(str
, 0, &default_relax_domain_level
))
7292 pr_warn("Unable to set relax_domain_level\n");
7296 __setup("relax_domain_level=", setup_relax_domain_level
);
7298 static void set_domain_attribute(struct sched_domain
*sd
,
7299 struct sched_domain_attr
*attr
)
7303 if (!attr
|| attr
->relax_domain_level
< 0) {
7304 if (default_relax_domain_level
< 0)
7307 request
= default_relax_domain_level
;
7309 request
= attr
->relax_domain_level
;
7310 if (request
< sd
->level
) {
7311 /* turn off idle balance on this domain */
7312 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7314 /* turn on idle balance on this domain */
7315 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
7319 static void __sdt_free(const struct cpumask
*cpu_map
);
7320 static int __sdt_alloc(const struct cpumask
*cpu_map
);
7322 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
7323 const struct cpumask
*cpu_map
)
7327 if (!atomic_read(&d
->rd
->refcount
))
7328 free_rootdomain(&d
->rd
->rcu
); /* fall through */
7330 free_percpu(d
->sd
); /* fall through */
7332 __sdt_free(cpu_map
); /* fall through */
7338 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
7339 const struct cpumask
*cpu_map
)
7341 memset(d
, 0, sizeof(*d
));
7343 if (__sdt_alloc(cpu_map
))
7344 return sa_sd_storage
;
7345 d
->sd
= alloc_percpu(struct sched_domain
*);
7347 return sa_sd_storage
;
7348 d
->rd
= alloc_rootdomain();
7351 return sa_rootdomain
;
7355 * NULL the sd_data elements we've used to build the sched_domain and
7356 * sched_group structure so that the subsequent __free_domain_allocs()
7357 * will not free the data we're using.
7359 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
7361 struct sd_data
*sdd
= sd
->private;
7363 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
7364 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
7366 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
7367 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
7369 if (atomic_read(&(*per_cpu_ptr(sdd
->sgp
, cpu
))->ref
))
7370 *per_cpu_ptr(sdd
->sgp
, cpu
) = NULL
;
7373 #ifdef CONFIG_SCHED_SMT
7374 static const struct cpumask
*cpu_smt_mask(int cpu
)
7376 return topology_thread_cpumask(cpu
);
7381 * Topology list, bottom-up.
7383 static struct sched_domain_topology_level default_topology
[] = {
7384 #ifdef CONFIG_SCHED_SMT
7385 { sd_init_SIBLING
, cpu_smt_mask
, },
7387 #ifdef CONFIG_SCHED_MC
7388 { sd_init_MC
, cpu_coregroup_mask
, },
7390 #ifdef CONFIG_SCHED_BOOK
7391 { sd_init_BOOK
, cpu_book_mask
, },
7393 { sd_init_CPU
, cpu_cpu_mask
, },
7395 { sd_init_NODE
, cpu_node_mask
, SDTL_OVERLAP
, },
7396 { sd_init_ALLNODES
, cpu_allnodes_mask
, },
7401 static struct sched_domain_topology_level
*sched_domain_topology
= default_topology
;
7403 static int __sdt_alloc(const struct cpumask
*cpu_map
)
7405 struct sched_domain_topology_level
*tl
;
7408 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7409 struct sd_data
*sdd
= &tl
->data
;
7411 sdd
->sd
= alloc_percpu(struct sched_domain
*);
7415 sdd
->sg
= alloc_percpu(struct sched_group
*);
7419 sdd
->sgp
= alloc_percpu(struct sched_group_power
*);
7423 for_each_cpu(j
, cpu_map
) {
7424 struct sched_domain
*sd
;
7425 struct sched_group
*sg
;
7426 struct sched_group_power
*sgp
;
7428 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
7429 GFP_KERNEL
, cpu_to_node(j
));
7433 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
7435 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
7436 GFP_KERNEL
, cpu_to_node(j
));
7440 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
7442 sgp
= kzalloc_node(sizeof(struct sched_group_power
),
7443 GFP_KERNEL
, cpu_to_node(j
));
7447 *per_cpu_ptr(sdd
->sgp
, j
) = sgp
;
7454 static void __sdt_free(const struct cpumask
*cpu_map
)
7456 struct sched_domain_topology_level
*tl
;
7459 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7460 struct sd_data
*sdd
= &tl
->data
;
7462 for_each_cpu(j
, cpu_map
) {
7463 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, j
);
7464 if (sd
&& (sd
->flags
& SD_OVERLAP
))
7465 free_sched_groups(sd
->groups
, 0);
7466 kfree(*per_cpu_ptr(sdd
->sd
, j
));
7467 kfree(*per_cpu_ptr(sdd
->sg
, j
));
7468 kfree(*per_cpu_ptr(sdd
->sgp
, j
));
7470 free_percpu(sdd
->sd
);
7471 free_percpu(sdd
->sg
);
7472 free_percpu(sdd
->sgp
);
7476 struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
7477 struct s_data
*d
, const struct cpumask
*cpu_map
,
7478 struct sched_domain_attr
*attr
, struct sched_domain
*child
,
7481 struct sched_domain
*sd
= tl
->init(tl
, cpu
);
7485 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
7487 sd
->level
= child
->level
+ 1;
7488 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
7492 set_domain_attribute(sd
, attr
);
7498 * Build sched domains for a given set of cpus and attach the sched domains
7499 * to the individual cpus
7501 static int build_sched_domains(const struct cpumask
*cpu_map
,
7502 struct sched_domain_attr
*attr
)
7504 enum s_alloc alloc_state
= sa_none
;
7505 struct sched_domain
*sd
;
7507 int i
, ret
= -ENOMEM
;
7509 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7510 if (alloc_state
!= sa_rootdomain
)
7513 /* Set up domains for cpus specified by the cpu_map. */
7514 for_each_cpu(i
, cpu_map
) {
7515 struct sched_domain_topology_level
*tl
;
7518 for (tl
= sched_domain_topology
; tl
->init
; tl
++) {
7519 sd
= build_sched_domain(tl
, &d
, cpu_map
, attr
, sd
, i
);
7520 if (tl
->flags
& SDTL_OVERLAP
|| sched_feat(FORCE_SD_OVERLAP
))
7521 sd
->flags
|= SD_OVERLAP
;
7522 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
7529 *per_cpu_ptr(d
.sd
, i
) = sd
;
7532 /* Build the groups for the domains */
7533 for_each_cpu(i
, cpu_map
) {
7534 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7535 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
7536 if (sd
->flags
& SD_OVERLAP
) {
7537 if (build_overlap_sched_groups(sd
, i
))
7540 if (build_sched_groups(sd
, i
))
7546 /* Calculate CPU power for physical packages and nodes */
7547 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
7548 if (!cpumask_test_cpu(i
, cpu_map
))
7551 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
7552 claim_allocations(i
, sd
);
7553 init_sched_groups_power(i
, sd
);
7557 /* Attach the domains */
7559 for_each_cpu(i
, cpu_map
) {
7560 sd
= *per_cpu_ptr(d
.sd
, i
);
7561 cpu_attach_domain(sd
, d
.rd
, i
);
7567 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7571 static cpumask_var_t
*doms_cur
; /* current sched domains */
7572 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7573 static struct sched_domain_attr
*dattr_cur
;
7574 /* attribues of custom domains in 'doms_cur' */
7577 * Special case: If a kmalloc of a doms_cur partition (array of
7578 * cpumask) fails, then fallback to a single sched domain,
7579 * as determined by the single cpumask fallback_doms.
7581 static cpumask_var_t fallback_doms
;
7584 * arch_update_cpu_topology lets virtualized architectures update the
7585 * cpu core maps. It is supposed to return 1 if the topology changed
7586 * or 0 if it stayed the same.
7588 int __attribute__((weak
)) arch_update_cpu_topology(void)
7593 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7596 cpumask_var_t
*doms
;
7598 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7601 for (i
= 0; i
< ndoms
; i
++) {
7602 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7603 free_sched_domains(doms
, i
);
7610 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7613 for (i
= 0; i
< ndoms
; i
++)
7614 free_cpumask_var(doms
[i
]);
7619 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7620 * For now this just excludes isolated cpus, but could be used to
7621 * exclude other special cases in the future.
7623 static int init_sched_domains(const struct cpumask
*cpu_map
)
7627 arch_update_cpu_topology();
7629 doms_cur
= alloc_sched_domains(ndoms_cur
);
7631 doms_cur
= &fallback_doms
;
7632 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7634 err
= build_sched_domains(doms_cur
[0], NULL
);
7635 register_sched_domain_sysctl();
7641 * Detach sched domains from a group of cpus specified in cpu_map
7642 * These cpus will now be attached to the NULL domain
7644 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7649 for_each_cpu(i
, cpu_map
)
7650 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7654 /* handle null as "default" */
7655 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7656 struct sched_domain_attr
*new, int idx_new
)
7658 struct sched_domain_attr tmp
;
7665 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7666 new ? (new + idx_new
) : &tmp
,
7667 sizeof(struct sched_domain_attr
));
7671 * Partition sched domains as specified by the 'ndoms_new'
7672 * cpumasks in the array doms_new[] of cpumasks. This compares
7673 * doms_new[] to the current sched domain partitioning, doms_cur[].
7674 * It destroys each deleted domain and builds each new domain.
7676 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7677 * The masks don't intersect (don't overlap.) We should setup one
7678 * sched domain for each mask. CPUs not in any of the cpumasks will
7679 * not be load balanced. If the same cpumask appears both in the
7680 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7683 * The passed in 'doms_new' should be allocated using
7684 * alloc_sched_domains. This routine takes ownership of it and will
7685 * free_sched_domains it when done with it. If the caller failed the
7686 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7687 * and partition_sched_domains() will fallback to the single partition
7688 * 'fallback_doms', it also forces the domains to be rebuilt.
7690 * If doms_new == NULL it will be replaced with cpu_online_mask.
7691 * ndoms_new == 0 is a special case for destroying existing domains,
7692 * and it will not create the default domain.
7694 * Call with hotplug lock held
7696 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7697 struct sched_domain_attr
*dattr_new
)
7702 mutex_lock(&sched_domains_mutex
);
7704 /* always unregister in case we don't destroy any domains */
7705 unregister_sched_domain_sysctl();
7707 /* Let architecture update cpu core mappings. */
7708 new_topology
= arch_update_cpu_topology();
7710 n
= doms_new
? ndoms_new
: 0;
7712 /* Destroy deleted domains */
7713 for (i
= 0; i
< ndoms_cur
; i
++) {
7714 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7715 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7716 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7719 /* no match - a current sched domain not in new doms_new[] */
7720 detach_destroy_domains(doms_cur
[i
]);
7725 if (doms_new
== NULL
) {
7727 doms_new
= &fallback_doms
;
7728 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7729 WARN_ON_ONCE(dattr_new
);
7732 /* Build new domains */
7733 for (i
= 0; i
< ndoms_new
; i
++) {
7734 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7735 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7736 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7739 /* no match - add a new doms_new */
7740 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
7745 /* Remember the new sched domains */
7746 if (doms_cur
!= &fallback_doms
)
7747 free_sched_domains(doms_cur
, ndoms_cur
);
7748 kfree(dattr_cur
); /* kfree(NULL) is safe */
7749 doms_cur
= doms_new
;
7750 dattr_cur
= dattr_new
;
7751 ndoms_cur
= ndoms_new
;
7753 register_sched_domain_sysctl();
7755 mutex_unlock(&sched_domains_mutex
);
7758 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7759 static void reinit_sched_domains(void)
7763 /* Destroy domains first to force the rebuild */
7764 partition_sched_domains(0, NULL
, NULL
);
7766 rebuild_sched_domains();
7770 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7772 unsigned int level
= 0;
7774 if (sscanf(buf
, "%u", &level
) != 1)
7778 * level is always be positive so don't check for
7779 * level < POWERSAVINGS_BALANCE_NONE which is 0
7780 * What happens on 0 or 1 byte write,
7781 * need to check for count as well?
7784 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7788 sched_smt_power_savings
= level
;
7790 sched_mc_power_savings
= level
;
7792 reinit_sched_domains();
7797 #ifdef CONFIG_SCHED_MC
7798 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7799 struct sysdev_class_attribute
*attr
,
7802 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7804 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7805 struct sysdev_class_attribute
*attr
,
7806 const char *buf
, size_t count
)
7808 return sched_power_savings_store(buf
, count
, 0);
7810 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7811 sched_mc_power_savings_show
,
7812 sched_mc_power_savings_store
);
7815 #ifdef CONFIG_SCHED_SMT
7816 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7817 struct sysdev_class_attribute
*attr
,
7820 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7822 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7823 struct sysdev_class_attribute
*attr
,
7824 const char *buf
, size_t count
)
7826 return sched_power_savings_store(buf
, count
, 1);
7828 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7829 sched_smt_power_savings_show
,
7830 sched_smt_power_savings_store
);
7833 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7837 #ifdef CONFIG_SCHED_SMT
7839 err
= sysfs_create_file(&cls
->kset
.kobj
,
7840 &attr_sched_smt_power_savings
.attr
);
7842 #ifdef CONFIG_SCHED_MC
7843 if (!err
&& mc_capable())
7844 err
= sysfs_create_file(&cls
->kset
.kobj
,
7845 &attr_sched_mc_power_savings
.attr
);
7849 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7852 * Update cpusets according to cpu_active mask. If cpusets are
7853 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7854 * around partition_sched_domains().
7856 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7859 switch (action
& ~CPU_TASKS_FROZEN
) {
7861 case CPU_DOWN_FAILED
:
7862 cpuset_update_active_cpus();
7869 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7872 switch (action
& ~CPU_TASKS_FROZEN
) {
7873 case CPU_DOWN_PREPARE
:
7874 cpuset_update_active_cpus();
7881 static int update_runtime(struct notifier_block
*nfb
,
7882 unsigned long action
, void *hcpu
)
7884 int cpu
= (int)(long)hcpu
;
7887 case CPU_DOWN_PREPARE
:
7888 case CPU_DOWN_PREPARE_FROZEN
:
7889 disable_runtime(cpu_rq(cpu
));
7892 case CPU_DOWN_FAILED
:
7893 case CPU_DOWN_FAILED_FROZEN
:
7895 case CPU_ONLINE_FROZEN
:
7896 enable_runtime(cpu_rq(cpu
));
7904 void __init
sched_init_smp(void)
7906 cpumask_var_t non_isolated_cpus
;
7908 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7909 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7912 mutex_lock(&sched_domains_mutex
);
7913 init_sched_domains(cpu_active_mask
);
7914 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7915 if (cpumask_empty(non_isolated_cpus
))
7916 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7917 mutex_unlock(&sched_domains_mutex
);
7920 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7921 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7923 /* RT runtime code needs to handle some hotplug events */
7924 hotcpu_notifier(update_runtime
, 0);
7928 /* Move init over to a non-isolated CPU */
7929 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7931 sched_init_granularity();
7932 free_cpumask_var(non_isolated_cpus
);
7934 init_sched_rt_class();
7937 void __init
sched_init_smp(void)
7939 sched_init_granularity();
7941 #endif /* CONFIG_SMP */
7943 const_debug
unsigned int sysctl_timer_migration
= 1;
7945 int in_sched_functions(unsigned long addr
)
7947 return in_lock_functions(addr
) ||
7948 (addr
>= (unsigned long)__sched_text_start
7949 && addr
< (unsigned long)__sched_text_end
);
7952 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7954 cfs_rq
->tasks_timeline
= RB_ROOT
;
7955 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7956 #ifdef CONFIG_FAIR_GROUP_SCHED
7958 /* allow initial update_cfs_load() to truncate */
7960 cfs_rq
->load_stamp
= 1;
7963 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7964 #ifndef CONFIG_64BIT
7965 cfs_rq
->min_vruntime_copy
= cfs_rq
->min_vruntime
;
7969 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7971 struct rt_prio_array
*array
;
7974 array
= &rt_rq
->active
;
7975 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7976 INIT_LIST_HEAD(array
->queue
+ i
);
7977 __clear_bit(i
, array
->bitmap
);
7979 /* delimiter for bitsearch: */
7980 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7982 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7983 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7985 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7989 rt_rq
->rt_nr_migratory
= 0;
7990 rt_rq
->overloaded
= 0;
7991 plist_head_init(&rt_rq
->pushable_tasks
);
7995 rt_rq
->rt_throttled
= 0;
7996 rt_rq
->rt_runtime
= 0;
7997 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7999 #ifdef CONFIG_RT_GROUP_SCHED
8000 rt_rq
->rt_nr_boosted
= 0;
8005 #ifdef CONFIG_FAIR_GROUP_SCHED
8006 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
8007 struct sched_entity
*se
, int cpu
,
8008 struct sched_entity
*parent
)
8010 struct rq
*rq
= cpu_rq(cpu
);
8011 tg
->cfs_rq
[cpu
] = cfs_rq
;
8012 init_cfs_rq(cfs_rq
, rq
);
8016 /* se could be NULL for root_task_group */
8021 se
->cfs_rq
= &rq
->cfs
;
8023 se
->cfs_rq
= parent
->my_q
;
8026 update_load_set(&se
->load
, 0);
8027 se
->parent
= parent
;
8031 #ifdef CONFIG_RT_GROUP_SCHED
8032 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
8033 struct sched_rt_entity
*rt_se
, int cpu
,
8034 struct sched_rt_entity
*parent
)
8036 struct rq
*rq
= cpu_rq(cpu
);
8038 tg
->rt_rq
[cpu
] = rt_rq
;
8039 init_rt_rq(rt_rq
, rq
);
8041 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8043 tg
->rt_se
[cpu
] = rt_se
;
8048 rt_se
->rt_rq
= &rq
->rt
;
8050 rt_se
->rt_rq
= parent
->my_q
;
8052 rt_se
->my_q
= rt_rq
;
8053 rt_se
->parent
= parent
;
8054 INIT_LIST_HEAD(&rt_se
->run_list
);
8058 void __init
sched_init(void)
8061 unsigned long alloc_size
= 0, ptr
;
8063 #ifdef CONFIG_FAIR_GROUP_SCHED
8064 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8066 #ifdef CONFIG_RT_GROUP_SCHED
8067 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
8069 #ifdef CONFIG_CPUMASK_OFFSTACK
8070 alloc_size
+= num_possible_cpus() * cpumask_size();
8073 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
8075 #ifdef CONFIG_FAIR_GROUP_SCHED
8076 root_task_group
.se
= (struct sched_entity
**)ptr
;
8077 ptr
+= nr_cpu_ids
* sizeof(void **);
8079 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
8080 ptr
+= nr_cpu_ids
* sizeof(void **);
8082 #endif /* CONFIG_FAIR_GROUP_SCHED */
8083 #ifdef CONFIG_RT_GROUP_SCHED
8084 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
8085 ptr
+= nr_cpu_ids
* sizeof(void **);
8087 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
8088 ptr
+= nr_cpu_ids
* sizeof(void **);
8090 #endif /* CONFIG_RT_GROUP_SCHED */
8091 #ifdef CONFIG_CPUMASK_OFFSTACK
8092 for_each_possible_cpu(i
) {
8093 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
8094 ptr
+= cpumask_size();
8096 #endif /* CONFIG_CPUMASK_OFFSTACK */
8100 init_defrootdomain();
8103 init_rt_bandwidth(&def_rt_bandwidth
,
8104 global_rt_period(), global_rt_runtime());
8106 #ifdef CONFIG_RT_GROUP_SCHED
8107 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
8108 global_rt_period(), global_rt_runtime());
8109 #endif /* CONFIG_RT_GROUP_SCHED */
8111 #ifdef CONFIG_CGROUP_SCHED
8112 list_add(&root_task_group
.list
, &task_groups
);
8113 INIT_LIST_HEAD(&root_task_group
.children
);
8114 autogroup_init(&init_task
);
8115 #endif /* CONFIG_CGROUP_SCHED */
8117 for_each_possible_cpu(i
) {
8121 raw_spin_lock_init(&rq
->lock
);
8123 rq
->calc_load_active
= 0;
8124 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
8125 init_cfs_rq(&rq
->cfs
, rq
);
8126 init_rt_rq(&rq
->rt
, rq
);
8127 #ifdef CONFIG_FAIR_GROUP_SCHED
8128 root_task_group
.shares
= root_task_group_load
;
8129 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
8131 * How much cpu bandwidth does root_task_group get?
8133 * In case of task-groups formed thr' the cgroup filesystem, it
8134 * gets 100% of the cpu resources in the system. This overall
8135 * system cpu resource is divided among the tasks of
8136 * root_task_group and its child task-groups in a fair manner,
8137 * based on each entity's (task or task-group's) weight
8138 * (se->load.weight).
8140 * In other words, if root_task_group has 10 tasks of weight
8141 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8142 * then A0's share of the cpu resource is:
8144 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8146 * We achieve this by letting root_task_group's tasks sit
8147 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8149 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
8150 #endif /* CONFIG_FAIR_GROUP_SCHED */
8152 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
8153 #ifdef CONFIG_RT_GROUP_SCHED
8154 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
8155 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
8158 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
8159 rq
->cpu_load
[j
] = 0;
8161 rq
->last_load_update_tick
= jiffies
;
8166 rq
->cpu_power
= SCHED_POWER_SCALE
;
8167 rq
->post_schedule
= 0;
8168 rq
->active_balance
= 0;
8169 rq
->next_balance
= jiffies
;
8174 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
8175 rq_attach_root(rq
, &def_root_domain
);
8177 rq
->nohz_balance_kick
= 0;
8178 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
8182 atomic_set(&rq
->nr_iowait
, 0);
8185 set_load_weight(&init_task
);
8187 #ifdef CONFIG_PREEMPT_NOTIFIERS
8188 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
8192 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
8195 #ifdef CONFIG_RT_MUTEXES
8196 plist_head_init(&init_task
.pi_waiters
);
8200 * The boot idle thread does lazy MMU switching as well:
8202 atomic_inc(&init_mm
.mm_count
);
8203 enter_lazy_tlb(&init_mm
, current
);
8206 * Make us the idle thread. Technically, schedule() should not be
8207 * called from this thread, however somewhere below it might be,
8208 * but because we are the idle thread, we just pick up running again
8209 * when this runqueue becomes "idle".
8211 init_idle(current
, smp_processor_id());
8213 calc_load_update
= jiffies
+ LOAD_FREQ
;
8216 * During early bootup we pretend to be a normal task:
8218 current
->sched_class
= &fair_sched_class
;
8220 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8221 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
8223 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_NOWAIT
);
8225 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
8226 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
8227 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
8228 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
8229 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
8231 /* May be allocated at isolcpus cmdline parse time */
8232 if (cpu_isolated_map
== NULL
)
8233 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
8236 scheduler_running
= 1;
8239 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8240 static inline int preempt_count_equals(int preempt_offset
)
8242 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
8244 return (nested
== preempt_offset
);
8247 static int __might_sleep_init_called
;
8248 int __init
__might_sleep_init(void)
8250 __might_sleep_init_called
= 1;
8253 early_initcall(__might_sleep_init
);
8255 void __might_sleep(const char *file
, int line
, int preempt_offset
)
8258 static unsigned long prev_jiffy
; /* ratelimiting */
8260 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
8263 if (system_state
!= SYSTEM_RUNNING
&&
8264 (!__might_sleep_init_called
|| system_state
!= SYSTEM_BOOTING
))
8266 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
8268 prev_jiffy
= jiffies
;
8271 "BUG: sleeping function called from invalid context at %s:%d\n",
8274 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8275 in_atomic(), irqs_disabled(),
8276 current
->pid
, current
->comm
);
8278 debug_show_held_locks(current
);
8279 if (irqs_disabled())
8280 print_irqtrace_events(current
);
8284 EXPORT_SYMBOL(__might_sleep
);
8287 #ifdef CONFIG_MAGIC_SYSRQ
8288 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
8290 const struct sched_class
*prev_class
= p
->sched_class
;
8291 int old_prio
= p
->prio
;
8296 deactivate_task(rq
, p
, 0);
8297 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
8299 activate_task(rq
, p
, 0);
8300 resched_task(rq
->curr
);
8303 check_class_changed(rq
, p
, prev_class
, old_prio
);
8306 void normalize_rt_tasks(void)
8308 struct task_struct
*g
, *p
;
8309 unsigned long flags
;
8312 read_lock_irqsave(&tasklist_lock
, flags
);
8313 do_each_thread(g
, p
) {
8315 * Only normalize user tasks:
8320 p
->se
.exec_start
= 0;
8321 #ifdef CONFIG_SCHEDSTATS
8322 p
->se
.statistics
.wait_start
= 0;
8323 p
->se
.statistics
.sleep_start
= 0;
8324 p
->se
.statistics
.block_start
= 0;
8329 * Renice negative nice level userspace
8332 if (TASK_NICE(p
) < 0 && p
->mm
)
8333 set_user_nice(p
, 0);
8337 raw_spin_lock(&p
->pi_lock
);
8338 rq
= __task_rq_lock(p
);
8340 normalize_task(rq
, p
);
8342 __task_rq_unlock(rq
);
8343 raw_spin_unlock(&p
->pi_lock
);
8344 } while_each_thread(g
, p
);
8346 read_unlock_irqrestore(&tasklist_lock
, flags
);
8349 #endif /* CONFIG_MAGIC_SYSRQ */
8351 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8353 * These functions are only useful for the IA64 MCA handling, or kdb.
8355 * They can only be called when the whole system has been
8356 * stopped - every CPU needs to be quiescent, and no scheduling
8357 * activity can take place. Using them for anything else would
8358 * be a serious bug, and as a result, they aren't even visible
8359 * under any other configuration.
8363 * curr_task - return the current task for a given cpu.
8364 * @cpu: the processor in question.
8366 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8368 struct task_struct
*curr_task(int cpu
)
8370 return cpu_curr(cpu
);
8373 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8377 * set_curr_task - set the current task for a given cpu.
8378 * @cpu: the processor in question.
8379 * @p: the task pointer to set.
8381 * Description: This function must only be used when non-maskable interrupts
8382 * are serviced on a separate stack. It allows the architecture to switch the
8383 * notion of the current task on a cpu in a non-blocking manner. This function
8384 * must be called with all CPU's synchronized, and interrupts disabled, the
8385 * and caller must save the original value of the current task (see
8386 * curr_task() above) and restore that value before reenabling interrupts and
8387 * re-starting the system.
8389 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8391 void set_curr_task(int cpu
, struct task_struct
*p
)
8394 #ifdef CONFIG_PREEMPT_COUNT_CPU
8401 #ifdef CONFIG_FAIR_GROUP_SCHED
8402 static void free_fair_sched_group(struct task_group
*tg
)
8406 for_each_possible_cpu(i
) {
8408 kfree(tg
->cfs_rq
[i
]);
8418 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8420 struct cfs_rq
*cfs_rq
;
8421 struct sched_entity
*se
;
8424 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8427 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8431 tg
->shares
= NICE_0_LOAD
;
8433 for_each_possible_cpu(i
) {
8434 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8435 GFP_KERNEL
, cpu_to_node(i
));
8439 se
= kzalloc_node(sizeof(struct sched_entity
),
8440 GFP_KERNEL
, cpu_to_node(i
));
8444 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
8455 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8457 struct rq
*rq
= cpu_rq(cpu
);
8458 unsigned long flags
;
8461 * Only empty task groups can be destroyed; so we can speculatively
8462 * check on_list without danger of it being re-added.
8464 if (!tg
->cfs_rq
[cpu
]->on_list
)
8467 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8468 list_del_leaf_cfs_rq(tg
->cfs_rq
[cpu
]);
8469 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8471 #else /* !CONFG_FAIR_GROUP_SCHED */
8472 static inline void free_fair_sched_group(struct task_group
*tg
)
8477 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8482 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8485 #endif /* CONFIG_FAIR_GROUP_SCHED */
8487 #ifdef CONFIG_RT_GROUP_SCHED
8488 static void free_rt_sched_group(struct task_group
*tg
)
8492 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8494 for_each_possible_cpu(i
) {
8496 kfree(tg
->rt_rq
[i
]);
8498 kfree(tg
->rt_se
[i
]);
8506 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8508 struct rt_rq
*rt_rq
;
8509 struct sched_rt_entity
*rt_se
;
8512 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8515 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8519 init_rt_bandwidth(&tg
->rt_bandwidth
,
8520 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8522 for_each_possible_cpu(i
) {
8523 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8524 GFP_KERNEL
, cpu_to_node(i
));
8528 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8529 GFP_KERNEL
, cpu_to_node(i
));
8533 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, parent
->rt_se
[i
]);
8543 #else /* !CONFIG_RT_GROUP_SCHED */
8544 static inline void free_rt_sched_group(struct task_group
*tg
)
8549 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8553 #endif /* CONFIG_RT_GROUP_SCHED */
8555 #ifdef CONFIG_CGROUP_SCHED
8556 static void free_sched_group(struct task_group
*tg
)
8558 free_fair_sched_group(tg
);
8559 free_rt_sched_group(tg
);
8564 /* allocate runqueue etc for a new task group */
8565 struct task_group
*sched_create_group(struct task_group
*parent
)
8567 struct task_group
*tg
;
8568 unsigned long flags
;
8570 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8572 return ERR_PTR(-ENOMEM
);
8574 if (!alloc_fair_sched_group(tg
, parent
))
8577 if (!alloc_rt_sched_group(tg
, parent
))
8580 spin_lock_irqsave(&task_group_lock
, flags
);
8581 list_add_rcu(&tg
->list
, &task_groups
);
8583 WARN_ON(!parent
); /* root should already exist */
8585 tg
->parent
= parent
;
8586 INIT_LIST_HEAD(&tg
->children
);
8587 list_add_rcu(&tg
->siblings
, &parent
->children
);
8588 spin_unlock_irqrestore(&task_group_lock
, flags
);
8593 free_sched_group(tg
);
8594 return ERR_PTR(-ENOMEM
);
8597 /* rcu callback to free various structures associated with a task group */
8598 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8600 /* now it should be safe to free those cfs_rqs */
8601 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8604 /* Destroy runqueue etc associated with a task group */
8605 void sched_destroy_group(struct task_group
*tg
)
8607 unsigned long flags
;
8610 /* end participation in shares distribution */
8611 for_each_possible_cpu(i
)
8612 unregister_fair_sched_group(tg
, i
);
8614 spin_lock_irqsave(&task_group_lock
, flags
);
8615 list_del_rcu(&tg
->list
);
8616 list_del_rcu(&tg
->siblings
);
8617 spin_unlock_irqrestore(&task_group_lock
, flags
);
8619 /* wait for possible concurrent references to cfs_rqs complete */
8620 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8623 /* change task's runqueue when it moves between groups.
8624 * The caller of this function should have put the task in its new group
8625 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8626 * reflect its new group.
8628 void sched_move_task(struct task_struct
*tsk
)
8631 unsigned long flags
;
8634 rq
= task_rq_lock(tsk
, &flags
);
8636 running
= task_current(rq
, tsk
);
8640 dequeue_task(rq
, tsk
, 0);
8641 if (unlikely(running
))
8642 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8644 #ifdef CONFIG_FAIR_GROUP_SCHED
8645 if (tsk
->sched_class
->task_move_group
)
8646 tsk
->sched_class
->task_move_group(tsk
, on_rq
);
8649 set_task_rq(tsk
, task_cpu(tsk
));
8651 if (unlikely(running
))
8652 tsk
->sched_class
->set_curr_task(rq
);
8654 enqueue_task(rq
, tsk
, 0);
8656 task_rq_unlock(rq
, tsk
, &flags
);
8658 #endif /* CONFIG_CGROUP_SCHED */
8660 #ifdef CONFIG_FAIR_GROUP_SCHED
8661 static DEFINE_MUTEX(shares_mutex
);
8663 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8666 unsigned long flags
;
8669 * We can't change the weight of the root cgroup.
8674 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
8676 mutex_lock(&shares_mutex
);
8677 if (tg
->shares
== shares
)
8680 tg
->shares
= shares
;
8681 for_each_possible_cpu(i
) {
8682 struct rq
*rq
= cpu_rq(i
);
8683 struct sched_entity
*se
;
8686 /* Propagate contribution to hierarchy */
8687 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8688 for_each_sched_entity(se
)
8689 update_cfs_shares(group_cfs_rq(se
));
8690 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8694 mutex_unlock(&shares_mutex
);
8698 unsigned long sched_group_shares(struct task_group
*tg
)
8704 #ifdef CONFIG_RT_GROUP_SCHED
8706 * Ensure that the real time constraints are schedulable.
8708 static DEFINE_MUTEX(rt_constraints_mutex
);
8710 static unsigned long to_ratio(u64 period
, u64 runtime
)
8712 if (runtime
== RUNTIME_INF
)
8715 return div64_u64(runtime
<< 20, period
);
8718 /* Must be called with tasklist_lock held */
8719 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8721 struct task_struct
*g
, *p
;
8723 do_each_thread(g
, p
) {
8724 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8726 } while_each_thread(g
, p
);
8731 struct rt_schedulable_data
{
8732 struct task_group
*tg
;
8737 static int tg_schedulable(struct task_group
*tg
, void *data
)
8739 struct rt_schedulable_data
*d
= data
;
8740 struct task_group
*child
;
8741 unsigned long total
, sum
= 0;
8742 u64 period
, runtime
;
8744 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8745 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8748 period
= d
->rt_period
;
8749 runtime
= d
->rt_runtime
;
8753 * Cannot have more runtime than the period.
8755 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8759 * Ensure we don't starve existing RT tasks.
8761 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8764 total
= to_ratio(period
, runtime
);
8767 * Nobody can have more than the global setting allows.
8769 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8773 * The sum of our children's runtime should not exceed our own.
8775 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8776 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8777 runtime
= child
->rt_bandwidth
.rt_runtime
;
8779 if (child
== d
->tg
) {
8780 period
= d
->rt_period
;
8781 runtime
= d
->rt_runtime
;
8784 sum
+= to_ratio(period
, runtime
);
8793 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8795 struct rt_schedulable_data data
= {
8797 .rt_period
= period
,
8798 .rt_runtime
= runtime
,
8801 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8804 static int tg_set_bandwidth(struct task_group
*tg
,
8805 u64 rt_period
, u64 rt_runtime
)
8809 mutex_lock(&rt_constraints_mutex
);
8810 read_lock(&tasklist_lock
);
8811 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8815 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8816 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8817 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8819 for_each_possible_cpu(i
) {
8820 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8822 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8823 rt_rq
->rt_runtime
= rt_runtime
;
8824 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8826 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8828 read_unlock(&tasklist_lock
);
8829 mutex_unlock(&rt_constraints_mutex
);
8834 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8836 u64 rt_runtime
, rt_period
;
8838 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8839 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8840 if (rt_runtime_us
< 0)
8841 rt_runtime
= RUNTIME_INF
;
8843 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8846 long sched_group_rt_runtime(struct task_group
*tg
)
8850 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8853 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8854 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8855 return rt_runtime_us
;
8858 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8860 u64 rt_runtime
, rt_period
;
8862 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8863 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8868 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8871 long sched_group_rt_period(struct task_group
*tg
)
8875 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8876 do_div(rt_period_us
, NSEC_PER_USEC
);
8877 return rt_period_us
;
8880 static int sched_rt_global_constraints(void)
8882 u64 runtime
, period
;
8885 if (sysctl_sched_rt_period
<= 0)
8888 runtime
= global_rt_runtime();
8889 period
= global_rt_period();
8892 * Sanity check on the sysctl variables.
8894 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8897 mutex_lock(&rt_constraints_mutex
);
8898 read_lock(&tasklist_lock
);
8899 ret
= __rt_schedulable(NULL
, 0, 0);
8900 read_unlock(&tasklist_lock
);
8901 mutex_unlock(&rt_constraints_mutex
);
8906 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8908 /* Don't accept realtime tasks when there is no way for them to run */
8909 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8915 #else /* !CONFIG_RT_GROUP_SCHED */
8916 static int sched_rt_global_constraints(void)
8918 unsigned long flags
;
8921 if (sysctl_sched_rt_period
<= 0)
8925 * There's always some RT tasks in the root group
8926 * -- migration, kstopmachine etc..
8928 if (sysctl_sched_rt_runtime
== 0)
8931 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8932 for_each_possible_cpu(i
) {
8933 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8935 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8936 rt_rq
->rt_runtime
= global_rt_runtime();
8937 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8939 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8943 #endif /* CONFIG_RT_GROUP_SCHED */
8945 int sched_rt_handler(struct ctl_table
*table
, int write
,
8946 void __user
*buffer
, size_t *lenp
,
8950 int old_period
, old_runtime
;
8951 static DEFINE_MUTEX(mutex
);
8954 old_period
= sysctl_sched_rt_period
;
8955 old_runtime
= sysctl_sched_rt_runtime
;
8957 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8959 if (!ret
&& write
) {
8960 ret
= sched_rt_global_constraints();
8962 sysctl_sched_rt_period
= old_period
;
8963 sysctl_sched_rt_runtime
= old_runtime
;
8965 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8966 def_rt_bandwidth
.rt_period
=
8967 ns_to_ktime(global_rt_period());
8970 mutex_unlock(&mutex
);
8975 #ifdef CONFIG_CGROUP_SCHED
8977 /* return corresponding task_group object of a cgroup */
8978 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8980 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8981 struct task_group
, css
);
8984 static struct cgroup_subsys_state
*
8985 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8987 struct task_group
*tg
, *parent
;
8989 if (!cgrp
->parent
) {
8990 /* This is early initialization for the top cgroup */
8991 return &root_task_group
.css
;
8994 parent
= cgroup_tg(cgrp
->parent
);
8995 tg
= sched_create_group(parent
);
8997 return ERR_PTR(-ENOMEM
);
9003 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9005 struct task_group
*tg
= cgroup_tg(cgrp
);
9007 sched_destroy_group(tg
);
9011 cpu_cgroup_allow_attach(struct cgroup
*cgrp
, struct task_struct
*tsk
)
9013 const struct cred
*cred
= current_cred(), *tcred
;
9015 tcred
= __task_cred(tsk
);
9017 if ((current
!= tsk
) && !capable(CAP_SYS_NICE
) &&
9018 cred
->euid
!= tcred
->uid
&& cred
->euid
!= tcred
->suid
)
9025 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
9027 #ifdef CONFIG_RT_GROUP_SCHED
9028 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
9031 /* We don't support RT-tasks being in separate groups */
9032 if (tsk
->sched_class
!= &fair_sched_class
)
9039 cpu_cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
9041 sched_move_task(tsk
);
9045 cpu_cgroup_exit(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
9046 struct cgroup
*old_cgrp
, struct task_struct
*task
)
9049 * cgroup_exit() is called in the copy_process() failure path.
9050 * Ignore this case since the task hasn't ran yet, this avoids
9051 * trying to poke a half freed task state from generic code.
9053 if (!(task
->flags
& PF_EXITING
))
9056 sched_move_task(task
);
9059 #ifdef CONFIG_FAIR_GROUP_SCHED
9060 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
9063 return sched_group_set_shares(cgroup_tg(cgrp
), scale_load(shareval
));
9066 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
9068 struct task_group
*tg
= cgroup_tg(cgrp
);
9070 return (u64
) scale_load_down(tg
->shares
);
9072 #endif /* CONFIG_FAIR_GROUP_SCHED */
9074 #ifdef CONFIG_RT_GROUP_SCHED
9075 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
9078 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
9081 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9083 return sched_group_rt_runtime(cgroup_tg(cgrp
));
9086 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
9089 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
9092 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
9094 return sched_group_rt_period(cgroup_tg(cgrp
));
9096 #endif /* CONFIG_RT_GROUP_SCHED */
9098 static struct cftype cpu_files
[] = {
9099 #ifdef CONFIG_FAIR_GROUP_SCHED
9102 .read_u64
= cpu_shares_read_u64
,
9103 .write_u64
= cpu_shares_write_u64
,
9106 #ifdef CONFIG_RT_GROUP_SCHED
9108 .name
= "rt_runtime_us",
9109 .read_s64
= cpu_rt_runtime_read
,
9110 .write_s64
= cpu_rt_runtime_write
,
9113 .name
= "rt_period_us",
9114 .read_u64
= cpu_rt_period_read_uint
,
9115 .write_u64
= cpu_rt_period_write_uint
,
9120 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
9122 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
9125 struct cgroup_subsys cpu_cgroup_subsys
= {
9127 .create
= cpu_cgroup_create
,
9128 .destroy
= cpu_cgroup_destroy
,
9129 .allow_attach
= cpu_cgroup_allow_attach
,
9130 .can_attach_task
= cpu_cgroup_can_attach_task
,
9131 .attach_task
= cpu_cgroup_attach_task
,
9132 .exit
= cpu_cgroup_exit
,
9133 .populate
= cpu_cgroup_populate
,
9134 .subsys_id
= cpu_cgroup_subsys_id
,
9138 #endif /* CONFIG_CGROUP_SCHED */
9140 #ifdef CONFIG_CGROUP_CPUACCT
9143 * CPU accounting code for task groups.
9145 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9146 * (balbir@in.ibm.com).
9149 /* track cpu usage of a group of tasks and its child groups */
9151 struct cgroup_subsys_state css
;
9152 /* cpuusage holds pointer to a u64-type object on every cpu */
9153 u64 __percpu
*cpuusage
;
9154 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
9155 struct cpuacct
*parent
;
9156 struct cpuacct_charge_calls
*cpufreq_fn
;
9160 static struct cpuacct
*cpuacct_root
;
9162 /* Default calls for cpufreq accounting */
9163 static struct cpuacct_charge_calls
*cpuacct_cpufreq
;
9164 int cpuacct_register_cpufreq(struct cpuacct_charge_calls
*fn
)
9166 cpuacct_cpufreq
= fn
;
9169 * Root node is created before platform can register callbacks,
9172 if (cpuacct_root
&& fn
) {
9173 cpuacct_root
->cpufreq_fn
= fn
;
9175 fn
->init(&cpuacct_root
->cpuacct_data
);
9180 struct cgroup_subsys cpuacct_subsys
;
9182 /* return cpu accounting group corresponding to this container */
9183 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
9185 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
9186 struct cpuacct
, css
);
9189 /* return cpu accounting group to which this task belongs */
9190 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
9192 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
9193 struct cpuacct
, css
);
9196 /* create a new cpu accounting group */
9197 static struct cgroup_subsys_state
*cpuacct_create(
9198 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9200 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
9206 ca
->cpuusage
= alloc_percpu(u64
);
9210 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9211 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
9212 goto out_free_counters
;
9214 ca
->cpufreq_fn
= cpuacct_cpufreq
;
9216 /* If available, have platform code initalize cpu frequency table */
9217 if (ca
->cpufreq_fn
&& ca
->cpufreq_fn
->init
)
9218 ca
->cpufreq_fn
->init(&ca
->cpuacct_data
);
9221 ca
->parent
= cgroup_ca(cgrp
->parent
);
9229 percpu_counter_destroy(&ca
->cpustat
[i
]);
9230 free_percpu(ca
->cpuusage
);
9234 return ERR_PTR(-ENOMEM
);
9237 /* destroy an existing cpu accounting group */
9239 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9241 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9244 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
9245 percpu_counter_destroy(&ca
->cpustat
[i
]);
9246 free_percpu(ca
->cpuusage
);
9250 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
9252 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9255 #ifndef CONFIG_64BIT
9257 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9259 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9261 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9269 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
9271 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9273 #ifndef CONFIG_64BIT
9275 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9277 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
9279 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
9285 /* return total cpu usage (in nanoseconds) of a group */
9286 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9288 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9289 u64 totalcpuusage
= 0;
9292 for_each_present_cpu(i
)
9293 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
9295 return totalcpuusage
;
9298 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
9301 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9310 for_each_present_cpu(i
)
9311 cpuacct_cpuusage_write(ca
, i
, 0);
9317 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
9320 struct cpuacct
*ca
= cgroup_ca(cgroup
);
9324 for_each_present_cpu(i
) {
9325 percpu
= cpuacct_cpuusage_read(ca
, i
);
9326 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
9328 seq_printf(m
, "\n");
9332 static const char *cpuacct_stat_desc
[] = {
9333 [CPUACCT_STAT_USER
] = "user",
9334 [CPUACCT_STAT_SYSTEM
] = "system",
9337 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9338 struct cgroup_map_cb
*cb
)
9340 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9343 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9344 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9345 val
= cputime64_to_clock_t(val
);
9346 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9351 static int cpuacct_cpufreq_show(struct cgroup
*cgrp
, struct cftype
*cft
,
9352 struct cgroup_map_cb
*cb
)
9354 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9355 if (ca
->cpufreq_fn
&& ca
->cpufreq_fn
->cpufreq_show
)
9356 ca
->cpufreq_fn
->cpufreq_show(ca
->cpuacct_data
, cb
);
9361 /* return total cpu power usage (milliWatt second) of a group */
9362 static u64
cpuacct_powerusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
9365 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9368 if (ca
->cpufreq_fn
&& ca
->cpufreq_fn
->power_usage
)
9369 for_each_present_cpu(i
) {
9370 totalpower
+= ca
->cpufreq_fn
->power_usage(
9377 static struct cftype files
[] = {
9380 .read_u64
= cpuusage_read
,
9381 .write_u64
= cpuusage_write
,
9384 .name
= "usage_percpu",
9385 .read_seq_string
= cpuacct_percpu_seq_read
,
9389 .read_map
= cpuacct_stats_show
,
9393 .read_map
= cpuacct_cpufreq_show
,
9397 .read_u64
= cpuacct_powerusage_read
9401 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9403 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9407 * charge this task's execution time to its accounting group.
9409 * called with rq->lock held.
9411 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9416 if (unlikely(!cpuacct_subsys
.active
))
9419 cpu
= task_cpu(tsk
);
9425 for (; ca
; ca
= ca
->parent
) {
9426 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9427 *cpuusage
+= cputime
;
9429 /* Call back into platform code to account for CPU speeds */
9430 if (ca
->cpufreq_fn
&& ca
->cpufreq_fn
->charge
)
9431 ca
->cpufreq_fn
->charge(ca
->cpuacct_data
, cputime
, cpu
);
9438 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9439 * in cputime_t units. As a result, cpuacct_update_stats calls
9440 * percpu_counter_add with values large enough to always overflow the
9441 * per cpu batch limit causing bad SMP scalability.
9443 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9444 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9445 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9448 #define CPUACCT_BATCH \
9449 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9451 #define CPUACCT_BATCH 0
9455 * Charge the system/user time to the task's accounting group.
9457 static void cpuacct_update_stats(struct task_struct
*tsk
,
9458 enum cpuacct_stat_index idx
, cputime_t val
)
9461 int batch
= CPUACCT_BATCH
;
9463 if (unlikely(!cpuacct_subsys
.active
))
9470 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9476 struct cgroup_subsys cpuacct_subsys
= {
9478 .create
= cpuacct_create
,
9479 .destroy
= cpuacct_destroy
,
9480 .populate
= cpuacct_populate
,
9481 .subsys_id
= cpuacct_subsys_id
,
9483 #endif /* CONFIG_CGROUP_CPUACCT */