ARM: cpu topology: Add debugfs interface for cpu_power
[cmplus.git] / kernel / sched.c
blobcf48a942f635075a3593b3ddf28b322922fb3f9e
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74 #include <linux/cpuacct.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
80 #include "sched_cpupri.h"
81 #include "workqueue_sched.h"
82 #include "sched_autogroup.h"
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/sched.h>
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
92 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
101 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106 * Helpers for converting nanosecond timing to jiffy resolution
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
110 #define NICE_0_LOAD SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
114 * These are the 'tuning knobs' of the scheduler:
116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117 * Timeslices get refilled after they expire.
119 #define DEF_TIMESLICE (100 * HZ / 1000)
122 * single value that denotes runtime == period, ie unlimited time.
124 #define RUNTIME_INF ((u64)~0ULL)
126 static inline int rt_policy(int policy)
128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129 return 1;
130 return 0;
133 static inline int task_has_rt_policy(struct task_struct *p)
135 return rt_policy(p->policy);
139 * This is the priority-queue data structure of the RT scheduling class:
141 struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
146 struct rt_bandwidth {
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock;
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
154 static struct rt_bandwidth def_rt_bandwidth;
156 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
158 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
170 if (!overrun)
171 break;
173 idle = do_sched_rt_period_timer(rt_b, overrun);
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179 static
180 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
192 static inline int rt_bandwidth_enabled(void)
194 return sysctl_sched_rt_runtime >= 0;
197 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
199 ktime_t now;
201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 return;
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
207 raw_spin_lock(&rt_b->rt_runtime_lock);
208 for (;;) {
209 unsigned long delta;
210 ktime_t soft, hard;
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
222 HRTIMER_MODE_ABS_PINNED, 0);
224 raw_spin_unlock(&rt_b->rt_runtime_lock);
227 #ifdef CONFIG_RT_GROUP_SCHED
228 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
230 hrtimer_cancel(&rt_b->rt_period_timer);
232 #endif
235 * sched_domains_mutex serializes calls to init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
238 static DEFINE_MUTEX(sched_domains_mutex);
240 #ifdef CONFIG_CGROUP_SCHED
242 #include <linux/cgroup.h>
244 struct cfs_rq;
246 static LIST_HEAD(task_groups);
248 /* task group related information */
249 struct task_group {
250 struct cgroup_subsys_state css;
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
259 atomic_t load_weight;
260 #endif
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
266 struct rt_bandwidth rt_bandwidth;
267 #endif
269 struct rcu_head rcu;
270 struct list_head list;
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
276 #ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278 #endif
281 /* task_group_lock serializes the addition/removal of task groups */
282 static DEFINE_SPINLOCK(task_group_lock);
284 #ifdef CONFIG_FAIR_GROUP_SCHED
286 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
296 #define MIN_SHARES (1UL << 1)
297 #define MAX_SHARES (1UL << 18)
299 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
300 #endif
302 /* Default task group.
303 * Every task in system belong to this group at bootup.
305 struct task_group root_task_group;
307 #endif /* CONFIG_CGROUP_SCHED */
309 /* CFS-related fields in a runqueue */
310 struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
314 u64 exec_clock;
315 u64 min_vruntime;
316 #ifndef CONFIG_64BIT
317 u64 min_vruntime_copy;
318 #endif
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
323 struct list_head tasks;
324 struct list_head *balance_iterator;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity *curr, *next, *last, *skip;
332 #ifdef CONFIG_SCHED_DEBUG
333 unsigned int nr_spread_over;
334 #endif
336 #ifdef CONFIG_FAIR_GROUP_SCHED
337 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
340 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
341 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
342 * (like users, containers etc.)
344 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
345 * list is used during load balance.
347 int on_list;
348 struct list_head leaf_cfs_rq_list;
349 struct task_group *tg; /* group that "owns" this runqueue */
351 #ifdef CONFIG_SMP
353 * the part of load.weight contributed by tasks
355 unsigned long task_weight;
358 * h_load = weight * f(tg)
360 * Where f(tg) is the recursive weight fraction assigned to
361 * this group.
363 unsigned long h_load;
366 * Maintaining per-cpu shares distribution for group scheduling
368 * load_stamp is the last time we updated the load average
369 * load_last is the last time we updated the load average and saw load
370 * load_unacc_exec_time is currently unaccounted execution time
372 u64 load_avg;
373 u64 load_period;
374 u64 load_stamp, load_last, load_unacc_exec_time;
376 unsigned long load_contribution;
377 #endif
378 #endif
381 /* Real-Time classes' related field in a runqueue: */
382 struct rt_rq {
383 struct rt_prio_array active;
384 unsigned long rt_nr_running;
385 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
386 struct {
387 int curr; /* highest queued rt task prio */
388 #ifdef CONFIG_SMP
389 int next; /* next highest */
390 #endif
391 } highest_prio;
392 #endif
393 #ifdef CONFIG_SMP
394 unsigned long rt_nr_migratory;
395 unsigned long rt_nr_total;
396 int overloaded;
397 struct plist_head pushable_tasks;
398 #endif
399 int rt_throttled;
400 u64 rt_time;
401 u64 rt_runtime;
402 /* Nests inside the rq lock: */
403 raw_spinlock_t rt_runtime_lock;
405 #ifdef CONFIG_RT_GROUP_SCHED
406 unsigned long rt_nr_boosted;
408 struct rq *rq;
409 struct list_head leaf_rt_rq_list;
410 struct task_group *tg;
411 #endif
414 #ifdef CONFIG_SMP
417 * We add the notion of a root-domain which will be used to define per-domain
418 * variables. Each exclusive cpuset essentially defines an island domain by
419 * fully partitioning the member cpus from any other cpuset. Whenever a new
420 * exclusive cpuset is created, we also create and attach a new root-domain
421 * object.
424 struct root_domain {
425 atomic_t refcount;
426 struct rcu_head rcu;
427 cpumask_var_t span;
428 cpumask_var_t online;
431 * The "RT overload" flag: it gets set if a CPU has more than
432 * one runnable RT task.
434 cpumask_var_t rto_mask;
435 atomic_t rto_count;
436 struct cpupri cpupri;
440 * By default the system creates a single root-domain with all cpus as
441 * members (mimicking the global state we have today).
443 static struct root_domain def_root_domain;
445 #endif /* CONFIG_SMP */
448 * This is the main, per-CPU runqueue data structure.
450 * Locking rule: those places that want to lock multiple runqueues
451 * (such as the load balancing or the thread migration code), lock
452 * acquire operations must be ordered by ascending &runqueue.
454 struct rq {
455 /* runqueue lock: */
456 raw_spinlock_t lock;
459 * nr_running and cpu_load should be in the same cacheline because
460 * remote CPUs use both these fields when doing load calculation.
462 unsigned long nr_running;
463 #define CPU_LOAD_IDX_MAX 5
464 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
465 unsigned long last_load_update_tick;
466 #ifdef CONFIG_NO_HZ
467 u64 nohz_stamp;
468 unsigned char nohz_balance_kick;
469 #endif
470 int skip_clock_update;
472 /* capture load from *all* tasks on this cpu: */
473 struct load_weight load;
474 unsigned long nr_load_updates;
475 u64 nr_switches;
477 struct cfs_rq cfs;
478 struct rt_rq rt;
480 #ifdef CONFIG_FAIR_GROUP_SCHED
481 /* list of leaf cfs_rq on this cpu: */
482 struct list_head leaf_cfs_rq_list;
483 #endif
484 #ifdef CONFIG_RT_GROUP_SCHED
485 struct list_head leaf_rt_rq_list;
486 #endif
489 * This is part of a global counter where only the total sum
490 * over all CPUs matters. A task can increase this counter on
491 * one CPU and if it got migrated afterwards it may decrease
492 * it on another CPU. Always updated under the runqueue lock:
494 unsigned long nr_uninterruptible;
496 struct task_struct *curr, *idle, *stop;
497 unsigned long next_balance;
498 struct mm_struct *prev_mm;
500 u64 clock;
501 u64 clock_task;
503 atomic_t nr_iowait;
505 #ifdef CONFIG_SMP
506 struct root_domain *rd;
507 struct sched_domain *sd;
509 unsigned long cpu_power;
511 unsigned char idle_at_tick;
512 /* For active balancing */
513 int post_schedule;
514 int active_balance;
515 int push_cpu;
516 struct cpu_stop_work active_balance_work;
517 /* cpu of this runqueue: */
518 int cpu;
519 int online;
521 unsigned long avg_load_per_task;
523 u64 rt_avg;
524 u64 age_stamp;
525 u64 idle_stamp;
526 u64 avg_idle;
527 #endif
529 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
530 u64 prev_irq_time;
531 #endif
533 /* calc_load related fields */
534 unsigned long calc_load_update;
535 long calc_load_active;
537 #ifdef CONFIG_SCHED_HRTICK
538 #ifdef CONFIG_SMP
539 int hrtick_csd_pending;
540 struct call_single_data hrtick_csd;
541 #endif
542 struct hrtimer hrtick_timer;
543 #endif
545 #ifdef CONFIG_SCHEDSTATS
546 /* latency stats */
547 struct sched_info rq_sched_info;
548 unsigned long long rq_cpu_time;
549 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
551 /* sys_sched_yield() stats */
552 unsigned int yld_count;
554 /* schedule() stats */
555 unsigned int sched_switch;
556 unsigned int sched_count;
557 unsigned int sched_goidle;
559 /* try_to_wake_up() stats */
560 unsigned int ttwu_count;
561 unsigned int ttwu_local;
562 #endif
564 #ifdef CONFIG_SMP
565 struct task_struct *wake_list;
566 #endif
569 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
572 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
574 static inline int cpu_of(struct rq *rq)
576 #ifdef CONFIG_SMP
577 return rq->cpu;
578 #else
579 return 0;
580 #endif
583 #define rcu_dereference_check_sched_domain(p) \
584 rcu_dereference_check((p), \
585 rcu_read_lock_held() || \
586 lockdep_is_held(&sched_domains_mutex))
589 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
590 * See detach_destroy_domains: synchronize_sched for details.
592 * The domain tree of any CPU may only be accessed from within
593 * preempt-disabled sections.
595 #define for_each_domain(cpu, __sd) \
596 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
598 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
599 #define this_rq() (&__get_cpu_var(runqueues))
600 #define task_rq(p) cpu_rq(task_cpu(p))
601 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
602 #define raw_rq() (&__raw_get_cpu_var(runqueues))
604 #ifdef CONFIG_CGROUP_SCHED
607 * Return the group to which this tasks belongs.
609 * We use task_subsys_state_check() and extend the RCU verification with
610 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
611 * task it moves into the cgroup. Therefore by holding either of those locks,
612 * we pin the task to the current cgroup.
614 static inline struct task_group *task_group(struct task_struct *p)
616 struct task_group *tg;
617 struct cgroup_subsys_state *css;
619 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
620 lockdep_is_held(&p->pi_lock) ||
621 lockdep_is_held(&task_rq(p)->lock));
622 tg = container_of(css, struct task_group, css);
624 return autogroup_task_group(p, tg);
627 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
628 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
630 #ifdef CONFIG_FAIR_GROUP_SCHED
631 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
632 p->se.parent = task_group(p)->se[cpu];
633 #endif
635 #ifdef CONFIG_RT_GROUP_SCHED
636 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
637 p->rt.parent = task_group(p)->rt_se[cpu];
638 #endif
641 #else /* CONFIG_CGROUP_SCHED */
643 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
644 static inline struct task_group *task_group(struct task_struct *p)
646 return NULL;
649 #endif /* CONFIG_CGROUP_SCHED */
651 static void update_rq_clock_task(struct rq *rq, s64 delta);
653 static void update_rq_clock(struct rq *rq)
655 s64 delta;
657 if (rq->skip_clock_update > 0)
658 return;
660 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
661 rq->clock += delta;
662 update_rq_clock_task(rq, delta);
666 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
668 #ifdef CONFIG_SCHED_DEBUG
669 # define const_debug __read_mostly
670 #else
671 # define const_debug static const
672 #endif
675 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
676 * @cpu: the processor in question.
678 * This interface allows printk to be called with the runqueue lock
679 * held and know whether or not it is OK to wake up the klogd.
681 int runqueue_is_locked(int cpu)
683 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
687 * Debugging: various feature bits
690 #define SCHED_FEAT(name, enabled) \
691 __SCHED_FEAT_##name ,
693 enum {
694 #include "sched_features.h"
697 #undef SCHED_FEAT
699 #define SCHED_FEAT(name, enabled) \
700 (1UL << __SCHED_FEAT_##name) * enabled |
702 const_debug unsigned int sysctl_sched_features =
703 #include "sched_features.h"
706 #undef SCHED_FEAT
708 #ifdef CONFIG_SCHED_DEBUG
709 #define SCHED_FEAT(name, enabled) \
710 #name ,
712 static __read_mostly char *sched_feat_names[] = {
713 #include "sched_features.h"
714 NULL
717 #undef SCHED_FEAT
719 static int sched_feat_show(struct seq_file *m, void *v)
721 int i;
723 for (i = 0; sched_feat_names[i]; i++) {
724 if (!(sysctl_sched_features & (1UL << i)))
725 seq_puts(m, "NO_");
726 seq_printf(m, "%s ", sched_feat_names[i]);
728 seq_puts(m, "\n");
730 return 0;
733 static ssize_t
734 sched_feat_write(struct file *filp, const char __user *ubuf,
735 size_t cnt, loff_t *ppos)
737 char buf[64];
738 char *cmp;
739 int neg = 0;
740 int i;
742 if (cnt > 63)
743 cnt = 63;
745 if (copy_from_user(&buf, ubuf, cnt))
746 return -EFAULT;
748 buf[cnt] = 0;
749 cmp = strstrip(buf);
751 if (strncmp(cmp, "NO_", 3) == 0) {
752 neg = 1;
753 cmp += 3;
756 for (i = 0; sched_feat_names[i]; i++) {
757 if (strcmp(cmp, sched_feat_names[i]) == 0) {
758 if (neg)
759 sysctl_sched_features &= ~(1UL << i);
760 else
761 sysctl_sched_features |= (1UL << i);
762 break;
766 if (!sched_feat_names[i])
767 return -EINVAL;
769 *ppos += cnt;
771 return cnt;
774 static int sched_feat_open(struct inode *inode, struct file *filp)
776 return single_open(filp, sched_feat_show, NULL);
779 static const struct file_operations sched_feat_fops = {
780 .open = sched_feat_open,
781 .write = sched_feat_write,
782 .read = seq_read,
783 .llseek = seq_lseek,
784 .release = single_release,
787 static __init int sched_init_debug(void)
789 debugfs_create_file("sched_features", 0644, NULL, NULL,
790 &sched_feat_fops);
792 return 0;
794 late_initcall(sched_init_debug);
796 #endif
798 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
801 * Number of tasks to iterate in a single balance run.
802 * Limited because this is done with IRQs disabled.
804 const_debug unsigned int sysctl_sched_nr_migrate = 32;
807 * period over which we average the RT time consumption, measured
808 * in ms.
810 * default: 1s
812 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
815 * period over which we measure -rt task cpu usage in us.
816 * default: 1s
818 unsigned int sysctl_sched_rt_period = 1000000;
820 static __read_mostly int scheduler_running;
823 * part of the period that we allow rt tasks to run in us.
824 * default: 0.95s
826 int sysctl_sched_rt_runtime = 950000;
828 static inline u64 global_rt_period(void)
830 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
833 static inline u64 global_rt_runtime(void)
835 if (sysctl_sched_rt_runtime < 0)
836 return RUNTIME_INF;
838 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
841 #ifndef prepare_arch_switch
842 # define prepare_arch_switch(next) do { } while (0)
843 #endif
844 #ifndef finish_arch_switch
845 # define finish_arch_switch(prev) do { } while (0)
846 #endif
848 static inline int task_current(struct rq *rq, struct task_struct *p)
850 return rq->curr == p;
853 static inline int task_running(struct rq *rq, struct task_struct *p)
855 #ifdef CONFIG_SMP
856 return p->on_cpu;
857 #else
858 return task_current(rq, p);
859 #endif
862 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
863 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
865 #ifdef CONFIG_SMP
867 * We can optimise this out completely for !SMP, because the
868 * SMP rebalancing from interrupt is the only thing that cares
869 * here.
871 next->on_cpu = 1;
872 #endif
875 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
877 #ifdef CONFIG_SMP
879 * After ->on_cpu is cleared, the task can be moved to a different CPU.
880 * We must ensure this doesn't happen until the switch is completely
881 * finished.
883 smp_wmb();
884 prev->on_cpu = 0;
885 #endif
886 #ifdef CONFIG_DEBUG_SPINLOCK
887 /* this is a valid case when another task releases the spinlock */
888 rq->lock.owner = current;
889 #endif
891 * If we are tracking spinlock dependencies then we have to
892 * fix up the runqueue lock - which gets 'carried over' from
893 * prev into current:
895 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897 raw_spin_unlock_irq(&rq->lock);
900 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
901 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 #ifdef CONFIG_SMP
905 * We can optimise this out completely for !SMP, because the
906 * SMP rebalancing from interrupt is the only thing that cares
907 * here.
909 next->on_cpu = 1;
910 #endif
911 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
912 raw_spin_unlock_irq(&rq->lock);
913 #else
914 raw_spin_unlock(&rq->lock);
915 #endif
918 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
920 #ifdef CONFIG_SMP
922 * After ->on_cpu is cleared, the task can be moved to a different CPU.
923 * We must ensure this doesn't happen until the switch is completely
924 * finished.
926 smp_wmb();
927 prev->on_cpu = 0;
928 #endif
929 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
930 local_irq_enable();
931 #endif
933 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
936 * __task_rq_lock - lock the rq @p resides on.
938 static inline struct rq *__task_rq_lock(struct task_struct *p)
939 __acquires(rq->lock)
941 struct rq *rq;
943 lockdep_assert_held(&p->pi_lock);
945 for (;;) {
946 rq = task_rq(p);
947 raw_spin_lock(&rq->lock);
948 if (likely(rq == task_rq(p)))
949 return rq;
950 raw_spin_unlock(&rq->lock);
955 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(p->pi_lock)
959 __acquires(rq->lock)
961 struct rq *rq;
963 for (;;) {
964 raw_spin_lock_irqsave(&p->pi_lock, *flags);
965 rq = task_rq(p);
966 raw_spin_lock(&rq->lock);
967 if (likely(rq == task_rq(p)))
968 return rq;
969 raw_spin_unlock(&rq->lock);
970 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
974 static void __task_rq_unlock(struct rq *rq)
975 __releases(rq->lock)
977 raw_spin_unlock(&rq->lock);
980 static inline void
981 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
982 __releases(rq->lock)
983 __releases(p->pi_lock)
985 raw_spin_unlock(&rq->lock);
986 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
990 * this_rq_lock - lock this runqueue and disable interrupts.
992 static struct rq *this_rq_lock(void)
993 __acquires(rq->lock)
995 struct rq *rq;
997 local_irq_disable();
998 rq = this_rq();
999 raw_spin_lock(&rq->lock);
1001 return rq;
1004 #ifdef CONFIG_SCHED_HRTICK
1006 * Use HR-timers to deliver accurate preemption points.
1008 * Its all a bit involved since we cannot program an hrt while holding the
1009 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1010 * reschedule event.
1012 * When we get rescheduled we reprogram the hrtick_timer outside of the
1013 * rq->lock.
1017 * Use hrtick when:
1018 * - enabled by features
1019 * - hrtimer is actually high res
1021 static inline int hrtick_enabled(struct rq *rq)
1023 if (!sched_feat(HRTICK))
1024 return 0;
1025 if (!cpu_active(cpu_of(rq)))
1026 return 0;
1027 return hrtimer_is_hres_active(&rq->hrtick_timer);
1030 static void hrtick_clear(struct rq *rq)
1032 if (hrtimer_active(&rq->hrtick_timer))
1033 hrtimer_cancel(&rq->hrtick_timer);
1037 * High-resolution timer tick.
1038 * Runs from hardirq context with interrupts disabled.
1040 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1042 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1044 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1046 raw_spin_lock(&rq->lock);
1047 update_rq_clock(rq);
1048 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1049 raw_spin_unlock(&rq->lock);
1051 return HRTIMER_NORESTART;
1054 #ifdef CONFIG_SMP
1056 * called from hardirq (IPI) context
1058 static void __hrtick_start(void *arg)
1060 struct rq *rq = arg;
1062 raw_spin_lock(&rq->lock);
1063 hrtimer_restart(&rq->hrtick_timer);
1064 rq->hrtick_csd_pending = 0;
1065 raw_spin_unlock(&rq->lock);
1069 * Called to set the hrtick timer state.
1071 * called with rq->lock held and irqs disabled
1073 static void hrtick_start(struct rq *rq, u64 delay)
1075 struct hrtimer *timer = &rq->hrtick_timer;
1076 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1078 hrtimer_set_expires(timer, time);
1080 if (rq == this_rq()) {
1081 hrtimer_restart(timer);
1082 } else if (!rq->hrtick_csd_pending) {
1083 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1084 rq->hrtick_csd_pending = 1;
1088 static int
1089 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1091 int cpu = (int)(long)hcpu;
1093 switch (action) {
1094 case CPU_UP_CANCELED:
1095 case CPU_UP_CANCELED_FROZEN:
1096 case CPU_DOWN_PREPARE:
1097 case CPU_DOWN_PREPARE_FROZEN:
1098 case CPU_DEAD:
1099 case CPU_DEAD_FROZEN:
1100 hrtick_clear(cpu_rq(cpu));
1101 return NOTIFY_OK;
1104 return NOTIFY_DONE;
1107 static __init void init_hrtick(void)
1109 hotcpu_notifier(hotplug_hrtick, 0);
1111 #else
1113 * Called to set the hrtick timer state.
1115 * called with rq->lock held and irqs disabled
1117 static void hrtick_start(struct rq *rq, u64 delay)
1119 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1120 HRTIMER_MODE_REL_PINNED, 0);
1123 static inline void init_hrtick(void)
1126 #endif /* CONFIG_SMP */
1128 static void init_rq_hrtick(struct rq *rq)
1130 #ifdef CONFIG_SMP
1131 rq->hrtick_csd_pending = 0;
1133 rq->hrtick_csd.flags = 0;
1134 rq->hrtick_csd.func = __hrtick_start;
1135 rq->hrtick_csd.info = rq;
1136 #endif
1138 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1139 rq->hrtick_timer.function = hrtick;
1141 #else /* CONFIG_SCHED_HRTICK */
1142 static inline void hrtick_clear(struct rq *rq)
1146 static inline void init_rq_hrtick(struct rq *rq)
1150 static inline void init_hrtick(void)
1153 #endif /* CONFIG_SCHED_HRTICK */
1156 * resched_task - mark a task 'to be rescheduled now'.
1158 * On UP this means the setting of the need_resched flag, on SMP it
1159 * might also involve a cross-CPU call to trigger the scheduler on
1160 * the target CPU.
1162 #ifdef CONFIG_SMP
1164 #ifndef tsk_is_polling
1165 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1166 #endif
1168 static void resched_task(struct task_struct *p)
1170 int cpu;
1172 assert_raw_spin_locked(&task_rq(p)->lock);
1174 if (test_tsk_need_resched(p))
1175 return;
1177 set_tsk_need_resched(p);
1179 cpu = task_cpu(p);
1180 if (cpu == smp_processor_id())
1181 return;
1183 /* NEED_RESCHED must be visible before we test polling */
1184 smp_mb();
1185 if (!tsk_is_polling(p))
1186 smp_send_reschedule(cpu);
1189 static void resched_cpu(int cpu)
1191 struct rq *rq = cpu_rq(cpu);
1192 unsigned long flags;
1194 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1195 return;
1196 resched_task(cpu_curr(cpu));
1197 raw_spin_unlock_irqrestore(&rq->lock, flags);
1200 void force_cpu_resched(int cpu)
1202 struct rq *rq = cpu_rq(cpu);
1203 unsigned long flags;
1205 raw_spin_lock_irqsave(&rq->lock, flags);
1206 resched_task(cpu_curr(cpu));
1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
1210 #ifdef CONFIG_NO_HZ
1212 * In the semi idle case, use the nearest busy cpu for migrating timers
1213 * from an idle cpu. This is good for power-savings.
1215 * We don't do similar optimization for completely idle system, as
1216 * selecting an idle cpu will add more delays to the timers than intended
1217 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1219 int get_nohz_timer_target(void)
1221 int cpu = smp_processor_id();
1222 int i;
1223 struct sched_domain *sd;
1225 rcu_read_lock();
1226 for_each_domain(cpu, sd) {
1227 for_each_cpu(i, sched_domain_span(sd)) {
1228 if (!idle_cpu(i)) {
1229 cpu = i;
1230 goto unlock;
1234 unlock:
1235 rcu_read_unlock();
1236 return cpu;
1239 * When add_timer_on() enqueues a timer into the timer wheel of an
1240 * idle CPU then this timer might expire before the next timer event
1241 * which is scheduled to wake up that CPU. In case of a completely
1242 * idle system the next event might even be infinite time into the
1243 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1244 * leaves the inner idle loop so the newly added timer is taken into
1245 * account when the CPU goes back to idle and evaluates the timer
1246 * wheel for the next timer event.
1248 void wake_up_idle_cpu(int cpu)
1250 struct rq *rq = cpu_rq(cpu);
1252 if (cpu == smp_processor_id())
1253 return;
1256 * This is safe, as this function is called with the timer
1257 * wheel base lock of (cpu) held. When the CPU is on the way
1258 * to idle and has not yet set rq->curr to idle then it will
1259 * be serialized on the timer wheel base lock and take the new
1260 * timer into account automatically.
1262 if (rq->curr != rq->idle)
1263 return;
1266 * We can set TIF_RESCHED on the idle task of the other CPU
1267 * lockless. The worst case is that the other CPU runs the
1268 * idle task through an additional NOOP schedule()
1270 set_tsk_need_resched(rq->idle);
1272 /* NEED_RESCHED must be visible before we test polling */
1273 smp_mb();
1274 if (!tsk_is_polling(rq->idle))
1275 smp_send_reschedule(cpu);
1278 #endif /* CONFIG_NO_HZ */
1280 static u64 sched_avg_period(void)
1282 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1285 static void sched_avg_update(struct rq *rq)
1287 s64 period = sched_avg_period();
1289 while ((s64)(rq->clock - rq->age_stamp) > period) {
1291 * Inline assembly required to prevent the compiler
1292 * optimising this loop into a divmod call.
1293 * See __iter_div_u64_rem() for another example of this.
1295 asm("" : "+rm" (rq->age_stamp));
1296 rq->age_stamp += period;
1297 rq->rt_avg /= 2;
1301 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1303 rq->rt_avg += rt_delta;
1304 sched_avg_update(rq);
1307 #else /* !CONFIG_SMP */
1308 static void resched_task(struct task_struct *p)
1310 assert_raw_spin_locked(&task_rq(p)->lock);
1311 set_tsk_need_resched(p);
1314 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1318 static void sched_avg_update(struct rq *rq)
1322 void force_cpu_resched(int cpu)
1324 set_need_resched();
1326 #endif /* CONFIG_SMP */
1328 #if BITS_PER_LONG == 32
1329 # define WMULT_CONST (~0UL)
1330 #else
1331 # define WMULT_CONST (1UL << 32)
1332 #endif
1334 #define WMULT_SHIFT 32
1337 * Shift right and round:
1339 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1342 * delta *= weight / lw
1344 static unsigned long
1345 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1346 struct load_weight *lw)
1348 u64 tmp;
1351 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1352 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1353 * 2^SCHED_LOAD_RESOLUTION.
1355 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1356 tmp = (u64)delta_exec * scale_load_down(weight);
1357 else
1358 tmp = (u64)delta_exec;
1360 if (!lw->inv_weight) {
1361 unsigned long w = scale_load_down(lw->weight);
1363 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1364 lw->inv_weight = 1;
1365 else if (unlikely(!w))
1366 lw->inv_weight = WMULT_CONST;
1367 else
1368 lw->inv_weight = WMULT_CONST / w;
1372 * Check whether we'd overflow the 64-bit multiplication:
1374 if (unlikely(tmp > WMULT_CONST))
1375 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1376 WMULT_SHIFT/2);
1377 else
1378 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1380 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1383 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1385 lw->weight += inc;
1386 lw->inv_weight = 0;
1389 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1391 lw->weight -= dec;
1392 lw->inv_weight = 0;
1395 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1397 lw->weight = w;
1398 lw->inv_weight = 0;
1402 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1403 * of tasks with abnormal "nice" values across CPUs the contribution that
1404 * each task makes to its run queue's load is weighted according to its
1405 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1406 * scaled version of the new time slice allocation that they receive on time
1407 * slice expiry etc.
1410 #define WEIGHT_IDLEPRIO 3
1411 #define WMULT_IDLEPRIO 1431655765
1414 * Nice levels are multiplicative, with a gentle 10% change for every
1415 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1416 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1417 * that remained on nice 0.
1419 * The "10% effect" is relative and cumulative: from _any_ nice level,
1420 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1421 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1422 * If a task goes up by ~10% and another task goes down by ~10% then
1423 * the relative distance between them is ~25%.)
1425 static const int prio_to_weight[40] = {
1426 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1427 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1428 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1429 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1430 /* 0 */ 1024, 820, 655, 526, 423,
1431 /* 5 */ 335, 272, 215, 172, 137,
1432 /* 10 */ 110, 87, 70, 56, 45,
1433 /* 15 */ 36, 29, 23, 18, 15,
1437 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1439 * In cases where the weight does not change often, we can use the
1440 * precalculated inverse to speed up arithmetics by turning divisions
1441 * into multiplications:
1443 static const u32 prio_to_wmult[40] = {
1444 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1445 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1446 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1447 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1448 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1449 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1450 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1451 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1454 /* Time spent by the tasks of the cpu accounting group executing in ... */
1455 enum cpuacct_stat_index {
1456 CPUACCT_STAT_USER, /* ... user mode */
1457 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1459 CPUACCT_STAT_NSTATS,
1462 #ifdef CONFIG_CGROUP_CPUACCT
1463 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1464 static void cpuacct_update_stats(struct task_struct *tsk,
1465 enum cpuacct_stat_index idx, cputime_t val);
1466 #else
1467 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1468 static inline void cpuacct_update_stats(struct task_struct *tsk,
1469 enum cpuacct_stat_index idx, cputime_t val) {}
1470 #endif
1472 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1474 update_load_add(&rq->load, load);
1477 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1479 update_load_sub(&rq->load, load);
1482 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1483 typedef int (*tg_visitor)(struct task_group *, void *);
1486 * Iterate the full tree, calling @down when first entering a node and @up when
1487 * leaving it for the final time.
1489 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1491 struct task_group *parent, *child;
1492 int ret;
1494 rcu_read_lock();
1495 parent = &root_task_group;
1496 down:
1497 ret = (*down)(parent, data);
1498 if (ret)
1499 goto out_unlock;
1500 list_for_each_entry_rcu(child, &parent->children, siblings) {
1501 parent = child;
1502 goto down;
1505 continue;
1507 ret = (*up)(parent, data);
1508 if (ret)
1509 goto out_unlock;
1511 child = parent;
1512 parent = parent->parent;
1513 if (parent)
1514 goto up;
1515 out_unlock:
1516 rcu_read_unlock();
1518 return ret;
1521 static int tg_nop(struct task_group *tg, void *data)
1523 return 0;
1525 #endif
1527 #ifdef CONFIG_SMP
1528 /* Used instead of source_load when we know the type == 0 */
1529 static unsigned long weighted_cpuload(const int cpu)
1531 return cpu_rq(cpu)->load.weight;
1535 * Return a low guess at the load of a migration-source cpu weighted
1536 * according to the scheduling class and "nice" value.
1538 * We want to under-estimate the load of migration sources, to
1539 * balance conservatively.
1541 static unsigned long source_load(int cpu, int type)
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long total = weighted_cpuload(cpu);
1546 if (type == 0 || !sched_feat(LB_BIAS))
1547 return total;
1549 return min(rq->cpu_load[type-1], total);
1553 * Return a high guess at the load of a migration-target cpu weighted
1554 * according to the scheduling class and "nice" value.
1556 static unsigned long target_load(int cpu, int type)
1558 struct rq *rq = cpu_rq(cpu);
1559 unsigned long total = weighted_cpuload(cpu);
1561 if (type == 0 || !sched_feat(LB_BIAS))
1562 return total;
1564 return max(rq->cpu_load[type-1], total);
1567 static unsigned long power_of(int cpu)
1569 return cpu_rq(cpu)->cpu_power;
1572 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1574 static unsigned long cpu_avg_load_per_task(int cpu)
1576 struct rq *rq = cpu_rq(cpu);
1577 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1579 if (nr_running)
1580 rq->avg_load_per_task = rq->load.weight / nr_running;
1581 else
1582 rq->avg_load_per_task = 0;
1584 return rq->avg_load_per_task;
1587 #ifdef CONFIG_FAIR_GROUP_SCHED
1590 * Compute the cpu's hierarchical load factor for each task group.
1591 * This needs to be done in a top-down fashion because the load of a child
1592 * group is a fraction of its parents load.
1594 static int tg_load_down(struct task_group *tg, void *data)
1596 unsigned long load;
1597 long cpu = (long)data;
1599 if (!tg->parent) {
1600 load = cpu_rq(cpu)->load.weight;
1601 } else {
1602 load = tg->parent->cfs_rq[cpu]->h_load;
1603 load *= tg->se[cpu]->load.weight;
1604 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1607 tg->cfs_rq[cpu]->h_load = load;
1609 return 0;
1612 static void update_h_load(long cpu)
1614 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1617 #endif
1619 #ifdef CONFIG_PREEMPT
1621 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1624 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1625 * way at the expense of forcing extra atomic operations in all
1626 * invocations. This assures that the double_lock is acquired using the
1627 * same underlying policy as the spinlock_t on this architecture, which
1628 * reduces latency compared to the unfair variant below. However, it
1629 * also adds more overhead and therefore may reduce throughput.
1631 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1632 __releases(this_rq->lock)
1633 __acquires(busiest->lock)
1634 __acquires(this_rq->lock)
1636 raw_spin_unlock(&this_rq->lock);
1637 double_rq_lock(this_rq, busiest);
1639 return 1;
1642 #else
1644 * Unfair double_lock_balance: Optimizes throughput at the expense of
1645 * latency by eliminating extra atomic operations when the locks are
1646 * already in proper order on entry. This favors lower cpu-ids and will
1647 * grant the double lock to lower cpus over higher ids under contention,
1648 * regardless of entry order into the function.
1650 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1651 __releases(this_rq->lock)
1652 __acquires(busiest->lock)
1653 __acquires(this_rq->lock)
1655 int ret = 0;
1657 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1658 if (busiest < this_rq) {
1659 raw_spin_unlock(&this_rq->lock);
1660 raw_spin_lock(&busiest->lock);
1661 raw_spin_lock_nested(&this_rq->lock,
1662 SINGLE_DEPTH_NESTING);
1663 ret = 1;
1664 } else
1665 raw_spin_lock_nested(&busiest->lock,
1666 SINGLE_DEPTH_NESTING);
1668 return ret;
1671 #endif /* CONFIG_PREEMPT */
1674 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1676 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1678 if (unlikely(!irqs_disabled())) {
1679 /* printk() doesn't work good under rq->lock */
1680 raw_spin_unlock(&this_rq->lock);
1681 BUG_ON(1);
1684 return _double_lock_balance(this_rq, busiest);
1687 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1688 __releases(busiest->lock)
1690 raw_spin_unlock(&busiest->lock);
1691 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1695 * double_rq_lock - safely lock two runqueues
1697 * Note this does not disable interrupts like task_rq_lock,
1698 * you need to do so manually before calling.
1700 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1701 __acquires(rq1->lock)
1702 __acquires(rq2->lock)
1704 BUG_ON(!irqs_disabled());
1705 if (rq1 == rq2) {
1706 raw_spin_lock(&rq1->lock);
1707 __acquire(rq2->lock); /* Fake it out ;) */
1708 } else {
1709 if (rq1 < rq2) {
1710 raw_spin_lock(&rq1->lock);
1711 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1712 } else {
1713 raw_spin_lock(&rq2->lock);
1714 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1720 * double_rq_unlock - safely unlock two runqueues
1722 * Note this does not restore interrupts like task_rq_unlock,
1723 * you need to do so manually after calling.
1725 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1726 __releases(rq1->lock)
1727 __releases(rq2->lock)
1729 raw_spin_unlock(&rq1->lock);
1730 if (rq1 != rq2)
1731 raw_spin_unlock(&rq2->lock);
1732 else
1733 __release(rq2->lock);
1736 #else /* CONFIG_SMP */
1739 * double_rq_lock - safely lock two runqueues
1741 * Note this does not disable interrupts like task_rq_lock,
1742 * you need to do so manually before calling.
1744 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1745 __acquires(rq1->lock)
1746 __acquires(rq2->lock)
1748 BUG_ON(!irqs_disabled());
1749 BUG_ON(rq1 != rq2);
1750 raw_spin_lock(&rq1->lock);
1751 __acquire(rq2->lock); /* Fake it out ;) */
1755 * double_rq_unlock - safely unlock two runqueues
1757 * Note this does not restore interrupts like task_rq_unlock,
1758 * you need to do so manually after calling.
1760 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1761 __releases(rq1->lock)
1762 __releases(rq2->lock)
1764 BUG_ON(rq1 != rq2);
1765 raw_spin_unlock(&rq1->lock);
1766 __release(rq2->lock);
1769 #endif
1771 static void calc_load_account_idle(struct rq *this_rq);
1772 static void update_sysctl(void);
1773 static int get_update_sysctl_factor(void);
1774 static void update_cpu_load(struct rq *this_rq);
1776 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1778 set_task_rq(p, cpu);
1779 #ifdef CONFIG_SMP
1781 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1782 * successfuly executed on another CPU. We must ensure that updates of
1783 * per-task data have been completed by this moment.
1785 smp_wmb();
1786 task_thread_info(p)->cpu = cpu;
1787 #endif
1790 static const struct sched_class rt_sched_class;
1792 #define sched_class_highest (&stop_sched_class)
1793 #define for_each_class(class) \
1794 for (class = sched_class_highest; class; class = class->next)
1796 #include "sched_stats.h"
1798 static void inc_nr_running(struct rq *rq)
1800 rq->nr_running++;
1803 static void dec_nr_running(struct rq *rq)
1805 rq->nr_running--;
1808 static void set_load_weight(struct task_struct *p)
1810 int prio = p->static_prio - MAX_RT_PRIO;
1811 struct load_weight *load = &p->se.load;
1814 * SCHED_IDLE tasks get minimal weight:
1816 if (p->policy == SCHED_IDLE) {
1817 load->weight = scale_load(WEIGHT_IDLEPRIO);
1818 load->inv_weight = WMULT_IDLEPRIO;
1819 return;
1822 load->weight = scale_load(prio_to_weight[prio]);
1823 load->inv_weight = prio_to_wmult[prio];
1826 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1828 update_rq_clock(rq);
1829 sched_info_queued(p);
1830 p->sched_class->enqueue_task(rq, p, flags);
1833 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1835 update_rq_clock(rq);
1836 sched_info_dequeued(p);
1837 p->sched_class->dequeue_task(rq, p, flags);
1841 * activate_task - move a task to the runqueue.
1843 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1845 if (task_contributes_to_load(p))
1846 rq->nr_uninterruptible--;
1848 enqueue_task(rq, p, flags);
1849 inc_nr_running(rq);
1853 * deactivate_task - remove a task from the runqueue.
1855 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1857 if (task_contributes_to_load(p))
1858 rq->nr_uninterruptible++;
1860 dequeue_task(rq, p, flags);
1861 dec_nr_running(rq);
1864 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1867 * There are no locks covering percpu hardirq/softirq time.
1868 * They are only modified in account_system_vtime, on corresponding CPU
1869 * with interrupts disabled. So, writes are safe.
1870 * They are read and saved off onto struct rq in update_rq_clock().
1871 * This may result in other CPU reading this CPU's irq time and can
1872 * race with irq/account_system_vtime on this CPU. We would either get old
1873 * or new value with a side effect of accounting a slice of irq time to wrong
1874 * task when irq is in progress while we read rq->clock. That is a worthy
1875 * compromise in place of having locks on each irq in account_system_time.
1877 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1878 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1880 static DEFINE_PER_CPU(u64, irq_start_time);
1881 static int sched_clock_irqtime;
1883 void enable_sched_clock_irqtime(void)
1885 sched_clock_irqtime = 1;
1888 void disable_sched_clock_irqtime(void)
1890 sched_clock_irqtime = 0;
1893 #ifndef CONFIG_64BIT
1894 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1896 static inline void irq_time_write_begin(void)
1898 __this_cpu_inc(irq_time_seq.sequence);
1899 smp_wmb();
1902 static inline void irq_time_write_end(void)
1904 smp_wmb();
1905 __this_cpu_inc(irq_time_seq.sequence);
1908 static inline u64 irq_time_read(int cpu)
1910 u64 irq_time;
1911 unsigned seq;
1913 do {
1914 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1915 irq_time = per_cpu(cpu_softirq_time, cpu) +
1916 per_cpu(cpu_hardirq_time, cpu);
1917 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1919 return irq_time;
1921 #else /* CONFIG_64BIT */
1922 static inline void irq_time_write_begin(void)
1926 static inline void irq_time_write_end(void)
1930 static inline u64 irq_time_read(int cpu)
1932 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1934 #endif /* CONFIG_64BIT */
1937 * Called before incrementing preempt_count on {soft,}irq_enter
1938 * and before decrementing preempt_count on {soft,}irq_exit.
1940 void account_system_vtime(struct task_struct *curr)
1942 unsigned long flags;
1943 s64 delta;
1944 int cpu;
1946 if (!sched_clock_irqtime)
1947 return;
1949 local_irq_save(flags);
1951 cpu = smp_processor_id();
1952 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1953 __this_cpu_add(irq_start_time, delta);
1955 irq_time_write_begin();
1957 * We do not account for softirq time from ksoftirqd here.
1958 * We want to continue accounting softirq time to ksoftirqd thread
1959 * in that case, so as not to confuse scheduler with a special task
1960 * that do not consume any time, but still wants to run.
1962 if (hardirq_count())
1963 __this_cpu_add(cpu_hardirq_time, delta);
1964 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1965 __this_cpu_add(cpu_softirq_time, delta);
1967 irq_time_write_end();
1968 local_irq_restore(flags);
1970 EXPORT_SYMBOL_GPL(account_system_vtime);
1972 static void update_rq_clock_task(struct rq *rq, s64 delta)
1974 s64 irq_delta;
1976 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1979 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1980 * this case when a previous update_rq_clock() happened inside a
1981 * {soft,}irq region.
1983 * When this happens, we stop ->clock_task and only update the
1984 * prev_irq_time stamp to account for the part that fit, so that a next
1985 * update will consume the rest. This ensures ->clock_task is
1986 * monotonic.
1988 * It does however cause some slight miss-attribution of {soft,}irq
1989 * time, a more accurate solution would be to update the irq_time using
1990 * the current rq->clock timestamp, except that would require using
1991 * atomic ops.
1993 if (irq_delta > delta)
1994 irq_delta = delta;
1996 rq->prev_irq_time += irq_delta;
1997 delta -= irq_delta;
1998 rq->clock_task += delta;
2000 if (irq_delta && sched_feat(NONIRQ_POWER))
2001 sched_rt_avg_update(rq, irq_delta);
2004 static int irqtime_account_hi_update(void)
2006 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2007 unsigned long flags;
2008 u64 latest_ns;
2009 int ret = 0;
2011 local_irq_save(flags);
2012 latest_ns = this_cpu_read(cpu_hardirq_time);
2013 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2014 ret = 1;
2015 local_irq_restore(flags);
2016 return ret;
2019 static int irqtime_account_si_update(void)
2021 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2022 unsigned long flags;
2023 u64 latest_ns;
2024 int ret = 0;
2026 local_irq_save(flags);
2027 latest_ns = this_cpu_read(cpu_softirq_time);
2028 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2029 ret = 1;
2030 local_irq_restore(flags);
2031 return ret;
2034 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2036 #define sched_clock_irqtime (0)
2038 static void update_rq_clock_task(struct rq *rq, s64 delta)
2040 rq->clock_task += delta;
2043 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2045 #include "sched_idletask.c"
2046 #include "sched_fair.c"
2047 #include "sched_rt.c"
2048 #include "sched_autogroup.c"
2049 #include "sched_stoptask.c"
2050 #ifdef CONFIG_SCHED_DEBUG
2051 # include "sched_debug.c"
2052 #endif
2054 void sched_set_stop_task(int cpu, struct task_struct *stop)
2056 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2057 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2059 if (stop) {
2061 * Make it appear like a SCHED_FIFO task, its something
2062 * userspace knows about and won't get confused about.
2064 * Also, it will make PI more or less work without too
2065 * much confusion -- but then, stop work should not
2066 * rely on PI working anyway.
2068 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2070 stop->sched_class = &stop_sched_class;
2073 cpu_rq(cpu)->stop = stop;
2075 if (old_stop) {
2077 * Reset it back to a normal scheduling class so that
2078 * it can die in pieces.
2080 old_stop->sched_class = &rt_sched_class;
2085 * __normal_prio - return the priority that is based on the static prio
2087 static inline int __normal_prio(struct task_struct *p)
2089 return p->static_prio;
2093 * Calculate the expected normal priority: i.e. priority
2094 * without taking RT-inheritance into account. Might be
2095 * boosted by interactivity modifiers. Changes upon fork,
2096 * setprio syscalls, and whenever the interactivity
2097 * estimator recalculates.
2099 static inline int normal_prio(struct task_struct *p)
2101 int prio;
2103 if (task_has_rt_policy(p))
2104 prio = MAX_RT_PRIO-1 - p->rt_priority;
2105 else
2106 prio = __normal_prio(p);
2107 return prio;
2111 * Calculate the current priority, i.e. the priority
2112 * taken into account by the scheduler. This value might
2113 * be boosted by RT tasks, or might be boosted by
2114 * interactivity modifiers. Will be RT if the task got
2115 * RT-boosted. If not then it returns p->normal_prio.
2117 static int effective_prio(struct task_struct *p)
2119 p->normal_prio = normal_prio(p);
2121 * If we are RT tasks or we were boosted to RT priority,
2122 * keep the priority unchanged. Otherwise, update priority
2123 * to the normal priority:
2125 if (!rt_prio(p->prio))
2126 return p->normal_prio;
2127 return p->prio;
2131 * task_curr - is this task currently executing on a CPU?
2132 * @p: the task in question.
2134 inline int task_curr(const struct task_struct *p)
2136 return cpu_curr(task_cpu(p)) == p;
2139 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2140 const struct sched_class *prev_class,
2141 int oldprio)
2143 if (prev_class != p->sched_class) {
2144 if (prev_class->switched_from)
2145 prev_class->switched_from(rq, p);
2146 p->sched_class->switched_to(rq, p);
2147 } else if (oldprio != p->prio)
2148 p->sched_class->prio_changed(rq, p, oldprio);
2151 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2153 const struct sched_class *class;
2155 if (p->sched_class == rq->curr->sched_class) {
2156 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2157 } else {
2158 for_each_class(class) {
2159 if (class == rq->curr->sched_class)
2160 break;
2161 if (class == p->sched_class) {
2162 resched_task(rq->curr);
2163 break;
2169 * A queue event has occurred, and we're going to schedule. In
2170 * this case, we can save a useless back to back clock update.
2172 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2173 rq->skip_clock_update = 1;
2176 #ifdef CONFIG_SMP
2178 * Is this task likely cache-hot:
2180 static int
2181 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2183 s64 delta;
2185 if (p->sched_class != &fair_sched_class)
2186 return 0;
2188 if (unlikely(p->policy == SCHED_IDLE))
2189 return 0;
2192 * Buddy candidates are cache hot:
2194 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2195 (&p->se == cfs_rq_of(&p->se)->next ||
2196 &p->se == cfs_rq_of(&p->se)->last))
2197 return 1;
2199 if (sysctl_sched_migration_cost == -1)
2200 return 1;
2201 if (sysctl_sched_migration_cost == 0)
2202 return 0;
2204 delta = now - p->se.exec_start;
2206 return delta < (s64)sysctl_sched_migration_cost;
2209 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2211 #ifdef CONFIG_SCHED_DEBUG
2213 * We should never call set_task_cpu() on a blocked task,
2214 * ttwu() will sort out the placement.
2216 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2217 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2219 #ifdef CONFIG_LOCKDEP
2221 * The caller should hold either p->pi_lock or rq->lock, when changing
2222 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2224 * sched_move_task() holds both and thus holding either pins the cgroup,
2225 * see set_task_rq().
2227 * Furthermore, all task_rq users should acquire both locks, see
2228 * task_rq_lock().
2230 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2231 lockdep_is_held(&task_rq(p)->lock)));
2232 #endif
2233 #endif
2235 trace_sched_migrate_task(p, new_cpu);
2237 if (task_cpu(p) != new_cpu) {
2238 p->se.nr_migrations++;
2239 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2242 __set_task_cpu(p, new_cpu);
2245 struct migration_arg {
2246 struct task_struct *task;
2247 int dest_cpu;
2250 static int migration_cpu_stop(void *data);
2253 * wait_task_inactive - wait for a thread to unschedule.
2255 * If @match_state is nonzero, it's the @p->state value just checked and
2256 * not expected to change. If it changes, i.e. @p might have woken up,
2257 * then return zero. When we succeed in waiting for @p to be off its CPU,
2258 * we return a positive number (its total switch count). If a second call
2259 * a short while later returns the same number, the caller can be sure that
2260 * @p has remained unscheduled the whole time.
2262 * The caller must ensure that the task *will* unschedule sometime soon,
2263 * else this function might spin for a *long* time. This function can't
2264 * be called with interrupts off, or it may introduce deadlock with
2265 * smp_call_function() if an IPI is sent by the same process we are
2266 * waiting to become inactive.
2268 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2270 unsigned long flags;
2271 int running, on_rq;
2272 unsigned long ncsw;
2273 struct rq *rq;
2275 for (;;) {
2277 * We do the initial early heuristics without holding
2278 * any task-queue locks at all. We'll only try to get
2279 * the runqueue lock when things look like they will
2280 * work out!
2282 rq = task_rq(p);
2285 * If the task is actively running on another CPU
2286 * still, just relax and busy-wait without holding
2287 * any locks.
2289 * NOTE! Since we don't hold any locks, it's not
2290 * even sure that "rq" stays as the right runqueue!
2291 * But we don't care, since "task_running()" will
2292 * return false if the runqueue has changed and p
2293 * is actually now running somewhere else!
2295 while (task_running(rq, p)) {
2296 if (match_state && unlikely(p->state != match_state))
2297 return 0;
2298 cpu_relax();
2302 * Ok, time to look more closely! We need the rq
2303 * lock now, to be *sure*. If we're wrong, we'll
2304 * just go back and repeat.
2306 rq = task_rq_lock(p, &flags);
2307 trace_sched_wait_task(p);
2308 running = task_running(rq, p);
2309 on_rq = p->on_rq;
2310 ncsw = 0;
2311 if (!match_state || p->state == match_state)
2312 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2313 task_rq_unlock(rq, p, &flags);
2316 * If it changed from the expected state, bail out now.
2318 if (unlikely(!ncsw))
2319 break;
2322 * Was it really running after all now that we
2323 * checked with the proper locks actually held?
2325 * Oops. Go back and try again..
2327 if (unlikely(running)) {
2328 cpu_relax();
2329 continue;
2333 * It's not enough that it's not actively running,
2334 * it must be off the runqueue _entirely_, and not
2335 * preempted!
2337 * So if it was still runnable (but just not actively
2338 * running right now), it's preempted, and we should
2339 * yield - it could be a while.
2341 if (unlikely(on_rq)) {
2342 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2344 set_current_state(TASK_UNINTERRUPTIBLE);
2345 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2346 continue;
2350 * Ahh, all good. It wasn't running, and it wasn't
2351 * runnable, which means that it will never become
2352 * running in the future either. We're all done!
2354 break;
2357 return ncsw;
2360 /***
2361 * kick_process - kick a running thread to enter/exit the kernel
2362 * @p: the to-be-kicked thread
2364 * Cause a process which is running on another CPU to enter
2365 * kernel-mode, without any delay. (to get signals handled.)
2367 * NOTE: this function doesn't have to take the runqueue lock,
2368 * because all it wants to ensure is that the remote task enters
2369 * the kernel. If the IPI races and the task has been migrated
2370 * to another CPU then no harm is done and the purpose has been
2371 * achieved as well.
2373 void kick_process(struct task_struct *p)
2375 int cpu;
2377 preempt_disable();
2378 cpu = task_cpu(p);
2379 if ((cpu != smp_processor_id()) && task_curr(p))
2380 smp_send_reschedule(cpu);
2381 preempt_enable();
2383 EXPORT_SYMBOL_GPL(kick_process);
2384 #endif /* CONFIG_SMP */
2386 #ifdef CONFIG_SMP
2388 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2390 static int select_fallback_rq(int cpu, struct task_struct *p)
2392 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2393 enum { cpuset, possible, fail } state = cpuset;
2394 int dest_cpu;
2396 /* Look for allowed, online CPU in same node. */
2397 for_each_cpu_mask(dest_cpu, *nodemask) {
2398 if (!cpu_online(dest_cpu))
2399 continue;
2400 if (!cpu_active(dest_cpu))
2401 continue;
2402 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
2403 return dest_cpu;
2406 for (;;) {
2407 /* Any allowed, online CPU? */
2408 for_each_cpu_mask(dest_cpu, *tsk_cpus_allowed(p)) {
2409 if (!cpu_online(dest_cpu))
2410 continue;
2411 if (!cpu_active(dest_cpu))
2412 continue;
2413 goto out;
2416 switch (state) {
2417 case cpuset:
2418 /* No more Mr. Nice Guy. */
2419 cpuset_cpus_allowed_fallback(p);
2420 state = possible;
2421 break;
2423 case possible:
2424 do_set_cpus_allowed(p, cpu_possible_mask);
2425 state = fail;
2426 break;
2428 case fail:
2429 BUG();
2430 break;
2434 out:
2435 if (state != cpuset) {
2437 * Don't tell them about moving exiting tasks or
2438 * kernel threads (both mm NULL), since they never
2439 * leave kernel.
2441 if (p->mm && printk_ratelimit()) {
2442 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2443 task_pid_nr(p), p->comm, cpu);
2447 return dest_cpu;
2451 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2453 static inline
2454 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2456 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2459 * In order not to call set_task_cpu() on a blocking task we need
2460 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2461 * cpu.
2463 * Since this is common to all placement strategies, this lives here.
2465 * [ this allows ->select_task() to simply return task_cpu(p) and
2466 * not worry about this generic constraint ]
2468 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2469 !cpu_online(cpu)))
2470 cpu = select_fallback_rq(task_cpu(p), p);
2472 return cpu;
2475 static void update_avg(u64 *avg, u64 sample)
2477 s64 diff = sample - *avg;
2478 *avg += diff >> 3;
2480 #endif
2482 static void
2483 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2485 #ifdef CONFIG_SCHEDSTATS
2486 struct rq *rq = this_rq();
2488 #ifdef CONFIG_SMP
2489 int this_cpu = smp_processor_id();
2491 if (cpu == this_cpu) {
2492 schedstat_inc(rq, ttwu_local);
2493 schedstat_inc(p, se.statistics.nr_wakeups_local);
2494 } else {
2495 struct sched_domain *sd;
2497 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2498 rcu_read_lock();
2499 for_each_domain(this_cpu, sd) {
2500 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2501 schedstat_inc(sd, ttwu_wake_remote);
2502 break;
2505 rcu_read_unlock();
2508 if (wake_flags & WF_MIGRATED)
2509 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2511 #endif /* CONFIG_SMP */
2513 schedstat_inc(rq, ttwu_count);
2514 schedstat_inc(p, se.statistics.nr_wakeups);
2516 if (wake_flags & WF_SYNC)
2517 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2519 #endif /* CONFIG_SCHEDSTATS */
2522 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2524 activate_task(rq, p, en_flags);
2525 p->on_rq = 1;
2527 /* if a worker is waking up, notify workqueue */
2528 if (p->flags & PF_WQ_WORKER)
2529 wq_worker_waking_up(p, cpu_of(rq));
2533 * Mark the task runnable and perform wakeup-preemption.
2535 static void
2536 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2538 trace_sched_wakeup(p, true);
2539 check_preempt_curr(rq, p, wake_flags);
2541 p->state = TASK_RUNNING;
2542 #ifdef CONFIG_SMP
2543 if (p->sched_class->task_woken)
2544 p->sched_class->task_woken(rq, p);
2546 if (unlikely(rq->idle_stamp)) {
2547 u64 delta = rq->clock - rq->idle_stamp;
2548 u64 max = 2*sysctl_sched_migration_cost;
2550 if (delta > max)
2551 rq->avg_idle = max;
2552 else
2553 update_avg(&rq->avg_idle, delta);
2554 rq->idle_stamp = 0;
2556 #endif
2559 static void
2560 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2562 #ifdef CONFIG_SMP
2563 if (p->sched_contributes_to_load)
2564 rq->nr_uninterruptible--;
2565 #endif
2567 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2568 ttwu_do_wakeup(rq, p, wake_flags);
2572 * Called in case the task @p isn't fully descheduled from its runqueue,
2573 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2574 * since all we need to do is flip p->state to TASK_RUNNING, since
2575 * the task is still ->on_rq.
2577 static int ttwu_remote(struct task_struct *p, int wake_flags)
2579 struct rq *rq;
2580 int ret = 0;
2582 rq = __task_rq_lock(p);
2583 if (p->on_rq) {
2584 ttwu_do_wakeup(rq, p, wake_flags);
2585 ret = 1;
2587 __task_rq_unlock(rq);
2589 return ret;
2592 #ifdef CONFIG_SMP
2593 static void sched_ttwu_do_pending(struct task_struct *list)
2595 struct rq *rq = this_rq();
2597 raw_spin_lock(&rq->lock);
2599 while (list) {
2600 struct task_struct *p = list;
2601 list = list->wake_entry;
2602 ttwu_do_activate(rq, p, 0);
2605 raw_spin_unlock(&rq->lock);
2608 #ifdef CONFIG_HOTPLUG_CPU
2610 static void sched_ttwu_pending(void)
2612 struct rq *rq = this_rq();
2613 struct task_struct *list = xchg(&rq->wake_list, NULL);
2615 if (!list)
2616 return;
2618 sched_ttwu_do_pending(list);
2621 #endif /* CONFIG_HOTPLUG_CPU */
2623 void scheduler_ipi(void)
2625 struct rq *rq = this_rq();
2626 struct task_struct *list = xchg(&rq->wake_list, NULL);
2628 if (!list)
2629 return;
2632 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2633 * traditionally all their work was done from the interrupt return
2634 * path. Now that we actually do some work, we need to make sure
2635 * we do call them.
2637 * Some archs already do call them, luckily irq_enter/exit nest
2638 * properly.
2640 * Arguably we should visit all archs and update all handlers,
2641 * however a fair share of IPIs are still resched only so this would
2642 * somewhat pessimize the simple resched case.
2644 irq_enter();
2645 sched_ttwu_do_pending(list);
2646 irq_exit();
2649 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2651 struct rq *rq = cpu_rq(cpu);
2652 struct task_struct *next = rq->wake_list;
2654 for (;;) {
2655 struct task_struct *old = next;
2657 p->wake_entry = next;
2658 next = cmpxchg(&rq->wake_list, old, p);
2659 if (next == old)
2660 break;
2663 if (!next)
2664 smp_send_reschedule(cpu);
2667 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2668 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2670 struct rq *rq;
2671 int ret = 0;
2673 rq = __task_rq_lock(p);
2674 if (p->on_cpu) {
2675 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2676 ttwu_do_wakeup(rq, p, wake_flags);
2677 ret = 1;
2679 __task_rq_unlock(rq);
2681 return ret;
2684 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2685 #endif /* CONFIG_SMP */
2687 static void ttwu_queue(struct task_struct *p, int cpu)
2689 struct rq *rq = cpu_rq(cpu);
2691 #if defined(CONFIG_SMP)
2692 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2693 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2694 ttwu_queue_remote(p, cpu);
2695 return;
2697 #endif
2699 raw_spin_lock(&rq->lock);
2700 ttwu_do_activate(rq, p, 0);
2701 raw_spin_unlock(&rq->lock);
2705 * try_to_wake_up - wake up a thread
2706 * @p: the thread to be awakened
2707 * @state: the mask of task states that can be woken
2708 * @wake_flags: wake modifier flags (WF_*)
2710 * Put it on the run-queue if it's not already there. The "current"
2711 * thread is always on the run-queue (except when the actual
2712 * re-schedule is in progress), and as such you're allowed to do
2713 * the simpler "current->state = TASK_RUNNING" to mark yourself
2714 * runnable without the overhead of this.
2716 * Returns %true if @p was woken up, %false if it was already running
2717 * or @state didn't match @p's state.
2719 static int
2720 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2722 unsigned long flags;
2723 int cpu, success = 0;
2725 smp_wmb();
2726 raw_spin_lock_irqsave(&p->pi_lock, flags);
2727 if (!(p->state & state))
2728 goto out;
2730 success = 1; /* we're going to change ->state */
2731 cpu = task_cpu(p);
2733 if (p->on_rq && ttwu_remote(p, wake_flags))
2734 goto stat;
2736 #ifdef CONFIG_SMP
2738 * If the owning (remote) cpu is still in the middle of schedule() with
2739 * this task as prev, wait until its done referencing the task.
2741 while (p->on_cpu) {
2742 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2744 * In case the architecture enables interrupts in
2745 * context_switch(), we cannot busy wait, since that
2746 * would lead to deadlocks when an interrupt hits and
2747 * tries to wake up @prev. So bail and do a complete
2748 * remote wakeup.
2750 if (ttwu_activate_remote(p, wake_flags))
2751 goto stat;
2752 #else
2753 cpu_relax();
2754 #endif
2757 * Pairs with the smp_wmb() in finish_lock_switch().
2759 smp_rmb();
2761 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2762 p->state = TASK_WAKING;
2764 if (p->sched_class->task_waking)
2765 p->sched_class->task_waking(p);
2767 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2768 if (task_cpu(p) != cpu) {
2769 wake_flags |= WF_MIGRATED;
2770 set_task_cpu(p, cpu);
2772 #endif /* CONFIG_SMP */
2774 ttwu_queue(p, cpu);
2775 stat:
2776 ttwu_stat(p, cpu, wake_flags);
2777 out:
2778 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2780 return success;
2784 * try_to_wake_up_local - try to wake up a local task with rq lock held
2785 * @p: the thread to be awakened
2787 * Put @p on the run-queue if it's not already there. The caller must
2788 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2789 * the current task.
2791 static void try_to_wake_up_local(struct task_struct *p)
2793 struct rq *rq = task_rq(p);
2795 BUG_ON(rq != this_rq());
2796 BUG_ON(p == current);
2797 lockdep_assert_held(&rq->lock);
2799 if (!raw_spin_trylock(&p->pi_lock)) {
2800 raw_spin_unlock(&rq->lock);
2801 raw_spin_lock(&p->pi_lock);
2802 raw_spin_lock(&rq->lock);
2805 if (!(p->state & TASK_NORMAL))
2806 goto out;
2808 if (!p->on_rq)
2809 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2811 ttwu_do_wakeup(rq, p, 0);
2812 ttwu_stat(p, smp_processor_id(), 0);
2813 out:
2814 raw_spin_unlock(&p->pi_lock);
2818 * wake_up_process - Wake up a specific process
2819 * @p: The process to be woken up.
2821 * Attempt to wake up the nominated process and move it to the set of runnable
2822 * processes. Returns 1 if the process was woken up, 0 if it was already
2823 * running.
2825 * It may be assumed that this function implies a write memory barrier before
2826 * changing the task state if and only if any tasks are woken up.
2828 int wake_up_process(struct task_struct *p)
2830 return try_to_wake_up(p, TASK_ALL, 0);
2832 EXPORT_SYMBOL(wake_up_process);
2834 int wake_up_state(struct task_struct *p, unsigned int state)
2836 return try_to_wake_up(p, state, 0);
2840 * Perform scheduler related setup for a newly forked process p.
2841 * p is forked by current.
2843 * __sched_fork() is basic setup used by init_idle() too:
2845 static void __sched_fork(struct task_struct *p)
2847 p->on_rq = 0;
2849 p->se.on_rq = 0;
2850 p->se.exec_start = 0;
2851 p->se.sum_exec_runtime = 0;
2852 p->se.prev_sum_exec_runtime = 0;
2853 p->se.nr_migrations = 0;
2854 p->se.vruntime = 0;
2855 INIT_LIST_HEAD(&p->se.group_node);
2857 #ifdef CONFIG_SCHEDSTATS
2858 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2859 #endif
2861 INIT_LIST_HEAD(&p->rt.run_list);
2863 #ifdef CONFIG_PREEMPT_NOTIFIERS
2864 INIT_HLIST_HEAD(&p->preempt_notifiers);
2865 #endif
2869 * fork()/clone()-time setup:
2871 void sched_fork(struct task_struct *p)
2873 unsigned long flags;
2874 int cpu = get_cpu();
2876 __sched_fork(p);
2878 * We mark the process as running here. This guarantees that
2879 * nobody will actually run it, and a signal or other external
2880 * event cannot wake it up and insert it on the runqueue either.
2882 p->state = TASK_RUNNING;
2885 * Revert to default priority/policy on fork if requested.
2887 if (unlikely(p->sched_reset_on_fork)) {
2888 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2889 p->policy = SCHED_NORMAL;
2890 p->normal_prio = p->static_prio;
2893 if (PRIO_TO_NICE(p->static_prio) < 0) {
2894 p->static_prio = NICE_TO_PRIO(0);
2895 p->normal_prio = p->static_prio;
2896 set_load_weight(p);
2900 * We don't need the reset flag anymore after the fork. It has
2901 * fulfilled its duty:
2903 p->sched_reset_on_fork = 0;
2907 * Make sure we do not leak PI boosting priority to the child.
2909 p->prio = current->normal_prio;
2911 if (!rt_prio(p->prio))
2912 p->sched_class = &fair_sched_class;
2914 if (p->sched_class->task_fork)
2915 p->sched_class->task_fork(p);
2918 * The child is not yet in the pid-hash so no cgroup attach races,
2919 * and the cgroup is pinned to this child due to cgroup_fork()
2920 * is ran before sched_fork().
2922 * Silence PROVE_RCU.
2924 raw_spin_lock_irqsave(&p->pi_lock, flags);
2925 set_task_cpu(p, cpu);
2926 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2928 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2929 if (likely(sched_info_on()))
2930 memset(&p->sched_info, 0, sizeof(p->sched_info));
2931 #endif
2932 #if defined(CONFIG_SMP)
2933 p->on_cpu = 0;
2934 #endif
2935 #ifdef CONFIG_PREEMPT
2936 /* Want to start with kernel preemption disabled. */
2937 task_thread_info(p)->preempt_count = 1;
2938 #endif
2939 #ifdef CONFIG_SMP
2940 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2941 #endif
2943 put_cpu();
2946 #ifdef CONFIG_PREEMPT_COUNT_CPU
2949 * Fetch the preempt count of some cpu's current task. Must be called
2950 * with interrupts blocked. Stale return value.
2952 * No locking needed as this always wins the race with context-switch-out
2953 * + task destruction, since that is so heavyweight. The smp_rmb() is
2954 * to protect the pointers in that race, not the data being pointed to
2955 * (which, being guaranteed stale, can stand a bit of fuzziness).
2957 int preempt_count_cpu(int cpu)
2959 smp_rmb(); /* stop data prefetch until program ctr gets here */
2960 return task_thread_info(cpu_curr(cpu))->preempt_count;
2962 #endif
2965 * wake_up_new_task - wake up a newly created task for the first time.
2967 * This function will do some initial scheduler statistics housekeeping
2968 * that must be done for every newly created context, then puts the task
2969 * on the runqueue and wakes it.
2971 void wake_up_new_task(struct task_struct *p)
2973 unsigned long flags;
2974 struct rq *rq;
2976 raw_spin_lock_irqsave(&p->pi_lock, flags);
2977 #ifdef CONFIG_SMP
2979 * Fork balancing, do it here and not earlier because:
2980 * - cpus_allowed can change in the fork path
2981 * - any previously selected cpu might disappear through hotplug
2983 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2984 #endif
2986 rq = __task_rq_lock(p);
2987 activate_task(rq, p, 0);
2988 p->on_rq = 1;
2989 trace_sched_wakeup_new(p, true);
2990 check_preempt_curr(rq, p, WF_FORK);
2991 #ifdef CONFIG_SMP
2992 if (p->sched_class->task_woken)
2993 p->sched_class->task_woken(rq, p);
2994 #endif
2995 task_rq_unlock(rq, p, &flags);
2998 #ifdef CONFIG_PREEMPT_NOTIFIERS
3001 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3002 * @notifier: notifier struct to register
3004 void preempt_notifier_register(struct preempt_notifier *notifier)
3006 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3008 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3011 * preempt_notifier_unregister - no longer interested in preemption notifications
3012 * @notifier: notifier struct to unregister
3014 * This is safe to call from within a preemption notifier.
3016 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3018 hlist_del(&notifier->link);
3020 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3022 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3024 struct preempt_notifier *notifier;
3025 struct hlist_node *node;
3027 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3028 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3031 static void
3032 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3033 struct task_struct *next)
3035 struct preempt_notifier *notifier;
3036 struct hlist_node *node;
3038 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3039 notifier->ops->sched_out(notifier, next);
3042 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3044 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3048 static void
3049 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3050 struct task_struct *next)
3054 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3057 * prepare_task_switch - prepare to switch tasks
3058 * @rq: the runqueue preparing to switch
3059 * @prev: the current task that is being switched out
3060 * @next: the task we are going to switch to.
3062 * This is called with the rq lock held and interrupts off. It must
3063 * be paired with a subsequent finish_task_switch after the context
3064 * switch.
3066 * prepare_task_switch sets up locking and calls architecture specific
3067 * hooks.
3069 static inline void
3070 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3071 struct task_struct *next)
3073 sched_info_switch(prev, next);
3074 perf_event_task_sched_out(prev, next);
3075 fire_sched_out_preempt_notifiers(prev, next);
3076 prepare_lock_switch(rq, next);
3077 prepare_arch_switch(next);
3078 trace_sched_switch(prev, next);
3082 * finish_task_switch - clean up after a task-switch
3083 * @rq: runqueue associated with task-switch
3084 * @prev: the thread we just switched away from.
3086 * finish_task_switch must be called after the context switch, paired
3087 * with a prepare_task_switch call before the context switch.
3088 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3089 * and do any other architecture-specific cleanup actions.
3091 * Note that we may have delayed dropping an mm in context_switch(). If
3092 * so, we finish that here outside of the runqueue lock. (Doing it
3093 * with the lock held can cause deadlocks; see schedule() for
3094 * details.)
3096 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3097 __releases(rq->lock)
3099 struct mm_struct *mm = rq->prev_mm;
3100 long prev_state;
3102 rq->prev_mm = NULL;
3105 * A task struct has one reference for the use as "current".
3106 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3107 * schedule one last time. The schedule call will never return, and
3108 * the scheduled task must drop that reference.
3109 * The test for TASK_DEAD must occur while the runqueue locks are
3110 * still held, otherwise prev could be scheduled on another cpu, die
3111 * there before we look at prev->state, and then the reference would
3112 * be dropped twice.
3113 * Manfred Spraul <manfred@colorfullife.com>
3115 prev_state = prev->state;
3116 finish_arch_switch(prev);
3117 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3118 local_irq_disable();
3119 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3120 perf_event_task_sched_in(current);
3121 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3122 local_irq_enable();
3123 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3124 finish_lock_switch(rq, prev);
3126 fire_sched_in_preempt_notifiers(current);
3127 if (mm)
3128 mmdrop(mm);
3129 if (unlikely(prev_state == TASK_DEAD)) {
3131 * Remove function-return probe instances associated with this
3132 * task and put them back on the free list.
3134 kprobe_flush_task(prev);
3135 put_task_struct(prev);
3139 #ifdef CONFIG_SMP
3141 /* assumes rq->lock is held */
3142 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3144 if (prev->sched_class->pre_schedule)
3145 prev->sched_class->pre_schedule(rq, prev);
3148 /* rq->lock is NOT held, but preemption is disabled */
3149 static inline void post_schedule(struct rq *rq)
3151 if (rq->post_schedule) {
3152 unsigned long flags;
3154 raw_spin_lock_irqsave(&rq->lock, flags);
3155 if (rq->curr->sched_class->post_schedule)
3156 rq->curr->sched_class->post_schedule(rq);
3157 raw_spin_unlock_irqrestore(&rq->lock, flags);
3159 rq->post_schedule = 0;
3163 #else
3165 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3169 static inline void post_schedule(struct rq *rq)
3173 #endif
3176 * schedule_tail - first thing a freshly forked thread must call.
3177 * @prev: the thread we just switched away from.
3179 asmlinkage void schedule_tail(struct task_struct *prev)
3180 __releases(rq->lock)
3182 struct rq *rq = this_rq();
3184 finish_task_switch(rq, prev);
3187 * FIXME: do we need to worry about rq being invalidated by the
3188 * task_switch?
3190 post_schedule(rq);
3192 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3193 /* In this case, finish_task_switch does not reenable preemption */
3194 preempt_enable();
3195 #endif
3196 if (current->set_child_tid)
3197 put_user(task_pid_vnr(current), current->set_child_tid);
3201 * context_switch - switch to the new MM and the new
3202 * thread's register state.
3204 static inline void
3205 context_switch(struct rq *rq, struct task_struct *prev,
3206 struct task_struct *next)
3208 struct mm_struct *mm, *oldmm;
3210 prepare_task_switch(rq, prev, next);
3212 mm = next->mm;
3213 oldmm = prev->active_mm;
3215 * For paravirt, this is coupled with an exit in switch_to to
3216 * combine the page table reload and the switch backend into
3217 * one hypercall.
3219 arch_start_context_switch(prev);
3221 if (!mm) {
3222 next->active_mm = oldmm;
3223 atomic_inc(&oldmm->mm_count);
3224 enter_lazy_tlb(oldmm, next);
3225 } else
3226 switch_mm(oldmm, mm, next);
3228 if (!prev->mm) {
3229 prev->active_mm = NULL;
3230 rq->prev_mm = oldmm;
3233 * Since the runqueue lock will be released by the next
3234 * task (which is an invalid locking op but in the case
3235 * of the scheduler it's an obvious special-case), so we
3236 * do an early lockdep release here:
3238 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3239 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3240 #endif
3242 /* Here we just switch the register state and the stack. */
3243 switch_to(prev, next, prev);
3245 barrier();
3247 * this_rq must be evaluated again because prev may have moved
3248 * CPUs since it called schedule(), thus the 'rq' on its stack
3249 * frame will be invalid.
3251 finish_task_switch(this_rq(), prev);
3255 * nr_running, nr_uninterruptible and nr_context_switches:
3257 * externally visible scheduler statistics: current number of runnable
3258 * threads, current number of uninterruptible-sleeping threads, total
3259 * number of context switches performed since bootup.
3261 unsigned long nr_running(void)
3263 unsigned long i, sum = 0;
3265 for_each_online_cpu(i)
3266 sum += cpu_rq(i)->nr_running;
3268 return sum;
3270 EXPORT_SYMBOL_GPL(nr_running);
3272 unsigned long nr_uninterruptible(void)
3274 unsigned long i, sum = 0;
3276 for_each_possible_cpu(i)
3277 sum += cpu_rq(i)->nr_uninterruptible;
3280 * Since we read the counters lockless, it might be slightly
3281 * inaccurate. Do not allow it to go below zero though:
3283 if (unlikely((long)sum < 0))
3284 sum = 0;
3286 return sum;
3289 unsigned long long nr_context_switches(void)
3291 int i;
3292 unsigned long long sum = 0;
3294 for_each_possible_cpu(i)
3295 sum += cpu_rq(i)->nr_switches;
3297 return sum;
3300 unsigned long nr_iowait(void)
3302 unsigned long i, sum = 0;
3304 for_each_possible_cpu(i)
3305 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3307 return sum;
3310 unsigned long nr_iowait_cpu(int cpu)
3312 struct rq *this = cpu_rq(cpu);
3313 return atomic_read(&this->nr_iowait);
3316 unsigned long this_cpu_load(void)
3318 struct rq *this = this_rq();
3319 return this->cpu_load[0];
3323 /* Variables and functions for calc_load */
3324 static atomic_long_t calc_load_tasks;
3325 static unsigned long calc_load_update;
3326 unsigned long avenrun[3];
3327 EXPORT_SYMBOL(avenrun);
3329 static long calc_load_fold_active(struct rq *this_rq)
3331 long nr_active, delta = 0;
3333 nr_active = this_rq->nr_running;
3334 nr_active += (long) this_rq->nr_uninterruptible;
3336 if (nr_active != this_rq->calc_load_active) {
3337 delta = nr_active - this_rq->calc_load_active;
3338 this_rq->calc_load_active = nr_active;
3341 return delta;
3344 static unsigned long
3345 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3347 load *= exp;
3348 load += active * (FIXED_1 - exp);
3349 load += 1UL << (FSHIFT - 1);
3350 return load >> FSHIFT;
3353 #ifdef CONFIG_NO_HZ
3355 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3357 * When making the ILB scale, we should try to pull this in as well.
3359 static atomic_long_t calc_load_tasks_idle;
3361 static void calc_load_account_idle(struct rq *this_rq)
3363 long delta;
3365 delta = calc_load_fold_active(this_rq);
3366 if (delta)
3367 atomic_long_add(delta, &calc_load_tasks_idle);
3370 static long calc_load_fold_idle(void)
3372 long delta = 0;
3375 * Its got a race, we don't care...
3377 if (atomic_long_read(&calc_load_tasks_idle))
3378 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3380 return delta;
3384 * fixed_power_int - compute: x^n, in O(log n) time
3386 * @x: base of the power
3387 * @frac_bits: fractional bits of @x
3388 * @n: power to raise @x to.
3390 * By exploiting the relation between the definition of the natural power
3391 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3392 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3393 * (where: n_i \elem {0, 1}, the binary vector representing n),
3394 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3395 * of course trivially computable in O(log_2 n), the length of our binary
3396 * vector.
3398 static unsigned long
3399 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3401 unsigned long result = 1UL << frac_bits;
3403 if (n) for (;;) {
3404 if (n & 1) {
3405 result *= x;
3406 result += 1UL << (frac_bits - 1);
3407 result >>= frac_bits;
3409 n >>= 1;
3410 if (!n)
3411 break;
3412 x *= x;
3413 x += 1UL << (frac_bits - 1);
3414 x >>= frac_bits;
3417 return result;
3421 * a1 = a0 * e + a * (1 - e)
3423 * a2 = a1 * e + a * (1 - e)
3424 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3425 * = a0 * e^2 + a * (1 - e) * (1 + e)
3427 * a3 = a2 * e + a * (1 - e)
3428 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3429 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3431 * ...
3433 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3434 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3435 * = a0 * e^n + a * (1 - e^n)
3437 * [1] application of the geometric series:
3439 * n 1 - x^(n+1)
3440 * S_n := \Sum x^i = -------------
3441 * i=0 1 - x
3443 static unsigned long
3444 calc_load_n(unsigned long load, unsigned long exp,
3445 unsigned long active, unsigned int n)
3448 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3452 * NO_HZ can leave us missing all per-cpu ticks calling
3453 * calc_load_account_active(), but since an idle CPU folds its delta into
3454 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3455 * in the pending idle delta if our idle period crossed a load cycle boundary.
3457 * Once we've updated the global active value, we need to apply the exponential
3458 * weights adjusted to the number of cycles missed.
3460 static void calc_global_nohz(void)
3462 long delta, active, n;
3465 * If we crossed a calc_load_update boundary, make sure to fold
3466 * any pending idle changes, the respective CPUs might have
3467 * missed the tick driven calc_load_account_active() update
3468 * due to NO_HZ.
3470 delta = calc_load_fold_idle();
3471 if (delta)
3472 atomic_long_add(delta, &calc_load_tasks);
3475 * It could be the one fold was all it took, we done!
3477 if (time_before(jiffies, calc_load_update + 10))
3478 return;
3481 * Catch-up, fold however many we are behind still
3483 delta = jiffies - calc_load_update - 10;
3484 n = 1 + (delta / LOAD_FREQ);
3486 active = atomic_long_read(&calc_load_tasks);
3487 active = active > 0 ? active * FIXED_1 : 0;
3489 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3490 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3491 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3493 calc_load_update += n * LOAD_FREQ;
3495 #else
3496 static void calc_load_account_idle(struct rq *this_rq)
3500 static inline long calc_load_fold_idle(void)
3502 return 0;
3505 static void calc_global_nohz(void)
3508 #endif
3511 * get_avenrun - get the load average array
3512 * @loads: pointer to dest load array
3513 * @offset: offset to add
3514 * @shift: shift count to shift the result left
3516 * These values are estimates at best, so no need for locking.
3518 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3520 loads[0] = (avenrun[0] + offset) << shift;
3521 loads[1] = (avenrun[1] + offset) << shift;
3522 loads[2] = (avenrun[2] + offset) << shift;
3526 * calc_load - update the avenrun load estimates 10 ticks after the
3527 * CPUs have updated calc_load_tasks.
3529 void calc_global_load(unsigned long ticks)
3531 long active;
3533 if (time_before(jiffies, calc_load_update + 10))
3534 return;
3536 active = atomic_long_read(&calc_load_tasks);
3537 active = active > 0 ? active * FIXED_1 : 0;
3539 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3540 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3541 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3543 calc_load_update += LOAD_FREQ;
3546 * Account one period with whatever state we found before
3547 * folding in the nohz state and ageing the entire idle period.
3549 * This avoids loosing a sample when we go idle between
3550 * calc_load_account_active() (10 ticks ago) and now and thus
3551 * under-accounting.
3553 calc_global_nohz();
3557 * Called from update_cpu_load() to periodically update this CPU's
3558 * active count.
3560 static void calc_load_account_active(struct rq *this_rq)
3562 long delta;
3564 if (time_before(jiffies, this_rq->calc_load_update))
3565 return;
3567 delta = calc_load_fold_active(this_rq);
3568 delta += calc_load_fold_idle();
3569 if (delta)
3570 atomic_long_add(delta, &calc_load_tasks);
3572 this_rq->calc_load_update += LOAD_FREQ;
3576 * The exact cpuload at various idx values, calculated at every tick would be
3577 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3579 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3580 * on nth tick when cpu may be busy, then we have:
3581 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3582 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3584 * decay_load_missed() below does efficient calculation of
3585 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3586 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3588 * The calculation is approximated on a 128 point scale.
3589 * degrade_zero_ticks is the number of ticks after which load at any
3590 * particular idx is approximated to be zero.
3591 * degrade_factor is a precomputed table, a row for each load idx.
3592 * Each column corresponds to degradation factor for a power of two ticks,
3593 * based on 128 point scale.
3594 * Example:
3595 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3596 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3598 * With this power of 2 load factors, we can degrade the load n times
3599 * by looking at 1 bits in n and doing as many mult/shift instead of
3600 * n mult/shifts needed by the exact degradation.
3602 #define DEGRADE_SHIFT 7
3603 static const unsigned char
3604 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3605 static const unsigned char
3606 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3607 {0, 0, 0, 0, 0, 0, 0, 0},
3608 {64, 32, 8, 0, 0, 0, 0, 0},
3609 {96, 72, 40, 12, 1, 0, 0},
3610 {112, 98, 75, 43, 15, 1, 0},
3611 {120, 112, 98, 76, 45, 16, 2} };
3614 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3615 * would be when CPU is idle and so we just decay the old load without
3616 * adding any new load.
3618 static unsigned long
3619 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3621 int j = 0;
3623 if (!missed_updates)
3624 return load;
3626 if (missed_updates >= degrade_zero_ticks[idx])
3627 return 0;
3629 if (idx == 1)
3630 return load >> missed_updates;
3632 while (missed_updates) {
3633 if (missed_updates % 2)
3634 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3636 missed_updates >>= 1;
3637 j++;
3639 return load;
3643 * Update rq->cpu_load[] statistics. This function is usually called every
3644 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3645 * every tick. We fix it up based on jiffies.
3647 static void update_cpu_load(struct rq *this_rq)
3649 unsigned long this_load = this_rq->load.weight;
3650 unsigned long curr_jiffies = jiffies;
3651 unsigned long pending_updates;
3652 int i, scale;
3654 this_rq->nr_load_updates++;
3656 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3657 if (curr_jiffies == this_rq->last_load_update_tick)
3658 return;
3660 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3661 this_rq->last_load_update_tick = curr_jiffies;
3663 /* Update our load: */
3664 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3665 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3666 unsigned long old_load, new_load;
3668 /* scale is effectively 1 << i now, and >> i divides by scale */
3670 old_load = this_rq->cpu_load[i];
3671 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3672 new_load = this_load;
3674 * Round up the averaging division if load is increasing. This
3675 * prevents us from getting stuck on 9 if the load is 10, for
3676 * example.
3678 if (new_load > old_load)
3679 new_load += scale - 1;
3681 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3684 sched_avg_update(this_rq);
3687 static void update_cpu_load_active(struct rq *this_rq)
3689 update_cpu_load(this_rq);
3691 calc_load_account_active(this_rq);
3694 #ifdef CONFIG_SMP
3697 * sched_exec - execve() is a valuable balancing opportunity, because at
3698 * this point the task has the smallest effective memory and cache footprint.
3700 void sched_exec(void)
3702 struct task_struct *p = current;
3703 unsigned long flags;
3704 int dest_cpu;
3706 raw_spin_lock_irqsave(&p->pi_lock, flags);
3707 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3708 if (dest_cpu == smp_processor_id())
3709 goto unlock;
3711 if (likely(cpu_active(dest_cpu))) {
3712 struct migration_arg arg = { p, dest_cpu };
3714 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3715 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3716 return;
3718 unlock:
3719 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3722 #endif
3724 DEFINE_PER_CPU(struct kernel_stat, kstat);
3726 EXPORT_PER_CPU_SYMBOL(kstat);
3729 * Return any ns on the sched_clock that have not yet been accounted in
3730 * @p in case that task is currently running.
3732 * Called with task_rq_lock() held on @rq.
3734 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3736 u64 ns = 0;
3738 if (task_current(rq, p)) {
3739 update_rq_clock(rq);
3740 ns = rq->clock_task - p->se.exec_start;
3741 if ((s64)ns < 0)
3742 ns = 0;
3745 return ns;
3748 unsigned long long task_delta_exec(struct task_struct *p)
3750 unsigned long flags;
3751 struct rq *rq;
3752 u64 ns = 0;
3754 rq = task_rq_lock(p, &flags);
3755 ns = do_task_delta_exec(p, rq);
3756 task_rq_unlock(rq, p, &flags);
3758 return ns;
3762 * Return accounted runtime for the task.
3763 * In case the task is currently running, return the runtime plus current's
3764 * pending runtime that have not been accounted yet.
3766 unsigned long long task_sched_runtime(struct task_struct *p)
3768 unsigned long flags;
3769 struct rq *rq;
3770 u64 ns = 0;
3772 rq = task_rq_lock(p, &flags);
3773 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3774 task_rq_unlock(rq, p, &flags);
3776 return ns;
3780 * Account user cpu time to a process.
3781 * @p: the process that the cpu time gets accounted to
3782 * @cputime: the cpu time spent in user space since the last update
3783 * @cputime_scaled: cputime scaled by cpu frequency
3785 void account_user_time(struct task_struct *p, cputime_t cputime,
3786 cputime_t cputime_scaled)
3788 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3789 cputime64_t tmp;
3791 /* Add user time to process. */
3792 p->utime = cputime_add(p->utime, cputime);
3793 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3794 account_group_user_time(p, cputime);
3796 /* Add user time to cpustat. */
3797 tmp = cputime_to_cputime64(cputime);
3798 if (TASK_NICE(p) > 0)
3799 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3800 else
3801 cpustat->user = cputime64_add(cpustat->user, tmp);
3803 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3804 /* Account for user time used */
3805 acct_update_integrals(p);
3809 * Account guest cpu time to a process.
3810 * @p: the process that the cpu time gets accounted to
3811 * @cputime: the cpu time spent in virtual machine since the last update
3812 * @cputime_scaled: cputime scaled by cpu frequency
3814 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3815 cputime_t cputime_scaled)
3817 cputime64_t tmp;
3818 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3820 tmp = cputime_to_cputime64(cputime);
3822 /* Add guest time to process. */
3823 p->utime = cputime_add(p->utime, cputime);
3824 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3825 account_group_user_time(p, cputime);
3826 p->gtime = cputime_add(p->gtime, cputime);
3828 /* Add guest time to cpustat. */
3829 if (TASK_NICE(p) > 0) {
3830 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3831 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3832 } else {
3833 cpustat->user = cputime64_add(cpustat->user, tmp);
3834 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3839 * Account system cpu time to a process and desired cpustat field
3840 * @p: the process that the cpu time gets accounted to
3841 * @cputime: the cpu time spent in kernel space since the last update
3842 * @cputime_scaled: cputime scaled by cpu frequency
3843 * @target_cputime64: pointer to cpustat field that has to be updated
3845 static inline
3846 void __account_system_time(struct task_struct *p, cputime_t cputime,
3847 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3849 cputime64_t tmp = cputime_to_cputime64(cputime);
3851 /* Add system time to process. */
3852 p->stime = cputime_add(p->stime, cputime);
3853 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3854 account_group_system_time(p, cputime);
3856 /* Add system time to cpustat. */
3857 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3858 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3860 /* Account for system time used */
3861 acct_update_integrals(p);
3865 * Account system cpu time to a process.
3866 * @p: the process that the cpu time gets accounted to
3867 * @hardirq_offset: the offset to subtract from hardirq_count()
3868 * @cputime: the cpu time spent in kernel space since the last update
3869 * @cputime_scaled: cputime scaled by cpu frequency
3871 void account_system_time(struct task_struct *p, int hardirq_offset,
3872 cputime_t cputime, cputime_t cputime_scaled)
3874 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3875 cputime64_t *target_cputime64;
3877 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3878 account_guest_time(p, cputime, cputime_scaled);
3879 return;
3882 if (hardirq_count() - hardirq_offset)
3883 target_cputime64 = &cpustat->irq;
3884 else if (in_serving_softirq())
3885 target_cputime64 = &cpustat->softirq;
3886 else
3887 target_cputime64 = &cpustat->system;
3889 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3893 * Account for involuntary wait time.
3894 * @cputime: the cpu time spent in involuntary wait
3896 void account_steal_time(cputime_t cputime)
3898 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3899 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3901 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3905 * Account for idle time.
3906 * @cputime: the cpu time spent in idle wait
3908 void account_idle_time(cputime_t cputime)
3910 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3911 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3912 struct rq *rq = this_rq();
3914 if (atomic_read(&rq->nr_iowait) > 0)
3915 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3916 else
3917 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3920 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3922 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3924 * Account a tick to a process and cpustat
3925 * @p: the process that the cpu time gets accounted to
3926 * @user_tick: is the tick from userspace
3927 * @rq: the pointer to rq
3929 * Tick demultiplexing follows the order
3930 * - pending hardirq update
3931 * - pending softirq update
3932 * - user_time
3933 * - idle_time
3934 * - system time
3935 * - check for guest_time
3936 * - else account as system_time
3938 * Check for hardirq is done both for system and user time as there is
3939 * no timer going off while we are on hardirq and hence we may never get an
3940 * opportunity to update it solely in system time.
3941 * p->stime and friends are only updated on system time and not on irq
3942 * softirq as those do not count in task exec_runtime any more.
3944 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3945 struct rq *rq)
3947 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3948 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3949 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3951 if (irqtime_account_hi_update()) {
3952 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3953 } else if (irqtime_account_si_update()) {
3954 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3955 } else if (this_cpu_ksoftirqd() == p) {
3957 * ksoftirqd time do not get accounted in cpu_softirq_time.
3958 * So, we have to handle it separately here.
3959 * Also, p->stime needs to be updated for ksoftirqd.
3961 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3962 &cpustat->softirq);
3963 } else if (user_tick) {
3964 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3965 } else if (p == rq->idle) {
3966 account_idle_time(cputime_one_jiffy);
3967 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3968 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3969 } else {
3970 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3971 &cpustat->system);
3975 static void irqtime_account_idle_ticks(int ticks)
3977 int i;
3978 struct rq *rq = this_rq();
3980 for (i = 0; i < ticks; i++)
3981 irqtime_account_process_tick(current, 0, rq);
3983 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3984 static void irqtime_account_idle_ticks(int ticks) {}
3985 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3986 struct rq *rq) {}
3987 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3990 * Account a single tick of cpu time.
3991 * @p: the process that the cpu time gets accounted to
3992 * @user_tick: indicates if the tick is a user or a system tick
3994 void account_process_tick(struct task_struct *p, int user_tick)
3996 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3997 struct rq *rq = this_rq();
3999 if (sched_clock_irqtime) {
4000 irqtime_account_process_tick(p, user_tick, rq);
4001 return;
4004 if (user_tick)
4005 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4006 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4007 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4008 one_jiffy_scaled);
4009 else
4010 account_idle_time(cputime_one_jiffy);
4014 * Account multiple ticks of steal time.
4015 * @p: the process from which the cpu time has been stolen
4016 * @ticks: number of stolen ticks
4018 void account_steal_ticks(unsigned long ticks)
4020 account_steal_time(jiffies_to_cputime(ticks));
4024 * Account multiple ticks of idle time.
4025 * @ticks: number of stolen ticks
4027 void account_idle_ticks(unsigned long ticks)
4030 if (sched_clock_irqtime) {
4031 irqtime_account_idle_ticks(ticks);
4032 return;
4035 account_idle_time(jiffies_to_cputime(ticks));
4038 #endif
4041 * Use precise platform statistics if available:
4043 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4044 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4046 *ut = p->utime;
4047 *st = p->stime;
4050 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4052 struct task_cputime cputime;
4054 thread_group_cputime(p, &cputime);
4056 *ut = cputime.utime;
4057 *st = cputime.stime;
4059 #else
4061 #ifndef nsecs_to_cputime
4062 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4063 #endif
4065 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4067 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4070 * Use CFS's precise accounting:
4072 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4074 if (total) {
4075 u64 temp = rtime;
4077 temp *= utime;
4078 do_div(temp, total);
4079 utime = (cputime_t)temp;
4080 } else
4081 utime = rtime;
4084 * Compare with previous values, to keep monotonicity:
4086 p->prev_utime = max(p->prev_utime, utime);
4087 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4089 *ut = p->prev_utime;
4090 *st = p->prev_stime;
4094 * Must be called with siglock held.
4096 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4098 struct signal_struct *sig = p->signal;
4099 struct task_cputime cputime;
4100 cputime_t rtime, utime, total;
4102 thread_group_cputime(p, &cputime);
4104 total = cputime_add(cputime.utime, cputime.stime);
4105 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4107 if (total) {
4108 u64 temp = rtime;
4110 temp *= cputime.utime;
4111 do_div(temp, total);
4112 utime = (cputime_t)temp;
4113 } else
4114 utime = rtime;
4116 sig->prev_utime = max(sig->prev_utime, utime);
4117 sig->prev_stime = max(sig->prev_stime,
4118 cputime_sub(rtime, sig->prev_utime));
4120 *ut = sig->prev_utime;
4121 *st = sig->prev_stime;
4123 #endif
4126 * This function gets called by the timer code, with HZ frequency.
4127 * We call it with interrupts disabled.
4129 void scheduler_tick(void)
4131 int cpu = smp_processor_id();
4132 struct rq *rq = cpu_rq(cpu);
4133 struct task_struct *curr = rq->curr;
4135 sched_clock_tick();
4137 raw_spin_lock(&rq->lock);
4138 update_rq_clock(rq);
4139 update_cpu_load_active(rq);
4140 curr->sched_class->task_tick(rq, curr, 0);
4141 raw_spin_unlock(&rq->lock);
4143 perf_event_task_tick();
4145 #ifdef CONFIG_SMP
4146 rq->idle_at_tick = idle_cpu(cpu);
4147 trigger_load_balance(rq, cpu);
4148 #endif
4151 notrace unsigned long get_parent_ip(unsigned long addr)
4153 if (in_lock_functions(addr)) {
4154 addr = CALLER_ADDR2;
4155 if (in_lock_functions(addr))
4156 addr = CALLER_ADDR3;
4158 return addr;
4161 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4162 defined(CONFIG_PREEMPT_TRACER))
4164 void __kprobes add_preempt_count(int val)
4166 #ifdef CONFIG_DEBUG_PREEMPT
4168 * Underflow?
4170 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4171 return;
4172 #endif
4173 __add_preempt_count(val);
4174 #ifdef CONFIG_DEBUG_PREEMPT
4176 * Spinlock count overflowing soon?
4178 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4179 PREEMPT_MASK - 10);
4180 #endif
4181 if (preempt_count() == val)
4182 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4184 EXPORT_SYMBOL(add_preempt_count);
4186 void __kprobes sub_preempt_count(int val)
4188 #ifdef CONFIG_DEBUG_PREEMPT
4190 * Underflow?
4192 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4193 return;
4195 * Is the spinlock portion underflowing?
4197 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4198 !(preempt_count() & PREEMPT_MASK)))
4199 return;
4200 #endif
4202 if (preempt_count() == val)
4203 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4204 __sub_preempt_count(val);
4206 EXPORT_SYMBOL(sub_preempt_count);
4208 #endif
4211 * Print scheduling while atomic bug:
4213 static noinline void __schedule_bug(struct task_struct *prev)
4215 struct pt_regs *regs = get_irq_regs();
4217 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4218 prev->comm, prev->pid, preempt_count());
4220 debug_show_held_locks(prev);
4221 print_modules();
4222 if (irqs_disabled())
4223 print_irqtrace_events(prev);
4225 if (regs)
4226 show_regs(regs);
4227 else
4228 dump_stack();
4232 * Various schedule()-time debugging checks and statistics:
4234 static inline void schedule_debug(struct task_struct *prev)
4237 * Test if we are atomic. Since do_exit() needs to call into
4238 * schedule() atomically, we ignore that path for now.
4239 * Otherwise, whine if we are scheduling when we should not be.
4241 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4242 __schedule_bug(prev);
4244 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4246 schedstat_inc(this_rq(), sched_count);
4249 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4251 if (prev->on_rq || rq->skip_clock_update < 0)
4252 update_rq_clock(rq);
4253 prev->sched_class->put_prev_task(rq, prev);
4257 * Pick up the highest-prio task:
4259 static inline struct task_struct *
4260 pick_next_task(struct rq *rq)
4262 const struct sched_class *class;
4263 struct task_struct *p;
4266 * Optimization: we know that if all tasks are in
4267 * the fair class we can call that function directly:
4269 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4270 p = fair_sched_class.pick_next_task(rq);
4271 if (likely(p))
4272 return p;
4275 for_each_class(class) {
4276 p = class->pick_next_task(rq);
4277 if (p)
4278 return p;
4281 BUG(); /* the idle class will always have a runnable task */
4285 * __schedule() is the main scheduler function.
4287 static void __sched __schedule(void)
4289 struct task_struct *prev, *next;
4290 unsigned long *switch_count;
4291 struct rq *rq;
4292 int cpu;
4294 need_resched:
4295 preempt_disable();
4296 cpu = smp_processor_id();
4297 rq = cpu_rq(cpu);
4298 rcu_note_context_switch(cpu);
4299 prev = rq->curr;
4301 schedule_debug(prev);
4303 if (sched_feat(HRTICK))
4304 hrtick_clear(rq);
4306 raw_spin_lock_irq(&rq->lock);
4308 switch_count = &prev->nivcsw;
4309 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4310 if (unlikely(signal_pending_state(prev->state, prev))) {
4311 prev->state = TASK_RUNNING;
4312 } else {
4313 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4314 prev->on_rq = 0;
4317 * If a worker went to sleep, notify and ask workqueue
4318 * whether it wants to wake up a task to maintain
4319 * concurrency.
4321 if (prev->flags & PF_WQ_WORKER) {
4322 struct task_struct *to_wakeup;
4324 to_wakeup = wq_worker_sleeping(prev, cpu);
4325 if (to_wakeup)
4326 try_to_wake_up_local(to_wakeup);
4329 switch_count = &prev->nvcsw;
4332 pre_schedule(rq, prev);
4334 if (unlikely(!rq->nr_running))
4335 idle_balance(cpu, rq);
4337 put_prev_task(rq, prev);
4338 next = pick_next_task(rq);
4339 clear_tsk_need_resched(prev);
4340 rq->skip_clock_update = 0;
4342 if (likely(prev != next)) {
4343 rq->nr_switches++;
4344 rq->curr = next;
4345 #ifdef CONFIG_PREEMPT_COUNT_CPU
4346 smp_wmb();
4347 #endif
4348 ++*switch_count;
4350 context_switch(rq, prev, next); /* unlocks the rq */
4352 * The context switch have flipped the stack from under us
4353 * and restored the local variables which were saved when
4354 * this task called schedule() in the past. prev == current
4355 * is still correct, but it can be moved to another cpu/rq.
4357 cpu = smp_processor_id();
4358 rq = cpu_rq(cpu);
4359 } else
4360 raw_spin_unlock_irq(&rq->lock);
4362 post_schedule(rq);
4364 preempt_enable_no_resched();
4365 if (need_resched())
4366 goto need_resched;
4369 static inline void sched_submit_work(struct task_struct *tsk)
4371 if (!tsk->state)
4372 return;
4374 * If we are going to sleep and we have plugged IO queued,
4375 * make sure to submit it to avoid deadlocks.
4377 if (blk_needs_flush_plug(tsk))
4378 blk_schedule_flush_plug(tsk);
4381 asmlinkage void __sched schedule(void)
4383 struct task_struct *tsk = current;
4385 sched_submit_work(tsk);
4386 __schedule();
4388 EXPORT_SYMBOL(schedule);
4390 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4392 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4394 bool ret = false;
4396 rcu_read_lock();
4397 if (lock->owner != owner)
4398 goto fail;
4401 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4402 * lock->owner still matches owner, if that fails, owner might
4403 * point to free()d memory, if it still matches, the rcu_read_lock()
4404 * ensures the memory stays valid.
4406 barrier();
4408 ret = owner->on_cpu;
4409 fail:
4410 rcu_read_unlock();
4412 return ret;
4416 * Look out! "owner" is an entirely speculative pointer
4417 * access and not reliable.
4419 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4421 if (!sched_feat(OWNER_SPIN))
4422 return 0;
4424 while (owner_running(lock, owner)) {
4425 if (need_resched())
4426 return 0;
4428 arch_mutex_cpu_relax();
4432 * If the owner changed to another task there is likely
4433 * heavy contention, stop spinning.
4435 if (lock->owner)
4436 return 0;
4438 return 1;
4440 #endif
4442 #ifdef CONFIG_PREEMPT
4444 * this is the entry point to schedule() from in-kernel preemption
4445 * off of preempt_enable. Kernel preemptions off return from interrupt
4446 * occur there and call schedule directly.
4448 asmlinkage void __sched notrace preempt_schedule(void)
4450 struct thread_info *ti = current_thread_info();
4453 * If there is a non-zero preempt_count or interrupts are disabled,
4454 * we do not want to preempt the current task. Just return..
4456 if (likely(ti->preempt_count || irqs_disabled()))
4457 return;
4459 do {
4460 add_preempt_count_notrace(PREEMPT_ACTIVE);
4461 __schedule();
4462 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4465 * Check again in case we missed a preemption opportunity
4466 * between schedule and now.
4468 barrier();
4469 } while (need_resched());
4471 EXPORT_SYMBOL(preempt_schedule);
4474 * this is the entry point to schedule() from kernel preemption
4475 * off of irq context.
4476 * Note, that this is called and return with irqs disabled. This will
4477 * protect us against recursive calling from irq.
4479 asmlinkage void __sched preempt_schedule_irq(void)
4481 struct thread_info *ti = current_thread_info();
4483 /* Catch callers which need to be fixed */
4484 BUG_ON(ti->preempt_count || !irqs_disabled());
4486 do {
4487 add_preempt_count(PREEMPT_ACTIVE);
4488 local_irq_enable();
4489 __schedule();
4490 local_irq_disable();
4491 sub_preempt_count(PREEMPT_ACTIVE);
4494 * Check again in case we missed a preemption opportunity
4495 * between schedule and now.
4497 barrier();
4498 } while (need_resched());
4501 #endif /* CONFIG_PREEMPT */
4503 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4504 void *key)
4506 return try_to_wake_up(curr->private, mode, wake_flags);
4508 EXPORT_SYMBOL(default_wake_function);
4511 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4512 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4513 * number) then we wake all the non-exclusive tasks and one exclusive task.
4515 * There are circumstances in which we can try to wake a task which has already
4516 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4517 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4519 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4520 int nr_exclusive, int wake_flags, void *key)
4522 wait_queue_t *curr, *next;
4524 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4525 unsigned flags = curr->flags;
4527 if (curr->func(curr, mode, wake_flags, key) &&
4528 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4529 break;
4534 * __wake_up - wake up threads blocked on a waitqueue.
4535 * @q: the waitqueue
4536 * @mode: which threads
4537 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4538 * @key: is directly passed to the wakeup function
4540 * It may be assumed that this function implies a write memory barrier before
4541 * changing the task state if and only if any tasks are woken up.
4543 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4544 int nr_exclusive, void *key)
4546 unsigned long flags;
4548 spin_lock_irqsave(&q->lock, flags);
4549 __wake_up_common(q, mode, nr_exclusive, 0, key);
4550 spin_unlock_irqrestore(&q->lock, flags);
4552 EXPORT_SYMBOL(__wake_up);
4555 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4557 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4559 __wake_up_common(q, mode, 1, 0, NULL);
4561 EXPORT_SYMBOL_GPL(__wake_up_locked);
4563 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4565 __wake_up_common(q, mode, 1, 0, key);
4567 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4570 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4571 * @q: the waitqueue
4572 * @mode: which threads
4573 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4574 * @key: opaque value to be passed to wakeup targets
4576 * The sync wakeup differs that the waker knows that it will schedule
4577 * away soon, so while the target thread will be woken up, it will not
4578 * be migrated to another CPU - ie. the two threads are 'synchronized'
4579 * with each other. This can prevent needless bouncing between CPUs.
4581 * On UP it can prevent extra preemption.
4583 * It may be assumed that this function implies a write memory barrier before
4584 * changing the task state if and only if any tasks are woken up.
4586 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4587 int nr_exclusive, void *key)
4589 unsigned long flags;
4590 int wake_flags = WF_SYNC;
4592 if (unlikely(!q))
4593 return;
4595 if (unlikely(!nr_exclusive))
4596 wake_flags = 0;
4598 spin_lock_irqsave(&q->lock, flags);
4599 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4600 spin_unlock_irqrestore(&q->lock, flags);
4602 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4605 * __wake_up_sync - see __wake_up_sync_key()
4607 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4609 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4611 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4614 * complete: - signals a single thread waiting on this completion
4615 * @x: holds the state of this particular completion
4617 * This will wake up a single thread waiting on this completion. Threads will be
4618 * awakened in the same order in which they were queued.
4620 * See also complete_all(), wait_for_completion() and related routines.
4622 * It may be assumed that this function implies a write memory barrier before
4623 * changing the task state if and only if any tasks are woken up.
4625 void complete(struct completion *x)
4627 unsigned long flags;
4629 spin_lock_irqsave(&x->wait.lock, flags);
4630 x->done++;
4631 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4632 spin_unlock_irqrestore(&x->wait.lock, flags);
4634 EXPORT_SYMBOL(complete);
4637 * complete_all: - signals all threads waiting on this completion
4638 * @x: holds the state of this particular completion
4640 * This will wake up all threads waiting on this particular completion event.
4642 * It may be assumed that this function implies a write memory barrier before
4643 * changing the task state if and only if any tasks are woken up.
4645 void complete_all(struct completion *x)
4647 unsigned long flags;
4649 spin_lock_irqsave(&x->wait.lock, flags);
4650 x->done += UINT_MAX/2;
4651 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4652 spin_unlock_irqrestore(&x->wait.lock, flags);
4654 EXPORT_SYMBOL(complete_all);
4656 static inline long __sched
4657 do_wait_for_common(struct completion *x, long timeout, int state)
4659 if (!x->done) {
4660 DECLARE_WAITQUEUE(wait, current);
4662 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4663 do {
4664 if (signal_pending_state(state, current)) {
4665 timeout = -ERESTARTSYS;
4666 break;
4668 __set_current_state(state);
4669 spin_unlock_irq(&x->wait.lock);
4670 timeout = schedule_timeout(timeout);
4671 spin_lock_irq(&x->wait.lock);
4672 } while (!x->done && timeout);
4673 __remove_wait_queue(&x->wait, &wait);
4674 if (!x->done)
4675 return timeout;
4677 x->done--;
4678 return timeout ?: 1;
4681 static long __sched
4682 wait_for_common(struct completion *x, long timeout, int state)
4684 might_sleep();
4686 spin_lock_irq(&x->wait.lock);
4687 timeout = do_wait_for_common(x, timeout, state);
4688 spin_unlock_irq(&x->wait.lock);
4689 return timeout;
4693 * wait_for_completion: - waits for completion of a task
4694 * @x: holds the state of this particular completion
4696 * This waits to be signaled for completion of a specific task. It is NOT
4697 * interruptible and there is no timeout.
4699 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4700 * and interrupt capability. Also see complete().
4702 void __sched wait_for_completion(struct completion *x)
4704 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4706 EXPORT_SYMBOL(wait_for_completion);
4709 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4710 * @x: holds the state of this particular completion
4711 * @timeout: timeout value in jiffies
4713 * This waits for either a completion of a specific task to be signaled or for a
4714 * specified timeout to expire. The timeout is in jiffies. It is not
4715 * interruptible.
4717 unsigned long __sched
4718 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4720 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4722 EXPORT_SYMBOL(wait_for_completion_timeout);
4725 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4726 * @x: holds the state of this particular completion
4728 * This waits for completion of a specific task to be signaled. It is
4729 * interruptible.
4731 int __sched wait_for_completion_interruptible(struct completion *x)
4733 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4734 if (t == -ERESTARTSYS)
4735 return t;
4736 return 0;
4738 EXPORT_SYMBOL(wait_for_completion_interruptible);
4741 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4742 * @x: holds the state of this particular completion
4743 * @timeout: timeout value in jiffies
4745 * This waits for either a completion of a specific task to be signaled or for a
4746 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4748 long __sched
4749 wait_for_completion_interruptible_timeout(struct completion *x,
4750 unsigned long timeout)
4752 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4754 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4757 * wait_for_completion_killable: - waits for completion of a task (killable)
4758 * @x: holds the state of this particular completion
4760 * This waits to be signaled for completion of a specific task. It can be
4761 * interrupted by a kill signal.
4763 int __sched wait_for_completion_killable(struct completion *x)
4765 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4766 if (t == -ERESTARTSYS)
4767 return t;
4768 return 0;
4770 EXPORT_SYMBOL(wait_for_completion_killable);
4773 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4774 * @x: holds the state of this particular completion
4775 * @timeout: timeout value in jiffies
4777 * This waits for either a completion of a specific task to be
4778 * signaled or for a specified timeout to expire. It can be
4779 * interrupted by a kill signal. The timeout is in jiffies.
4781 long __sched
4782 wait_for_completion_killable_timeout(struct completion *x,
4783 unsigned long timeout)
4785 return wait_for_common(x, timeout, TASK_KILLABLE);
4787 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4790 * try_wait_for_completion - try to decrement a completion without blocking
4791 * @x: completion structure
4793 * Returns: 0 if a decrement cannot be done without blocking
4794 * 1 if a decrement succeeded.
4796 * If a completion is being used as a counting completion,
4797 * attempt to decrement the counter without blocking. This
4798 * enables us to avoid waiting if the resource the completion
4799 * is protecting is not available.
4801 bool try_wait_for_completion(struct completion *x)
4803 unsigned long flags;
4804 int ret = 1;
4806 spin_lock_irqsave(&x->wait.lock, flags);
4807 if (!x->done)
4808 ret = 0;
4809 else
4810 x->done--;
4811 spin_unlock_irqrestore(&x->wait.lock, flags);
4812 return ret;
4814 EXPORT_SYMBOL(try_wait_for_completion);
4817 * completion_done - Test to see if a completion has any waiters
4818 * @x: completion structure
4820 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4821 * 1 if there are no waiters.
4824 bool completion_done(struct completion *x)
4826 unsigned long flags;
4827 int ret = 1;
4829 spin_lock_irqsave(&x->wait.lock, flags);
4830 if (!x->done)
4831 ret = 0;
4832 spin_unlock_irqrestore(&x->wait.lock, flags);
4833 return ret;
4835 EXPORT_SYMBOL(completion_done);
4837 static long __sched
4838 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4840 unsigned long flags;
4841 wait_queue_t wait;
4843 init_waitqueue_entry(&wait, current);
4845 __set_current_state(state);
4847 spin_lock_irqsave(&q->lock, flags);
4848 __add_wait_queue(q, &wait);
4849 spin_unlock(&q->lock);
4850 timeout = schedule_timeout(timeout);
4851 spin_lock_irq(&q->lock);
4852 __remove_wait_queue(q, &wait);
4853 spin_unlock_irqrestore(&q->lock, flags);
4855 return timeout;
4858 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4860 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4862 EXPORT_SYMBOL(interruptible_sleep_on);
4864 long __sched
4865 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4867 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4869 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4871 void __sched sleep_on(wait_queue_head_t *q)
4873 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4875 EXPORT_SYMBOL(sleep_on);
4877 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4879 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4881 EXPORT_SYMBOL(sleep_on_timeout);
4883 #ifdef CONFIG_RT_MUTEXES
4886 * rt_mutex_setprio - set the current priority of a task
4887 * @p: task
4888 * @prio: prio value (kernel-internal form)
4890 * This function changes the 'effective' priority of a task. It does
4891 * not touch ->normal_prio like __setscheduler().
4893 * Used by the rt_mutex code to implement priority inheritance logic.
4895 void rt_mutex_setprio(struct task_struct *p, int prio)
4897 int oldprio, on_rq, running;
4898 struct rq *rq;
4899 const struct sched_class *prev_class;
4901 BUG_ON(prio < 0 || prio > MAX_PRIO);
4903 rq = __task_rq_lock(p);
4905 trace_sched_pi_setprio(p, prio);
4906 oldprio = p->prio;
4907 prev_class = p->sched_class;
4908 on_rq = p->on_rq;
4909 running = task_current(rq, p);
4910 if (on_rq)
4911 dequeue_task(rq, p, 0);
4912 if (running)
4913 p->sched_class->put_prev_task(rq, p);
4915 if (rt_prio(prio))
4916 p->sched_class = &rt_sched_class;
4917 else
4918 p->sched_class = &fair_sched_class;
4920 p->prio = prio;
4922 if (running)
4923 p->sched_class->set_curr_task(rq);
4924 if (on_rq)
4925 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4927 check_class_changed(rq, p, prev_class, oldprio);
4928 __task_rq_unlock(rq);
4931 #endif
4933 void set_user_nice(struct task_struct *p, long nice)
4935 int old_prio, delta, on_rq;
4936 unsigned long flags;
4937 struct rq *rq;
4939 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4940 return;
4942 * We have to be careful, if called from sys_setpriority(),
4943 * the task might be in the middle of scheduling on another CPU.
4945 rq = task_rq_lock(p, &flags);
4947 * The RT priorities are set via sched_setscheduler(), but we still
4948 * allow the 'normal' nice value to be set - but as expected
4949 * it wont have any effect on scheduling until the task is
4950 * SCHED_FIFO/SCHED_RR:
4952 if (task_has_rt_policy(p)) {
4953 p->static_prio = NICE_TO_PRIO(nice);
4954 goto out_unlock;
4956 on_rq = p->on_rq;
4957 if (on_rq)
4958 dequeue_task(rq, p, 0);
4960 p->static_prio = NICE_TO_PRIO(nice);
4961 set_load_weight(p);
4962 old_prio = p->prio;
4963 p->prio = effective_prio(p);
4964 delta = p->prio - old_prio;
4966 if (on_rq) {
4967 enqueue_task(rq, p, 0);
4969 * If the task increased its priority or is running and
4970 * lowered its priority, then reschedule its CPU:
4972 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4973 resched_task(rq->curr);
4975 out_unlock:
4976 task_rq_unlock(rq, p, &flags);
4978 EXPORT_SYMBOL(set_user_nice);
4981 * can_nice - check if a task can reduce its nice value
4982 * @p: task
4983 * @nice: nice value
4985 int can_nice(const struct task_struct *p, const int nice)
4987 /* convert nice value [19,-20] to rlimit style value [1,40] */
4988 int nice_rlim = 20 - nice;
4990 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4991 capable(CAP_SYS_NICE));
4994 #ifdef __ARCH_WANT_SYS_NICE
4997 * sys_nice - change the priority of the current process.
4998 * @increment: priority increment
5000 * sys_setpriority is a more generic, but much slower function that
5001 * does similar things.
5003 SYSCALL_DEFINE1(nice, int, increment)
5005 long nice, retval;
5008 * Setpriority might change our priority at the same moment.
5009 * We don't have to worry. Conceptually one call occurs first
5010 * and we have a single winner.
5012 if (increment < -40)
5013 increment = -40;
5014 if (increment > 40)
5015 increment = 40;
5017 nice = TASK_NICE(current) + increment;
5018 if (nice < -20)
5019 nice = -20;
5020 if (nice > 19)
5021 nice = 19;
5023 if (increment < 0 && !can_nice(current, nice))
5024 return -EPERM;
5026 retval = security_task_setnice(current, nice);
5027 if (retval)
5028 return retval;
5030 set_user_nice(current, nice);
5031 return 0;
5034 #endif
5037 * task_prio - return the priority value of a given task.
5038 * @p: the task in question.
5040 * This is the priority value as seen by users in /proc.
5041 * RT tasks are offset by -200. Normal tasks are centered
5042 * around 0, value goes from -16 to +15.
5044 int task_prio(const struct task_struct *p)
5046 return p->prio - MAX_RT_PRIO;
5050 * task_nice - return the nice value of a given task.
5051 * @p: the task in question.
5053 int task_nice(const struct task_struct *p)
5055 return TASK_NICE(p);
5057 EXPORT_SYMBOL(task_nice);
5060 * idle_cpu - is a given cpu idle currently?
5061 * @cpu: the processor in question.
5063 int idle_cpu(int cpu)
5065 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5069 * idle_task - return the idle task for a given cpu.
5070 * @cpu: the processor in question.
5072 struct task_struct *idle_task(int cpu)
5074 return cpu_rq(cpu)->idle;
5078 * find_process_by_pid - find a process with a matching PID value.
5079 * @pid: the pid in question.
5081 static struct task_struct *find_process_by_pid(pid_t pid)
5083 return pid ? find_task_by_vpid(pid) : current;
5086 /* Actually do priority change: must hold rq lock. */
5087 static void
5088 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5090 p->policy = policy;
5091 p->rt_priority = prio;
5092 p->normal_prio = normal_prio(p);
5093 /* we are holding p->pi_lock already */
5094 p->prio = rt_mutex_getprio(p);
5095 if (rt_prio(p->prio))
5096 p->sched_class = &rt_sched_class;
5097 else
5098 p->sched_class = &fair_sched_class;
5099 set_load_weight(p);
5103 * check the target process has a UID that matches the current process's
5105 static bool check_same_owner(struct task_struct *p)
5107 const struct cred *cred = current_cred(), *pcred;
5108 bool match;
5110 rcu_read_lock();
5111 pcred = __task_cred(p);
5112 if (cred->user->user_ns == pcred->user->user_ns)
5113 match = (cred->euid == pcred->euid ||
5114 cred->euid == pcred->uid);
5115 else
5116 match = false;
5117 rcu_read_unlock();
5118 return match;
5121 static int __sched_setscheduler(struct task_struct *p, int policy,
5122 const struct sched_param *param, bool user)
5124 int retval, oldprio, oldpolicy = -1, on_rq, running;
5125 unsigned long flags;
5126 const struct sched_class *prev_class;
5127 struct rq *rq;
5128 int reset_on_fork;
5130 /* may grab non-irq protected spin_locks */
5131 BUG_ON(in_interrupt());
5132 recheck:
5133 /* double check policy once rq lock held */
5134 if (policy < 0) {
5135 reset_on_fork = p->sched_reset_on_fork;
5136 policy = oldpolicy = p->policy;
5137 } else {
5138 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5139 policy &= ~SCHED_RESET_ON_FORK;
5141 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5142 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5143 policy != SCHED_IDLE)
5144 return -EINVAL;
5148 * Valid priorities for SCHED_FIFO and SCHED_RR are
5149 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5150 * SCHED_BATCH and SCHED_IDLE is 0.
5152 if (param->sched_priority < 0 ||
5153 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5154 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5155 return -EINVAL;
5156 if (rt_policy(policy) != (param->sched_priority != 0))
5157 return -EINVAL;
5160 * Allow unprivileged RT tasks to decrease priority:
5162 if (user && !capable(CAP_SYS_NICE)) {
5163 if (rt_policy(policy)) {
5164 unsigned long rlim_rtprio =
5165 task_rlimit(p, RLIMIT_RTPRIO);
5167 /* can't set/change the rt policy */
5168 if (policy != p->policy && !rlim_rtprio)
5169 return -EPERM;
5171 /* can't increase priority */
5172 if (param->sched_priority > p->rt_priority &&
5173 param->sched_priority > rlim_rtprio)
5174 return -EPERM;
5178 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5179 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5181 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5182 if (!can_nice(p, TASK_NICE(p)))
5183 return -EPERM;
5186 /* can't change other user's priorities */
5187 if (!check_same_owner(p))
5188 return -EPERM;
5190 /* Normal users shall not reset the sched_reset_on_fork flag */
5191 if (p->sched_reset_on_fork && !reset_on_fork)
5192 return -EPERM;
5195 if (user) {
5196 retval = security_task_setscheduler(p);
5197 if (retval)
5198 return retval;
5202 * make sure no PI-waiters arrive (or leave) while we are
5203 * changing the priority of the task:
5205 * To be able to change p->policy safely, the appropriate
5206 * runqueue lock must be held.
5208 rq = task_rq_lock(p, &flags);
5211 * Changing the policy of the stop threads its a very bad idea
5213 if (p == rq->stop) {
5214 task_rq_unlock(rq, p, &flags);
5215 return -EINVAL;
5219 * If not changing anything there's no need to proceed further:
5221 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5222 param->sched_priority == p->rt_priority))) {
5224 __task_rq_unlock(rq);
5225 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5226 return 0;
5229 #ifdef CONFIG_RT_GROUP_SCHED
5230 if (user) {
5232 * Do not allow realtime tasks into groups that have no runtime
5233 * assigned.
5235 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5236 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5237 !task_group_is_autogroup(task_group(p))) {
5238 task_rq_unlock(rq, p, &flags);
5239 return -EPERM;
5242 #endif
5244 /* recheck policy now with rq lock held */
5245 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5246 policy = oldpolicy = -1;
5247 task_rq_unlock(rq, p, &flags);
5248 goto recheck;
5250 on_rq = p->on_rq;
5251 running = task_current(rq, p);
5252 if (on_rq)
5253 deactivate_task(rq, p, 0);
5254 if (running)
5255 p->sched_class->put_prev_task(rq, p);
5257 p->sched_reset_on_fork = reset_on_fork;
5259 oldprio = p->prio;
5260 prev_class = p->sched_class;
5261 __setscheduler(rq, p, policy, param->sched_priority);
5263 if (running)
5264 p->sched_class->set_curr_task(rq);
5265 if (on_rq)
5266 activate_task(rq, p, 0);
5268 check_class_changed(rq, p, prev_class, oldprio);
5269 task_rq_unlock(rq, p, &flags);
5271 rt_mutex_adjust_pi(p);
5273 return 0;
5277 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5278 * @p: the task in question.
5279 * @policy: new policy.
5280 * @param: structure containing the new RT priority.
5282 * NOTE that the task may be already dead.
5284 int sched_setscheduler(struct task_struct *p, int policy,
5285 const struct sched_param *param)
5287 return __sched_setscheduler(p, policy, param, true);
5289 EXPORT_SYMBOL_GPL(sched_setscheduler);
5292 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5293 * @p: the task in question.
5294 * @policy: new policy.
5295 * @param: structure containing the new RT priority.
5297 * Just like sched_setscheduler, only don't bother checking if the
5298 * current context has permission. For example, this is needed in
5299 * stop_machine(): we create temporary high priority worker threads,
5300 * but our caller might not have that capability.
5302 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5303 const struct sched_param *param)
5305 return __sched_setscheduler(p, policy, param, false);
5308 static int
5309 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5311 struct sched_param lparam;
5312 struct task_struct *p;
5313 int retval;
5315 if (!param || pid < 0)
5316 return -EINVAL;
5317 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5318 return -EFAULT;
5320 rcu_read_lock();
5321 retval = -ESRCH;
5322 p = find_process_by_pid(pid);
5323 if (p != NULL)
5324 retval = sched_setscheduler(p, policy, &lparam);
5325 rcu_read_unlock();
5327 return retval;
5331 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5332 * @pid: the pid in question.
5333 * @policy: new policy.
5334 * @param: structure containing the new RT priority.
5336 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5337 struct sched_param __user *, param)
5339 /* negative values for policy are not valid */
5340 if (policy < 0)
5341 return -EINVAL;
5343 return do_sched_setscheduler(pid, policy, param);
5347 * sys_sched_setparam - set/change the RT priority of a thread
5348 * @pid: the pid in question.
5349 * @param: structure containing the new RT priority.
5351 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5353 return do_sched_setscheduler(pid, -1, param);
5357 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5358 * @pid: the pid in question.
5360 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5362 struct task_struct *p;
5363 int retval;
5365 if (pid < 0)
5366 return -EINVAL;
5368 retval = -ESRCH;
5369 rcu_read_lock();
5370 p = find_process_by_pid(pid);
5371 if (p) {
5372 retval = security_task_getscheduler(p);
5373 if (!retval)
5374 retval = p->policy
5375 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5377 rcu_read_unlock();
5378 return retval;
5382 * sys_sched_getparam - get the RT priority of a thread
5383 * @pid: the pid in question.
5384 * @param: structure containing the RT priority.
5386 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5388 struct sched_param lp;
5389 struct task_struct *p;
5390 int retval;
5392 if (!param || pid < 0)
5393 return -EINVAL;
5395 rcu_read_lock();
5396 p = find_process_by_pid(pid);
5397 retval = -ESRCH;
5398 if (!p)
5399 goto out_unlock;
5401 retval = security_task_getscheduler(p);
5402 if (retval)
5403 goto out_unlock;
5405 lp.sched_priority = p->rt_priority;
5406 rcu_read_unlock();
5409 * This one might sleep, we cannot do it with a spinlock held ...
5411 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5413 return retval;
5415 out_unlock:
5416 rcu_read_unlock();
5417 return retval;
5420 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5422 cpumask_var_t cpus_allowed, new_mask;
5423 struct task_struct *p;
5424 int retval;
5426 get_online_cpus();
5427 rcu_read_lock();
5429 p = find_process_by_pid(pid);
5430 if (!p) {
5431 rcu_read_unlock();
5432 put_online_cpus();
5433 return -ESRCH;
5436 /* Prevent p going away */
5437 get_task_struct(p);
5438 rcu_read_unlock();
5440 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5441 retval = -ENOMEM;
5442 goto out_put_task;
5444 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5445 retval = -ENOMEM;
5446 goto out_free_cpus_allowed;
5448 retval = -EPERM;
5449 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5450 goto out_unlock;
5452 retval = security_task_setscheduler(p);
5453 if (retval)
5454 goto out_unlock;
5456 cpuset_cpus_allowed(p, cpus_allowed);
5457 cpumask_and(new_mask, in_mask, cpus_allowed);
5458 again:
5459 retval = set_cpus_allowed_ptr(p, new_mask);
5461 if (!retval) {
5462 cpuset_cpus_allowed(p, cpus_allowed);
5463 if (!cpumask_subset(new_mask, cpus_allowed)) {
5465 * We must have raced with a concurrent cpuset
5466 * update. Just reset the cpus_allowed to the
5467 * cpuset's cpus_allowed
5469 cpumask_copy(new_mask, cpus_allowed);
5470 goto again;
5473 out_unlock:
5474 free_cpumask_var(new_mask);
5475 out_free_cpus_allowed:
5476 free_cpumask_var(cpus_allowed);
5477 out_put_task:
5478 put_task_struct(p);
5479 put_online_cpus();
5480 return retval;
5483 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5484 struct cpumask *new_mask)
5486 if (len < cpumask_size())
5487 cpumask_clear(new_mask);
5488 else if (len > cpumask_size())
5489 len = cpumask_size();
5491 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5495 * sys_sched_setaffinity - set the cpu affinity of a process
5496 * @pid: pid of the process
5497 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5498 * @user_mask_ptr: user-space pointer to the new cpu mask
5500 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5501 unsigned long __user *, user_mask_ptr)
5503 cpumask_var_t new_mask;
5504 int retval;
5506 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5507 return -ENOMEM;
5509 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5510 if (retval == 0)
5511 retval = sched_setaffinity(pid, new_mask);
5512 free_cpumask_var(new_mask);
5513 return retval;
5516 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5518 struct task_struct *p;
5519 unsigned long flags;
5520 int retval;
5522 get_online_cpus();
5523 rcu_read_lock();
5525 retval = -ESRCH;
5526 p = find_process_by_pid(pid);
5527 if (!p)
5528 goto out_unlock;
5530 retval = security_task_getscheduler(p);
5531 if (retval)
5532 goto out_unlock;
5534 raw_spin_lock_irqsave(&p->pi_lock, flags);
5535 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5536 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5538 out_unlock:
5539 rcu_read_unlock();
5540 put_online_cpus();
5542 return retval;
5546 * sys_sched_getaffinity - get the cpu affinity of a process
5547 * @pid: pid of the process
5548 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5549 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5551 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5552 unsigned long __user *, user_mask_ptr)
5554 int ret;
5555 cpumask_var_t mask;
5557 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5558 return -EINVAL;
5559 if (len & (sizeof(unsigned long)-1))
5560 return -EINVAL;
5562 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5563 return -ENOMEM;
5565 ret = sched_getaffinity(pid, mask);
5566 if (ret == 0) {
5567 size_t retlen = min_t(size_t, len, cpumask_size());
5569 if (copy_to_user(user_mask_ptr, mask, retlen))
5570 ret = -EFAULT;
5571 else
5572 ret = retlen;
5574 free_cpumask_var(mask);
5576 return ret;
5580 * sys_sched_yield - yield the current processor to other threads.
5582 * This function yields the current CPU to other tasks. If there are no
5583 * other threads running on this CPU then this function will return.
5585 SYSCALL_DEFINE0(sched_yield)
5587 struct rq *rq = this_rq_lock();
5589 schedstat_inc(rq, yld_count);
5590 current->sched_class->yield_task(rq);
5593 * Since we are going to call schedule() anyway, there's
5594 * no need to preempt or enable interrupts:
5596 __release(rq->lock);
5597 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5598 do_raw_spin_unlock(&rq->lock);
5599 preempt_enable_no_resched();
5601 schedule();
5603 return 0;
5606 static inline int should_resched(void)
5608 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5611 static void __cond_resched(void)
5613 add_preempt_count(PREEMPT_ACTIVE);
5614 __schedule();
5615 sub_preempt_count(PREEMPT_ACTIVE);
5618 int __sched _cond_resched(void)
5620 if (should_resched()) {
5621 __cond_resched();
5622 return 1;
5624 return 0;
5626 EXPORT_SYMBOL(_cond_resched);
5629 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5630 * call schedule, and on return reacquire the lock.
5632 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5633 * operations here to prevent schedule() from being called twice (once via
5634 * spin_unlock(), once by hand).
5636 int __cond_resched_lock(spinlock_t *lock)
5638 int resched = should_resched();
5639 int ret = 0;
5641 lockdep_assert_held(lock);
5643 if (spin_needbreak(lock) || resched) {
5644 spin_unlock(lock);
5645 if (resched)
5646 __cond_resched();
5647 else
5648 cpu_relax();
5649 ret = 1;
5650 spin_lock(lock);
5652 return ret;
5654 EXPORT_SYMBOL(__cond_resched_lock);
5656 int __sched __cond_resched_softirq(void)
5658 BUG_ON(!in_softirq());
5660 if (should_resched()) {
5661 local_bh_enable();
5662 __cond_resched();
5663 local_bh_disable();
5664 return 1;
5666 return 0;
5668 EXPORT_SYMBOL(__cond_resched_softirq);
5671 * yield - yield the current processor to other threads.
5673 * This is a shortcut for kernel-space yielding - it marks the
5674 * thread runnable and calls sys_sched_yield().
5676 void __sched yield(void)
5678 set_current_state(TASK_RUNNING);
5679 sys_sched_yield();
5681 EXPORT_SYMBOL(yield);
5684 * yield_to - yield the current processor to another thread in
5685 * your thread group, or accelerate that thread toward the
5686 * processor it's on.
5687 * @p: target task
5688 * @preempt: whether task preemption is allowed or not
5690 * It's the caller's job to ensure that the target task struct
5691 * can't go away on us before we can do any checks.
5693 * Returns true if we indeed boosted the target task.
5695 bool __sched yield_to(struct task_struct *p, bool preempt)
5697 struct task_struct *curr = current;
5698 struct rq *rq, *p_rq;
5699 unsigned long flags;
5700 bool yielded = 0;
5702 local_irq_save(flags);
5703 rq = this_rq();
5705 again:
5706 p_rq = task_rq(p);
5707 double_rq_lock(rq, p_rq);
5708 while (task_rq(p) != p_rq) {
5709 double_rq_unlock(rq, p_rq);
5710 goto again;
5713 if (!curr->sched_class->yield_to_task)
5714 goto out;
5716 if (curr->sched_class != p->sched_class)
5717 goto out;
5719 if (task_running(p_rq, p) || p->state)
5720 goto out;
5722 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5723 if (yielded) {
5724 schedstat_inc(rq, yld_count);
5726 * Make p's CPU reschedule; pick_next_entity takes care of
5727 * fairness.
5729 if (preempt && rq != p_rq)
5730 resched_task(p_rq->curr);
5733 out:
5734 double_rq_unlock(rq, p_rq);
5735 local_irq_restore(flags);
5737 if (yielded)
5738 schedule();
5740 return yielded;
5742 EXPORT_SYMBOL_GPL(yield_to);
5745 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5746 * that process accounting knows that this is a task in IO wait state.
5748 void __sched io_schedule(void)
5750 struct rq *rq = raw_rq();
5752 delayacct_blkio_start();
5753 atomic_inc(&rq->nr_iowait);
5754 blk_flush_plug(current);
5755 current->in_iowait = 1;
5756 schedule();
5757 current->in_iowait = 0;
5758 atomic_dec(&rq->nr_iowait);
5759 delayacct_blkio_end();
5761 EXPORT_SYMBOL(io_schedule);
5763 long __sched io_schedule_timeout(long timeout)
5765 struct rq *rq = raw_rq();
5766 long ret;
5768 delayacct_blkio_start();
5769 atomic_inc(&rq->nr_iowait);
5770 blk_flush_plug(current);
5771 current->in_iowait = 1;
5772 ret = schedule_timeout(timeout);
5773 current->in_iowait = 0;
5774 atomic_dec(&rq->nr_iowait);
5775 delayacct_blkio_end();
5776 return ret;
5780 * sys_sched_get_priority_max - return maximum RT priority.
5781 * @policy: scheduling class.
5783 * this syscall returns the maximum rt_priority that can be used
5784 * by a given scheduling class.
5786 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5788 int ret = -EINVAL;
5790 switch (policy) {
5791 case SCHED_FIFO:
5792 case SCHED_RR:
5793 ret = MAX_USER_RT_PRIO-1;
5794 break;
5795 case SCHED_NORMAL:
5796 case SCHED_BATCH:
5797 case SCHED_IDLE:
5798 ret = 0;
5799 break;
5801 return ret;
5805 * sys_sched_get_priority_min - return minimum RT priority.
5806 * @policy: scheduling class.
5808 * this syscall returns the minimum rt_priority that can be used
5809 * by a given scheduling class.
5811 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5813 int ret = -EINVAL;
5815 switch (policy) {
5816 case SCHED_FIFO:
5817 case SCHED_RR:
5818 ret = 1;
5819 break;
5820 case SCHED_NORMAL:
5821 case SCHED_BATCH:
5822 case SCHED_IDLE:
5823 ret = 0;
5825 return ret;
5829 * sys_sched_rr_get_interval - return the default timeslice of a process.
5830 * @pid: pid of the process.
5831 * @interval: userspace pointer to the timeslice value.
5833 * this syscall writes the default timeslice value of a given process
5834 * into the user-space timespec buffer. A value of '0' means infinity.
5836 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5837 struct timespec __user *, interval)
5839 struct task_struct *p;
5840 unsigned int time_slice;
5841 unsigned long flags;
5842 struct rq *rq;
5843 int retval;
5844 struct timespec t;
5846 if (pid < 0)
5847 return -EINVAL;
5849 retval = -ESRCH;
5850 rcu_read_lock();
5851 p = find_process_by_pid(pid);
5852 if (!p)
5853 goto out_unlock;
5855 retval = security_task_getscheduler(p);
5856 if (retval)
5857 goto out_unlock;
5859 rq = task_rq_lock(p, &flags);
5860 time_slice = p->sched_class->get_rr_interval(rq, p);
5861 task_rq_unlock(rq, p, &flags);
5863 rcu_read_unlock();
5864 jiffies_to_timespec(time_slice, &t);
5865 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5866 return retval;
5868 out_unlock:
5869 rcu_read_unlock();
5870 return retval;
5873 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5875 void sched_show_task(struct task_struct *p)
5877 unsigned long free = 0;
5878 unsigned state;
5880 state = p->state ? __ffs(p->state) + 1 : 0;
5881 printk(KERN_INFO "%-15.15s %c", p->comm,
5882 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5883 #if BITS_PER_LONG == 32
5884 if (state == TASK_RUNNING)
5885 printk(KERN_CONT " running ");
5886 else
5887 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5888 #else
5889 if (state == TASK_RUNNING)
5890 printk(KERN_CONT " running task ");
5891 else
5892 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5893 #endif
5894 #ifdef CONFIG_DEBUG_STACK_USAGE
5895 free = stack_not_used(p);
5896 #endif
5897 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5898 task_pid_nr(p), task_pid_nr(p->real_parent),
5899 (unsigned long)task_thread_info(p)->flags);
5901 show_stack(p, NULL);
5904 void show_state_filter(unsigned long state_filter)
5906 struct task_struct *g, *p;
5908 #if BITS_PER_LONG == 32
5909 printk(KERN_INFO
5910 " task PC stack pid father\n");
5911 #else
5912 printk(KERN_INFO
5913 " task PC stack pid father\n");
5914 #endif
5915 read_lock(&tasklist_lock);
5916 do_each_thread(g, p) {
5918 * reset the NMI-timeout, listing all files on a slow
5919 * console might take a lot of time:
5921 touch_nmi_watchdog();
5922 if (!state_filter || (p->state & state_filter))
5923 sched_show_task(p);
5924 } while_each_thread(g, p);
5926 touch_all_softlockup_watchdogs();
5928 #ifdef CONFIG_SCHED_DEBUG
5929 sysrq_sched_debug_show();
5930 #endif
5931 read_unlock(&tasklist_lock);
5933 * Only show locks if all tasks are dumped:
5935 if (!state_filter)
5936 debug_show_all_locks();
5939 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5941 idle->sched_class = &idle_sched_class;
5945 * init_idle - set up an idle thread for a given CPU
5946 * @idle: task in question
5947 * @cpu: cpu the idle task belongs to
5949 * NOTE: this function does not set the idle thread's NEED_RESCHED
5950 * flag, to make booting more robust.
5952 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5954 struct rq *rq = cpu_rq(cpu);
5955 unsigned long flags;
5957 raw_spin_lock_irqsave(&rq->lock, flags);
5959 __sched_fork(idle);
5960 idle->state = TASK_RUNNING;
5961 idle->se.exec_start = sched_clock();
5963 do_set_cpus_allowed(idle, cpumask_of(cpu));
5965 * We're having a chicken and egg problem, even though we are
5966 * holding rq->lock, the cpu isn't yet set to this cpu so the
5967 * lockdep check in task_group() will fail.
5969 * Similar case to sched_fork(). / Alternatively we could
5970 * use task_rq_lock() here and obtain the other rq->lock.
5972 * Silence PROVE_RCU
5974 rcu_read_lock();
5975 __set_task_cpu(idle, cpu);
5976 rcu_read_unlock();
5978 rq->curr = rq->idle = idle;
5979 #if defined(CONFIG_SMP)
5980 idle->on_cpu = 1;
5981 #endif
5982 raw_spin_unlock_irqrestore(&rq->lock, flags);
5984 /* Set the preempt count _outside_ the spinlocks! */
5985 task_thread_info(idle)->preempt_count = 0;
5988 * The idle tasks have their own, simple scheduling class:
5990 idle->sched_class = &idle_sched_class;
5991 ftrace_graph_init_idle_task(idle, cpu);
5995 * In a system that switches off the HZ timer nohz_cpu_mask
5996 * indicates which cpus entered this state. This is used
5997 * in the rcu update to wait only for active cpus. For system
5998 * which do not switch off the HZ timer nohz_cpu_mask should
5999 * always be CPU_BITS_NONE.
6001 cpumask_var_t nohz_cpu_mask;
6004 * Increase the granularity value when there are more CPUs,
6005 * because with more CPUs the 'effective latency' as visible
6006 * to users decreases. But the relationship is not linear,
6007 * so pick a second-best guess by going with the log2 of the
6008 * number of CPUs.
6010 * This idea comes from the SD scheduler of Con Kolivas:
6012 static int get_update_sysctl_factor(void)
6014 unsigned int cpus = min_t(int, num_online_cpus(), 8);
6015 unsigned int factor;
6017 switch (sysctl_sched_tunable_scaling) {
6018 case SCHED_TUNABLESCALING_NONE:
6019 factor = 1;
6020 break;
6021 case SCHED_TUNABLESCALING_LINEAR:
6022 factor = cpus;
6023 break;
6024 case SCHED_TUNABLESCALING_LOG:
6025 default:
6026 factor = 1 + ilog2(cpus);
6027 break;
6030 return factor;
6033 static void update_sysctl(void)
6035 unsigned int factor = get_update_sysctl_factor();
6037 #define SET_SYSCTL(name) \
6038 (sysctl_##name = (factor) * normalized_sysctl_##name)
6039 SET_SYSCTL(sched_min_granularity);
6040 SET_SYSCTL(sched_latency);
6041 SET_SYSCTL(sched_wakeup_granularity);
6042 #undef SET_SYSCTL
6045 static inline void sched_init_granularity(void)
6047 update_sysctl();
6050 #ifdef CONFIG_SMP
6051 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6053 if (p->sched_class && p->sched_class->set_cpus_allowed)
6054 p->sched_class->set_cpus_allowed(p, new_mask);
6055 else {
6056 cpumask_copy(&p->cpus_allowed, new_mask);
6057 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6062 * This is how migration works:
6064 * 1) we invoke migration_cpu_stop() on the target CPU using
6065 * stop_one_cpu().
6066 * 2) stopper starts to run (implicitly forcing the migrated thread
6067 * off the CPU)
6068 * 3) it checks whether the migrated task is still in the wrong runqueue.
6069 * 4) if it's in the wrong runqueue then the migration thread removes
6070 * it and puts it into the right queue.
6071 * 5) stopper completes and stop_one_cpu() returns and the migration
6072 * is done.
6076 * Change a given task's CPU affinity. Migrate the thread to a
6077 * proper CPU and schedule it away if the CPU it's executing on
6078 * is removed from the allowed bitmask.
6080 * NOTE: the caller must have a valid reference to the task, the
6081 * task must not exit() & deallocate itself prematurely. The
6082 * call is not atomic; no spinlocks may be held.
6084 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6086 unsigned long flags;
6087 struct rq *rq;
6088 unsigned int dest_cpu;
6089 int ret = 0;
6091 rq = task_rq_lock(p, &flags);
6093 if (cpumask_equal(&p->cpus_allowed, new_mask))
6094 goto out;
6096 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6097 ret = -EINVAL;
6098 goto out;
6101 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6102 ret = -EINVAL;
6103 goto out;
6106 do_set_cpus_allowed(p, new_mask);
6108 /* Can the task run on the task's current CPU? If so, we're done */
6109 if (cpumask_test_cpu(task_cpu(p), new_mask))
6110 goto out;
6112 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6113 if (p->on_rq) {
6114 struct migration_arg arg = { p, dest_cpu };
6115 /* Need help from migration thread: drop lock and wait. */
6116 task_rq_unlock(rq, p, &flags);
6117 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6118 tlb_migrate_finish(p->mm);
6119 return 0;
6121 out:
6122 task_rq_unlock(rq, p, &flags);
6124 return ret;
6126 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6129 * Move (not current) task off this cpu, onto dest cpu. We're doing
6130 * this because either it can't run here any more (set_cpus_allowed()
6131 * away from this CPU, or CPU going down), or because we're
6132 * attempting to rebalance this task on exec (sched_exec).
6134 * So we race with normal scheduler movements, but that's OK, as long
6135 * as the task is no longer on this CPU.
6137 * Returns non-zero if task was successfully migrated.
6139 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6141 struct rq *rq_dest, *rq_src;
6142 int ret = 0;
6144 if (unlikely(!cpu_active(dest_cpu)))
6145 return ret;
6147 rq_src = cpu_rq(src_cpu);
6148 rq_dest = cpu_rq(dest_cpu);
6150 raw_spin_lock(&p->pi_lock);
6151 double_rq_lock(rq_src, rq_dest);
6152 /* Already moved. */
6153 if (task_cpu(p) != src_cpu)
6154 goto done;
6155 /* Affinity changed (again). */
6156 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6157 goto fail;
6160 * If we're not on a rq, the next wake-up will ensure we're
6161 * placed properly.
6163 if (p->on_rq) {
6164 deactivate_task(rq_src, p, 0);
6165 set_task_cpu(p, dest_cpu);
6166 activate_task(rq_dest, p, 0);
6167 check_preempt_curr(rq_dest, p, 0);
6169 done:
6170 ret = 1;
6171 fail:
6172 double_rq_unlock(rq_src, rq_dest);
6173 raw_spin_unlock(&p->pi_lock);
6174 return ret;
6178 * migration_cpu_stop - this will be executed by a highprio stopper thread
6179 * and performs thread migration by bumping thread off CPU then
6180 * 'pushing' onto another runqueue.
6182 static int migration_cpu_stop(void *data)
6184 struct migration_arg *arg = data;
6187 * The original target cpu might have gone down and we might
6188 * be on another cpu but it doesn't matter.
6190 local_irq_disable();
6191 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6192 local_irq_enable();
6193 return 0;
6196 #ifdef CONFIG_HOTPLUG_CPU
6199 * Ensures that the idle task is using init_mm right before its cpu goes
6200 * offline.
6202 void idle_task_exit(void)
6204 struct mm_struct *mm = current->active_mm;
6206 BUG_ON(cpu_online(smp_processor_id()));
6208 if (mm != &init_mm)
6209 switch_mm(mm, &init_mm, current);
6210 mmdrop(mm);
6214 * While a dead CPU has no uninterruptible tasks queued at this point,
6215 * it might still have a nonzero ->nr_uninterruptible counter, because
6216 * for performance reasons the counter is not stricly tracking tasks to
6217 * their home CPUs. So we just add the counter to another CPU's counter,
6218 * to keep the global sum constant after CPU-down:
6220 static void migrate_nr_uninterruptible(struct rq *rq_src)
6222 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6224 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6225 rq_src->nr_uninterruptible = 0;
6229 * remove the tasks which were accounted by rq from calc_load_tasks.
6231 static void calc_global_load_remove(struct rq *rq)
6233 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6234 rq->calc_load_active = 0;
6238 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6239 * try_to_wake_up()->select_task_rq().
6241 * Called with rq->lock held even though we'er in stop_machine() and
6242 * there's no concurrency possible, we hold the required locks anyway
6243 * because of lock validation efforts.
6245 static void migrate_tasks(unsigned int dead_cpu)
6247 struct rq *rq = cpu_rq(dead_cpu);
6248 struct task_struct *next, *stop = rq->stop;
6249 int dest_cpu;
6252 * Fudge the rq selection such that the below task selection loop
6253 * doesn't get stuck on the currently eligible stop task.
6255 * We're currently inside stop_machine() and the rq is either stuck
6256 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6257 * either way we should never end up calling schedule() until we're
6258 * done here.
6260 rq->stop = NULL;
6262 for ( ; ; ) {
6264 * There's this thread running, bail when that's the only
6265 * remaining thread.
6267 if (rq->nr_running == 1)
6268 break;
6270 next = pick_next_task(rq);
6271 BUG_ON(!next);
6272 next->sched_class->put_prev_task(rq, next);
6274 /* Find suitable destination for @next, with force if needed. */
6275 dest_cpu = select_fallback_rq(dead_cpu, next);
6276 raw_spin_unlock(&rq->lock);
6278 __migrate_task(next, dead_cpu, dest_cpu);
6280 raw_spin_lock(&rq->lock);
6283 rq->stop = stop;
6286 #endif /* CONFIG_HOTPLUG_CPU */
6288 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6290 static struct ctl_table sd_ctl_dir[] = {
6292 .procname = "sched_domain",
6293 .mode = 0555,
6298 static struct ctl_table sd_ctl_root[] = {
6300 .procname = "kernel",
6301 .mode = 0555,
6302 .child = sd_ctl_dir,
6307 static struct ctl_table *sd_alloc_ctl_entry(int n)
6309 struct ctl_table *entry =
6310 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6312 return entry;
6315 static void sd_free_ctl_entry(struct ctl_table **tablep)
6317 struct ctl_table *entry;
6320 * In the intermediate directories, both the child directory and
6321 * procname are dynamically allocated and could fail but the mode
6322 * will always be set. In the lowest directory the names are
6323 * static strings and all have proc handlers.
6325 for (entry = *tablep; entry->mode; entry++) {
6326 if (entry->child)
6327 sd_free_ctl_entry(&entry->child);
6328 if (entry->proc_handler == NULL)
6329 kfree(entry->procname);
6332 kfree(*tablep);
6333 *tablep = NULL;
6336 static void
6337 set_table_entry(struct ctl_table *entry,
6338 const char *procname, void *data, int maxlen,
6339 mode_t mode, proc_handler *proc_handler)
6341 entry->procname = procname;
6342 entry->data = data;
6343 entry->maxlen = maxlen;
6344 entry->mode = mode;
6345 entry->proc_handler = proc_handler;
6348 static struct ctl_table *
6349 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6351 struct ctl_table *table = sd_alloc_ctl_entry(13);
6353 if (table == NULL)
6354 return NULL;
6356 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6357 sizeof(long), 0644, proc_doulongvec_minmax);
6358 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6359 sizeof(long), 0644, proc_doulongvec_minmax);
6360 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6361 sizeof(int), 0644, proc_dointvec_minmax);
6362 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6363 sizeof(int), 0644, proc_dointvec_minmax);
6364 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6365 sizeof(int), 0644, proc_dointvec_minmax);
6366 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6367 sizeof(int), 0644, proc_dointvec_minmax);
6368 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6369 sizeof(int), 0644, proc_dointvec_minmax);
6370 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6371 sizeof(int), 0644, proc_dointvec_minmax);
6372 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6373 sizeof(int), 0644, proc_dointvec_minmax);
6374 set_table_entry(&table[9], "cache_nice_tries",
6375 &sd->cache_nice_tries,
6376 sizeof(int), 0644, proc_dointvec_minmax);
6377 set_table_entry(&table[10], "flags", &sd->flags,
6378 sizeof(int), 0644, proc_dointvec_minmax);
6379 set_table_entry(&table[11], "name", sd->name,
6380 CORENAME_MAX_SIZE, 0444, proc_dostring);
6381 /* &table[12] is terminator */
6383 return table;
6386 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6388 struct ctl_table *entry, *table;
6389 struct sched_domain *sd;
6390 int domain_num = 0, i;
6391 char buf[32];
6393 for_each_domain(cpu, sd)
6394 domain_num++;
6395 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6396 if (table == NULL)
6397 return NULL;
6399 i = 0;
6400 for_each_domain(cpu, sd) {
6401 snprintf(buf, 32, "domain%d", i);
6402 entry->procname = kstrdup(buf, GFP_KERNEL);
6403 entry->mode = 0555;
6404 entry->child = sd_alloc_ctl_domain_table(sd);
6405 entry++;
6406 i++;
6408 return table;
6411 static struct ctl_table_header *sd_sysctl_header;
6412 static void register_sched_domain_sysctl(void)
6414 int i, cpu_num = num_possible_cpus();
6415 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6416 char buf[32];
6418 WARN_ON(sd_ctl_dir[0].child);
6419 sd_ctl_dir[0].child = entry;
6421 if (entry == NULL)
6422 return;
6424 for_each_possible_cpu(i) {
6425 snprintf(buf, 32, "cpu%d", i);
6426 entry->procname = kstrdup(buf, GFP_KERNEL);
6427 entry->mode = 0555;
6428 entry->child = sd_alloc_ctl_cpu_table(i);
6429 entry++;
6432 WARN_ON(sd_sysctl_header);
6433 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6436 /* may be called multiple times per register */
6437 static void unregister_sched_domain_sysctl(void)
6439 if (sd_sysctl_header)
6440 unregister_sysctl_table(sd_sysctl_header);
6441 sd_sysctl_header = NULL;
6442 if (sd_ctl_dir[0].child)
6443 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6445 #else
6446 static void register_sched_domain_sysctl(void)
6449 static void unregister_sched_domain_sysctl(void)
6452 #endif
6454 static void set_rq_online(struct rq *rq)
6456 if (!rq->online) {
6457 const struct sched_class *class;
6459 cpumask_set_cpu(rq->cpu, rq->rd->online);
6460 rq->online = 1;
6462 for_each_class(class) {
6463 if (class->rq_online)
6464 class->rq_online(rq);
6469 static void set_rq_offline(struct rq *rq)
6471 if (rq->online) {
6472 const struct sched_class *class;
6474 for_each_class(class) {
6475 if (class->rq_offline)
6476 class->rq_offline(rq);
6479 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6480 rq->online = 0;
6485 * migration_call - callback that gets triggered when a CPU is added.
6486 * Here we can start up the necessary migration thread for the new CPU.
6488 static int __cpuinit
6489 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6491 int cpu = (long)hcpu;
6492 unsigned long flags;
6493 struct rq *rq = cpu_rq(cpu);
6495 switch (action & ~CPU_TASKS_FROZEN) {
6497 case CPU_UP_PREPARE:
6498 rq->calc_load_update = calc_load_update;
6499 break;
6501 case CPU_ONLINE:
6502 /* Update our root-domain */
6503 raw_spin_lock_irqsave(&rq->lock, flags);
6504 if (rq->rd) {
6505 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6507 set_rq_online(rq);
6509 raw_spin_unlock_irqrestore(&rq->lock, flags);
6510 break;
6512 #ifdef CONFIG_HOTPLUG_CPU
6513 case CPU_DYING:
6514 sched_ttwu_pending();
6515 /* Update our root-domain */
6516 raw_spin_lock_irqsave(&rq->lock, flags);
6517 if (rq->rd) {
6518 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6519 set_rq_offline(rq);
6521 migrate_tasks(cpu);
6522 BUG_ON(rq->nr_running != 1); /* the migration thread */
6523 raw_spin_unlock_irqrestore(&rq->lock, flags);
6525 migrate_nr_uninterruptible(rq);
6526 calc_global_load_remove(rq);
6527 break;
6528 #endif
6531 update_max_interval();
6533 return NOTIFY_OK;
6537 * Register at high priority so that task migration (migrate_all_tasks)
6538 * happens before everything else. This has to be lower priority than
6539 * the notifier in the perf_event subsystem, though.
6541 static struct notifier_block __cpuinitdata migration_notifier = {
6542 .notifier_call = migration_call,
6543 .priority = CPU_PRI_MIGRATION,
6546 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6547 unsigned long action, void *hcpu)
6549 switch (action & ~CPU_TASKS_FROZEN) {
6550 case CPU_STARTING:
6551 case CPU_DOWN_FAILED:
6552 set_cpu_active((long)hcpu, true);
6553 return NOTIFY_OK;
6554 default:
6555 return NOTIFY_DONE;
6559 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6560 unsigned long action, void *hcpu)
6562 switch (action & ~CPU_TASKS_FROZEN) {
6563 case CPU_DOWN_PREPARE:
6564 set_cpu_active((long)hcpu, false);
6565 return NOTIFY_OK;
6566 default:
6567 return NOTIFY_DONE;
6571 static int __init migration_init(void)
6573 void *cpu = (void *)(long)smp_processor_id();
6574 int err;
6576 /* Initialize migration for the boot CPU */
6577 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6578 BUG_ON(err == NOTIFY_BAD);
6579 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6580 register_cpu_notifier(&migration_notifier);
6582 /* Register cpu active notifiers */
6583 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6584 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6586 return 0;
6588 early_initcall(migration_init);
6589 #endif
6591 #ifdef CONFIG_SMP
6593 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6595 #ifdef CONFIG_SCHED_DEBUG
6597 static __read_mostly int sched_domain_debug_enabled;
6599 static int __init sched_domain_debug_setup(char *str)
6601 sched_domain_debug_enabled = 1;
6603 return 0;
6605 early_param("sched_debug", sched_domain_debug_setup);
6607 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6608 struct cpumask *groupmask)
6610 struct sched_group *group = sd->groups;
6611 char str[256];
6613 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6614 cpumask_clear(groupmask);
6616 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6618 if (!(sd->flags & SD_LOAD_BALANCE)) {
6619 printk("does not load-balance\n");
6620 if (sd->parent)
6621 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6622 " has parent");
6623 return -1;
6626 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6628 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6629 printk(KERN_ERR "ERROR: domain->span does not contain "
6630 "CPU%d\n", cpu);
6632 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6633 printk(KERN_ERR "ERROR: domain->groups does not contain"
6634 " CPU%d\n", cpu);
6637 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6638 do {
6639 if (!group) {
6640 printk("\n");
6641 printk(KERN_ERR "ERROR: group is NULL\n");
6642 break;
6645 if (!group->sgp->power) {
6646 printk(KERN_CONT "\n");
6647 printk(KERN_ERR "ERROR: domain->cpu_power not "
6648 "set\n");
6649 break;
6652 if (!cpumask_weight(sched_group_cpus(group))) {
6653 printk(KERN_CONT "\n");
6654 printk(KERN_ERR "ERROR: empty group\n");
6655 break;
6658 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6659 printk(KERN_CONT "\n");
6660 printk(KERN_ERR "ERROR: repeated CPUs\n");
6661 break;
6664 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6666 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6668 printk(KERN_CONT " %s", str);
6669 if (group->sgp->power != SCHED_POWER_SCALE) {
6670 printk(KERN_CONT " (cpu_power = %d)",
6671 group->sgp->power);
6674 group = group->next;
6675 } while (group != sd->groups);
6676 printk(KERN_CONT "\n");
6678 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6679 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6681 if (sd->parent &&
6682 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6683 printk(KERN_ERR "ERROR: parent span is not a superset "
6684 "of domain->span\n");
6685 return 0;
6688 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6690 int level = 0;
6692 if (!sched_domain_debug_enabled)
6693 return;
6695 if (!sd) {
6696 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6697 return;
6700 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6702 for (;;) {
6703 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6704 break;
6705 level++;
6706 sd = sd->parent;
6707 if (!sd)
6708 break;
6711 #else /* !CONFIG_SCHED_DEBUG */
6712 # define sched_domain_debug(sd, cpu) do { } while (0)
6713 #endif /* CONFIG_SCHED_DEBUG */
6715 static int sd_degenerate(struct sched_domain *sd)
6717 if (cpumask_weight(sched_domain_span(sd)) == 1)
6718 return 1;
6720 /* Following flags need at least 2 groups */
6721 if (sd->flags & (SD_LOAD_BALANCE |
6722 SD_BALANCE_NEWIDLE |
6723 SD_BALANCE_FORK |
6724 SD_BALANCE_EXEC |
6725 SD_SHARE_CPUPOWER |
6726 SD_SHARE_PKG_RESOURCES)) {
6727 if (sd->groups != sd->groups->next)
6728 return 0;
6731 /* Following flags don't use groups */
6732 if (sd->flags & (SD_WAKE_AFFINE))
6733 return 0;
6735 return 1;
6738 static int
6739 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6741 unsigned long cflags = sd->flags, pflags = parent->flags;
6743 if (sd_degenerate(parent))
6744 return 1;
6746 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6747 return 0;
6749 /* Flags needing groups don't count if only 1 group in parent */
6750 if (parent->groups == parent->groups->next) {
6751 pflags &= ~(SD_LOAD_BALANCE |
6752 SD_BALANCE_NEWIDLE |
6753 SD_BALANCE_FORK |
6754 SD_BALANCE_EXEC |
6755 SD_SHARE_CPUPOWER |
6756 SD_SHARE_PKG_RESOURCES);
6757 if (nr_node_ids == 1)
6758 pflags &= ~SD_SERIALIZE;
6760 if (~cflags & pflags)
6761 return 0;
6763 return 1;
6766 static void free_rootdomain(struct rcu_head *rcu)
6768 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6770 cpupri_cleanup(&rd->cpupri);
6771 free_cpumask_var(rd->rto_mask);
6772 free_cpumask_var(rd->online);
6773 free_cpumask_var(rd->span);
6774 kfree(rd);
6777 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6779 struct root_domain *old_rd = NULL;
6780 unsigned long flags;
6782 raw_spin_lock_irqsave(&rq->lock, flags);
6784 if (rq->rd) {
6785 old_rd = rq->rd;
6787 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6788 set_rq_offline(rq);
6790 cpumask_clear_cpu(rq->cpu, old_rd->span);
6793 * If we dont want to free the old_rt yet then
6794 * set old_rd to NULL to skip the freeing later
6795 * in this function:
6797 if (!atomic_dec_and_test(&old_rd->refcount))
6798 old_rd = NULL;
6801 atomic_inc(&rd->refcount);
6802 rq->rd = rd;
6804 cpumask_set_cpu(rq->cpu, rd->span);
6805 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6806 set_rq_online(rq);
6808 raw_spin_unlock_irqrestore(&rq->lock, flags);
6810 if (old_rd)
6811 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6814 static int init_rootdomain(struct root_domain *rd)
6816 memset(rd, 0, sizeof(*rd));
6818 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6819 goto out;
6820 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6821 goto free_span;
6822 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6823 goto free_online;
6825 if (cpupri_init(&rd->cpupri) != 0)
6826 goto free_rto_mask;
6827 return 0;
6829 free_rto_mask:
6830 free_cpumask_var(rd->rto_mask);
6831 free_online:
6832 free_cpumask_var(rd->online);
6833 free_span:
6834 free_cpumask_var(rd->span);
6835 out:
6836 return -ENOMEM;
6839 static void init_defrootdomain(void)
6841 init_rootdomain(&def_root_domain);
6843 atomic_set(&def_root_domain.refcount, 1);
6846 static struct root_domain *alloc_rootdomain(void)
6848 struct root_domain *rd;
6850 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6851 if (!rd)
6852 return NULL;
6854 if (init_rootdomain(rd) != 0) {
6855 kfree(rd);
6856 return NULL;
6859 return rd;
6862 static void free_sched_groups(struct sched_group *sg, int free_sgp)
6864 struct sched_group *tmp, *first;
6866 if (!sg)
6867 return;
6869 first = sg;
6870 do {
6871 tmp = sg->next;
6873 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6874 kfree(sg->sgp);
6876 kfree(sg);
6877 sg = tmp;
6878 } while (sg != first);
6881 static void free_sched_domain(struct rcu_head *rcu)
6883 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6886 * If its an overlapping domain it has private groups, iterate and
6887 * nuke them all.
6889 if (sd->flags & SD_OVERLAP) {
6890 free_sched_groups(sd->groups, 1);
6891 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6892 kfree(sd->groups->sgp);
6893 kfree(sd->groups);
6895 kfree(sd);
6898 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6900 call_rcu(&sd->rcu, free_sched_domain);
6903 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6905 for (; sd; sd = sd->parent)
6906 destroy_sched_domain(sd, cpu);
6910 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6911 * hold the hotplug lock.
6913 static void
6914 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6916 struct rq *rq = cpu_rq(cpu);
6917 struct sched_domain *tmp;
6919 /* Remove the sched domains which do not contribute to scheduling. */
6920 for (tmp = sd; tmp; ) {
6921 struct sched_domain *parent = tmp->parent;
6922 if (!parent)
6923 break;
6925 if (sd_parent_degenerate(tmp, parent)) {
6926 tmp->parent = parent->parent;
6927 if (parent->parent)
6928 parent->parent->child = tmp;
6929 destroy_sched_domain(parent, cpu);
6930 } else
6931 tmp = tmp->parent;
6934 if (sd && sd_degenerate(sd)) {
6935 tmp = sd;
6936 sd = sd->parent;
6937 destroy_sched_domain(tmp, cpu);
6938 if (sd)
6939 sd->child = NULL;
6942 sched_domain_debug(sd, cpu);
6944 rq_attach_root(rq, rd);
6945 tmp = rq->sd;
6946 rcu_assign_pointer(rq->sd, sd);
6947 destroy_sched_domains(tmp, cpu);
6950 /* cpus with isolated domains */
6951 static cpumask_var_t cpu_isolated_map;
6953 /* Setup the mask of cpus configured for isolated domains */
6954 static int __init isolated_cpu_setup(char *str)
6956 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6957 cpulist_parse(str, cpu_isolated_map);
6958 return 1;
6961 __setup("isolcpus=", isolated_cpu_setup);
6963 #define SD_NODES_PER_DOMAIN 16
6965 #ifdef CONFIG_NUMA
6968 * find_next_best_node - find the next node to include in a sched_domain
6969 * @node: node whose sched_domain we're building
6970 * @used_nodes: nodes already in the sched_domain
6972 * Find the next node to include in a given scheduling domain. Simply
6973 * finds the closest node not already in the @used_nodes map.
6975 * Should use nodemask_t.
6977 static int find_next_best_node(int node, nodemask_t *used_nodes)
6979 int i, n, val, min_val, best_node = -1;
6981 min_val = INT_MAX;
6983 for (i = 0; i < nr_node_ids; i++) {
6984 /* Start at @node */
6985 n = (node + i) % nr_node_ids;
6987 if (!nr_cpus_node(n))
6988 continue;
6990 /* Skip already used nodes */
6991 if (node_isset(n, *used_nodes))
6992 continue;
6994 /* Simple min distance search */
6995 val = node_distance(node, n);
6997 if (val < min_val) {
6998 min_val = val;
6999 best_node = n;
7003 if (best_node != -1)
7004 node_set(best_node, *used_nodes);
7005 return best_node;
7009 * sched_domain_node_span - get a cpumask for a node's sched_domain
7010 * @node: node whose cpumask we're constructing
7011 * @span: resulting cpumask
7013 * Given a node, construct a good cpumask for its sched_domain to span. It
7014 * should be one that prevents unnecessary balancing, but also spreads tasks
7015 * out optimally.
7017 static void sched_domain_node_span(int node, struct cpumask *span)
7019 nodemask_t used_nodes;
7020 int i;
7022 cpumask_clear(span);
7023 nodes_clear(used_nodes);
7025 cpumask_or(span, span, cpumask_of_node(node));
7026 node_set(node, used_nodes);
7028 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7029 int next_node = find_next_best_node(node, &used_nodes);
7030 if (next_node < 0)
7031 break;
7032 cpumask_or(span, span, cpumask_of_node(next_node));
7036 static const struct cpumask *cpu_node_mask(int cpu)
7038 lockdep_assert_held(&sched_domains_mutex);
7040 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7042 return sched_domains_tmpmask;
7045 static const struct cpumask *cpu_allnodes_mask(int cpu)
7047 return cpu_possible_mask;
7049 #endif /* CONFIG_NUMA */
7051 static const struct cpumask *cpu_cpu_mask(int cpu)
7053 return cpumask_of_node(cpu_to_node(cpu));
7056 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7058 struct sd_data {
7059 struct sched_domain **__percpu sd;
7060 struct sched_group **__percpu sg;
7061 struct sched_group_power **__percpu sgp;
7064 struct s_data {
7065 struct sched_domain ** __percpu sd;
7066 struct root_domain *rd;
7069 enum s_alloc {
7070 sa_rootdomain,
7071 sa_sd,
7072 sa_sd_storage,
7073 sa_none,
7076 struct sched_domain_topology_level;
7078 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7079 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7081 #define SDTL_OVERLAP 0x01
7083 struct sched_domain_topology_level {
7084 sched_domain_init_f init;
7085 sched_domain_mask_f mask;
7086 int flags;
7087 struct sd_data data;
7090 static int
7091 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7093 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7094 const struct cpumask *span = sched_domain_span(sd);
7095 struct cpumask *covered = sched_domains_tmpmask;
7096 struct sd_data *sdd = sd->private;
7097 struct sched_domain *child;
7098 int i;
7100 cpumask_clear(covered);
7102 for_each_cpu(i, span) {
7103 struct cpumask *sg_span;
7105 if (cpumask_test_cpu(i, covered))
7106 continue;
7108 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7109 GFP_KERNEL, cpu_to_node(i));
7111 if (!sg)
7112 goto fail;
7114 sg_span = sched_group_cpus(sg);
7116 child = *per_cpu_ptr(sdd->sd, i);
7117 if (child->child) {
7118 child = child->child;
7119 cpumask_copy(sg_span, sched_domain_span(child));
7120 } else
7121 cpumask_set_cpu(i, sg_span);
7123 cpumask_or(covered, covered, sg_span);
7125 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7126 atomic_inc(&sg->sgp->ref);
7128 if (cpumask_test_cpu(cpu, sg_span))
7129 groups = sg;
7131 if (!first)
7132 first = sg;
7133 if (last)
7134 last->next = sg;
7135 last = sg;
7136 last->next = first;
7138 sd->groups = groups;
7140 return 0;
7142 fail:
7143 free_sched_groups(first, 0);
7145 return -ENOMEM;
7148 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7150 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7151 struct sched_domain *child = sd->child;
7153 if (child)
7154 cpu = cpumask_first(sched_domain_span(child));
7156 if (sg) {
7157 *sg = *per_cpu_ptr(sdd->sg, cpu);
7158 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7159 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7162 return cpu;
7166 * build_sched_groups will build a circular linked list of the groups
7167 * covered by the given span, and will set each group's ->cpumask correctly,
7168 * and ->cpu_power to 0.
7170 * Assumes the sched_domain tree is fully constructed
7172 static int
7173 build_sched_groups(struct sched_domain *sd, int cpu)
7175 struct sched_group *first = NULL, *last = NULL;
7176 struct sd_data *sdd = sd->private;
7177 const struct cpumask *span = sched_domain_span(sd);
7178 struct cpumask *covered;
7179 int i;
7181 get_group(cpu, sdd, &sd->groups);
7182 atomic_inc(&sd->groups->ref);
7184 if (cpu != cpumask_first(sched_domain_span(sd)))
7185 return 0;
7187 lockdep_assert_held(&sched_domains_mutex);
7188 covered = sched_domains_tmpmask;
7190 cpumask_clear(covered);
7192 for_each_cpu(i, span) {
7193 struct sched_group *sg;
7194 int group = get_group(i, sdd, &sg);
7195 int j;
7197 if (cpumask_test_cpu(i, covered))
7198 continue;
7200 cpumask_clear(sched_group_cpus(sg));
7201 sg->sgp->power = 0;
7203 for_each_cpu(j, span) {
7204 if (get_group(j, sdd, NULL) != group)
7205 continue;
7207 cpumask_set_cpu(j, covered);
7208 cpumask_set_cpu(j, sched_group_cpus(sg));
7211 if (!first)
7212 first = sg;
7213 if (last)
7214 last->next = sg;
7215 last = sg;
7217 last->next = first;
7219 return 0;
7223 * Initialize sched groups cpu_power.
7225 * cpu_power indicates the capacity of sched group, which is used while
7226 * distributing the load between different sched groups in a sched domain.
7227 * Typically cpu_power for all the groups in a sched domain will be same unless
7228 * there are asymmetries in the topology. If there are asymmetries, group
7229 * having more cpu_power will pickup more load compared to the group having
7230 * less cpu_power.
7232 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7234 struct sched_group *sg = sd->groups;
7236 WARN_ON(!sd || !sg);
7238 do {
7239 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7240 sg = sg->next;
7241 } while (sg != sd->groups);
7243 if (cpu != group_first_cpu(sg))
7244 return;
7246 update_group_power(sd, cpu);
7250 * Initializers for schedule domains
7251 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7254 #ifdef CONFIG_SCHED_DEBUG
7255 # define SD_INIT_NAME(sd, type) sd->name = #type
7256 #else
7257 # define SD_INIT_NAME(sd, type) do { } while (0)
7258 #endif
7260 #define SD_INIT_FUNC(type) \
7261 static noinline struct sched_domain * \
7262 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7264 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7265 *sd = SD_##type##_INIT; \
7266 SD_INIT_NAME(sd, type); \
7267 sd->private = &tl->data; \
7268 return sd; \
7271 SD_INIT_FUNC(CPU)
7272 #ifdef CONFIG_NUMA
7273 SD_INIT_FUNC(ALLNODES)
7274 SD_INIT_FUNC(NODE)
7275 #endif
7276 #ifdef CONFIG_SCHED_SMT
7277 SD_INIT_FUNC(SIBLING)
7278 #endif
7279 #ifdef CONFIG_SCHED_MC
7280 SD_INIT_FUNC(MC)
7281 #endif
7282 #ifdef CONFIG_SCHED_BOOK
7283 SD_INIT_FUNC(BOOK)
7284 #endif
7286 static int default_relax_domain_level = -1;
7287 int sched_domain_level_max;
7289 static int __init setup_relax_domain_level(char *str)
7291 if (kstrtoint(str, 0, &default_relax_domain_level))
7292 pr_warn("Unable to set relax_domain_level\n");
7294 return 1;
7296 __setup("relax_domain_level=", setup_relax_domain_level);
7298 static void set_domain_attribute(struct sched_domain *sd,
7299 struct sched_domain_attr *attr)
7301 int request;
7303 if (!attr || attr->relax_domain_level < 0) {
7304 if (default_relax_domain_level < 0)
7305 return;
7306 else
7307 request = default_relax_domain_level;
7308 } else
7309 request = attr->relax_domain_level;
7310 if (request < sd->level) {
7311 /* turn off idle balance on this domain */
7312 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7313 } else {
7314 /* turn on idle balance on this domain */
7315 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7319 static void __sdt_free(const struct cpumask *cpu_map);
7320 static int __sdt_alloc(const struct cpumask *cpu_map);
7322 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7323 const struct cpumask *cpu_map)
7325 switch (what) {
7326 case sa_rootdomain:
7327 if (!atomic_read(&d->rd->refcount))
7328 free_rootdomain(&d->rd->rcu); /* fall through */
7329 case sa_sd:
7330 free_percpu(d->sd); /* fall through */
7331 case sa_sd_storage:
7332 __sdt_free(cpu_map); /* fall through */
7333 case sa_none:
7334 break;
7338 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7339 const struct cpumask *cpu_map)
7341 memset(d, 0, sizeof(*d));
7343 if (__sdt_alloc(cpu_map))
7344 return sa_sd_storage;
7345 d->sd = alloc_percpu(struct sched_domain *);
7346 if (!d->sd)
7347 return sa_sd_storage;
7348 d->rd = alloc_rootdomain();
7349 if (!d->rd)
7350 return sa_sd;
7351 return sa_rootdomain;
7355 * NULL the sd_data elements we've used to build the sched_domain and
7356 * sched_group structure so that the subsequent __free_domain_allocs()
7357 * will not free the data we're using.
7359 static void claim_allocations(int cpu, struct sched_domain *sd)
7361 struct sd_data *sdd = sd->private;
7363 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7364 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7366 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7367 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7369 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7370 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7373 #ifdef CONFIG_SCHED_SMT
7374 static const struct cpumask *cpu_smt_mask(int cpu)
7376 return topology_thread_cpumask(cpu);
7378 #endif
7381 * Topology list, bottom-up.
7383 static struct sched_domain_topology_level default_topology[] = {
7384 #ifdef CONFIG_SCHED_SMT
7385 { sd_init_SIBLING, cpu_smt_mask, },
7386 #endif
7387 #ifdef CONFIG_SCHED_MC
7388 { sd_init_MC, cpu_coregroup_mask, },
7389 #endif
7390 #ifdef CONFIG_SCHED_BOOK
7391 { sd_init_BOOK, cpu_book_mask, },
7392 #endif
7393 { sd_init_CPU, cpu_cpu_mask, },
7394 #ifdef CONFIG_NUMA
7395 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7396 { sd_init_ALLNODES, cpu_allnodes_mask, },
7397 #endif
7398 { NULL, },
7401 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7403 static int __sdt_alloc(const struct cpumask *cpu_map)
7405 struct sched_domain_topology_level *tl;
7406 int j;
7408 for (tl = sched_domain_topology; tl->init; tl++) {
7409 struct sd_data *sdd = &tl->data;
7411 sdd->sd = alloc_percpu(struct sched_domain *);
7412 if (!sdd->sd)
7413 return -ENOMEM;
7415 sdd->sg = alloc_percpu(struct sched_group *);
7416 if (!sdd->sg)
7417 return -ENOMEM;
7419 sdd->sgp = alloc_percpu(struct sched_group_power *);
7420 if (!sdd->sgp)
7421 return -ENOMEM;
7423 for_each_cpu(j, cpu_map) {
7424 struct sched_domain *sd;
7425 struct sched_group *sg;
7426 struct sched_group_power *sgp;
7428 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7429 GFP_KERNEL, cpu_to_node(j));
7430 if (!sd)
7431 return -ENOMEM;
7433 *per_cpu_ptr(sdd->sd, j) = sd;
7435 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7436 GFP_KERNEL, cpu_to_node(j));
7437 if (!sg)
7438 return -ENOMEM;
7440 *per_cpu_ptr(sdd->sg, j) = sg;
7442 sgp = kzalloc_node(sizeof(struct sched_group_power),
7443 GFP_KERNEL, cpu_to_node(j));
7444 if (!sgp)
7445 return -ENOMEM;
7447 *per_cpu_ptr(sdd->sgp, j) = sgp;
7451 return 0;
7454 static void __sdt_free(const struct cpumask *cpu_map)
7456 struct sched_domain_topology_level *tl;
7457 int j;
7459 for (tl = sched_domain_topology; tl->init; tl++) {
7460 struct sd_data *sdd = &tl->data;
7462 for_each_cpu(j, cpu_map) {
7463 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7464 if (sd && (sd->flags & SD_OVERLAP))
7465 free_sched_groups(sd->groups, 0);
7466 kfree(*per_cpu_ptr(sdd->sd, j));
7467 kfree(*per_cpu_ptr(sdd->sg, j));
7468 kfree(*per_cpu_ptr(sdd->sgp, j));
7470 free_percpu(sdd->sd);
7471 free_percpu(sdd->sg);
7472 free_percpu(sdd->sgp);
7476 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7477 struct s_data *d, const struct cpumask *cpu_map,
7478 struct sched_domain_attr *attr, struct sched_domain *child,
7479 int cpu)
7481 struct sched_domain *sd = tl->init(tl, cpu);
7482 if (!sd)
7483 return child;
7485 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7486 if (child) {
7487 sd->level = child->level + 1;
7488 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7489 child->parent = sd;
7491 sd->child = child;
7492 set_domain_attribute(sd, attr);
7494 return sd;
7498 * Build sched domains for a given set of cpus and attach the sched domains
7499 * to the individual cpus
7501 static int build_sched_domains(const struct cpumask *cpu_map,
7502 struct sched_domain_attr *attr)
7504 enum s_alloc alloc_state = sa_none;
7505 struct sched_domain *sd;
7506 struct s_data d;
7507 int i, ret = -ENOMEM;
7509 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7510 if (alloc_state != sa_rootdomain)
7511 goto error;
7513 /* Set up domains for cpus specified by the cpu_map. */
7514 for_each_cpu(i, cpu_map) {
7515 struct sched_domain_topology_level *tl;
7517 sd = NULL;
7518 for (tl = sched_domain_topology; tl->init; tl++) {
7519 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7520 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7521 sd->flags |= SD_OVERLAP;
7522 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7523 break;
7526 while (sd->child)
7527 sd = sd->child;
7529 *per_cpu_ptr(d.sd, i) = sd;
7532 /* Build the groups for the domains */
7533 for_each_cpu(i, cpu_map) {
7534 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7535 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7536 if (sd->flags & SD_OVERLAP) {
7537 if (build_overlap_sched_groups(sd, i))
7538 goto error;
7539 } else {
7540 if (build_sched_groups(sd, i))
7541 goto error;
7546 /* Calculate CPU power for physical packages and nodes */
7547 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7548 if (!cpumask_test_cpu(i, cpu_map))
7549 continue;
7551 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7552 claim_allocations(i, sd);
7553 init_sched_groups_power(i, sd);
7557 /* Attach the domains */
7558 rcu_read_lock();
7559 for_each_cpu(i, cpu_map) {
7560 sd = *per_cpu_ptr(d.sd, i);
7561 cpu_attach_domain(sd, d.rd, i);
7563 rcu_read_unlock();
7565 ret = 0;
7566 error:
7567 __free_domain_allocs(&d, alloc_state, cpu_map);
7568 return ret;
7571 static cpumask_var_t *doms_cur; /* current sched domains */
7572 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7573 static struct sched_domain_attr *dattr_cur;
7574 /* attribues of custom domains in 'doms_cur' */
7577 * Special case: If a kmalloc of a doms_cur partition (array of
7578 * cpumask) fails, then fallback to a single sched domain,
7579 * as determined by the single cpumask fallback_doms.
7581 static cpumask_var_t fallback_doms;
7584 * arch_update_cpu_topology lets virtualized architectures update the
7585 * cpu core maps. It is supposed to return 1 if the topology changed
7586 * or 0 if it stayed the same.
7588 int __attribute__((weak)) arch_update_cpu_topology(void)
7590 return 0;
7593 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7595 int i;
7596 cpumask_var_t *doms;
7598 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7599 if (!doms)
7600 return NULL;
7601 for (i = 0; i < ndoms; i++) {
7602 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7603 free_sched_domains(doms, i);
7604 return NULL;
7607 return doms;
7610 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7612 unsigned int i;
7613 for (i = 0; i < ndoms; i++)
7614 free_cpumask_var(doms[i]);
7615 kfree(doms);
7619 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7620 * For now this just excludes isolated cpus, but could be used to
7621 * exclude other special cases in the future.
7623 static int init_sched_domains(const struct cpumask *cpu_map)
7625 int err;
7627 arch_update_cpu_topology();
7628 ndoms_cur = 1;
7629 doms_cur = alloc_sched_domains(ndoms_cur);
7630 if (!doms_cur)
7631 doms_cur = &fallback_doms;
7632 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7633 dattr_cur = NULL;
7634 err = build_sched_domains(doms_cur[0], NULL);
7635 register_sched_domain_sysctl();
7637 return err;
7641 * Detach sched domains from a group of cpus specified in cpu_map
7642 * These cpus will now be attached to the NULL domain
7644 static void detach_destroy_domains(const struct cpumask *cpu_map)
7646 int i;
7648 rcu_read_lock();
7649 for_each_cpu(i, cpu_map)
7650 cpu_attach_domain(NULL, &def_root_domain, i);
7651 rcu_read_unlock();
7654 /* handle null as "default" */
7655 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7656 struct sched_domain_attr *new, int idx_new)
7658 struct sched_domain_attr tmp;
7660 /* fast path */
7661 if (!new && !cur)
7662 return 1;
7664 tmp = SD_ATTR_INIT;
7665 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7666 new ? (new + idx_new) : &tmp,
7667 sizeof(struct sched_domain_attr));
7671 * Partition sched domains as specified by the 'ndoms_new'
7672 * cpumasks in the array doms_new[] of cpumasks. This compares
7673 * doms_new[] to the current sched domain partitioning, doms_cur[].
7674 * It destroys each deleted domain and builds each new domain.
7676 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7677 * The masks don't intersect (don't overlap.) We should setup one
7678 * sched domain for each mask. CPUs not in any of the cpumasks will
7679 * not be load balanced. If the same cpumask appears both in the
7680 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7681 * it as it is.
7683 * The passed in 'doms_new' should be allocated using
7684 * alloc_sched_domains. This routine takes ownership of it and will
7685 * free_sched_domains it when done with it. If the caller failed the
7686 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7687 * and partition_sched_domains() will fallback to the single partition
7688 * 'fallback_doms', it also forces the domains to be rebuilt.
7690 * If doms_new == NULL it will be replaced with cpu_online_mask.
7691 * ndoms_new == 0 is a special case for destroying existing domains,
7692 * and it will not create the default domain.
7694 * Call with hotplug lock held
7696 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7697 struct sched_domain_attr *dattr_new)
7699 int i, j, n;
7700 int new_topology;
7702 mutex_lock(&sched_domains_mutex);
7704 /* always unregister in case we don't destroy any domains */
7705 unregister_sched_domain_sysctl();
7707 /* Let architecture update cpu core mappings. */
7708 new_topology = arch_update_cpu_topology();
7710 n = doms_new ? ndoms_new : 0;
7712 /* Destroy deleted domains */
7713 for (i = 0; i < ndoms_cur; i++) {
7714 for (j = 0; j < n && !new_topology; j++) {
7715 if (cpumask_equal(doms_cur[i], doms_new[j])
7716 && dattrs_equal(dattr_cur, i, dattr_new, j))
7717 goto match1;
7719 /* no match - a current sched domain not in new doms_new[] */
7720 detach_destroy_domains(doms_cur[i]);
7721 match1:
7725 if (doms_new == NULL) {
7726 ndoms_cur = 0;
7727 doms_new = &fallback_doms;
7728 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7729 WARN_ON_ONCE(dattr_new);
7732 /* Build new domains */
7733 for (i = 0; i < ndoms_new; i++) {
7734 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7735 if (cpumask_equal(doms_new[i], doms_cur[j])
7736 && dattrs_equal(dattr_new, i, dattr_cur, j))
7737 goto match2;
7739 /* no match - add a new doms_new */
7740 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7741 match2:
7745 /* Remember the new sched domains */
7746 if (doms_cur != &fallback_doms)
7747 free_sched_domains(doms_cur, ndoms_cur);
7748 kfree(dattr_cur); /* kfree(NULL) is safe */
7749 doms_cur = doms_new;
7750 dattr_cur = dattr_new;
7751 ndoms_cur = ndoms_new;
7753 register_sched_domain_sysctl();
7755 mutex_unlock(&sched_domains_mutex);
7758 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7759 static void reinit_sched_domains(void)
7761 get_online_cpus();
7763 /* Destroy domains first to force the rebuild */
7764 partition_sched_domains(0, NULL, NULL);
7766 rebuild_sched_domains();
7767 put_online_cpus();
7770 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7772 unsigned int level = 0;
7774 if (sscanf(buf, "%u", &level) != 1)
7775 return -EINVAL;
7778 * level is always be positive so don't check for
7779 * level < POWERSAVINGS_BALANCE_NONE which is 0
7780 * What happens on 0 or 1 byte write,
7781 * need to check for count as well?
7784 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7785 return -EINVAL;
7787 if (smt)
7788 sched_smt_power_savings = level;
7789 else
7790 sched_mc_power_savings = level;
7792 reinit_sched_domains();
7794 return count;
7797 #ifdef CONFIG_SCHED_MC
7798 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7799 struct sysdev_class_attribute *attr,
7800 char *page)
7802 return sprintf(page, "%u\n", sched_mc_power_savings);
7804 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7805 struct sysdev_class_attribute *attr,
7806 const char *buf, size_t count)
7808 return sched_power_savings_store(buf, count, 0);
7810 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7811 sched_mc_power_savings_show,
7812 sched_mc_power_savings_store);
7813 #endif
7815 #ifdef CONFIG_SCHED_SMT
7816 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7817 struct sysdev_class_attribute *attr,
7818 char *page)
7820 return sprintf(page, "%u\n", sched_smt_power_savings);
7822 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7823 struct sysdev_class_attribute *attr,
7824 const char *buf, size_t count)
7826 return sched_power_savings_store(buf, count, 1);
7828 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7829 sched_smt_power_savings_show,
7830 sched_smt_power_savings_store);
7831 #endif
7833 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7835 int err = 0;
7837 #ifdef CONFIG_SCHED_SMT
7838 if (smt_capable())
7839 err = sysfs_create_file(&cls->kset.kobj,
7840 &attr_sched_smt_power_savings.attr);
7841 #endif
7842 #ifdef CONFIG_SCHED_MC
7843 if (!err && mc_capable())
7844 err = sysfs_create_file(&cls->kset.kobj,
7845 &attr_sched_mc_power_savings.attr);
7846 #endif
7847 return err;
7849 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7852 * Update cpusets according to cpu_active mask. If cpusets are
7853 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7854 * around partition_sched_domains().
7856 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7857 void *hcpu)
7859 switch (action & ~CPU_TASKS_FROZEN) {
7860 case CPU_ONLINE:
7861 case CPU_DOWN_FAILED:
7862 cpuset_update_active_cpus();
7863 return NOTIFY_OK;
7864 default:
7865 return NOTIFY_DONE;
7869 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7870 void *hcpu)
7872 switch (action & ~CPU_TASKS_FROZEN) {
7873 case CPU_DOWN_PREPARE:
7874 cpuset_update_active_cpus();
7875 return NOTIFY_OK;
7876 default:
7877 return NOTIFY_DONE;
7881 static int update_runtime(struct notifier_block *nfb,
7882 unsigned long action, void *hcpu)
7884 int cpu = (int)(long)hcpu;
7886 switch (action) {
7887 case CPU_DOWN_PREPARE:
7888 case CPU_DOWN_PREPARE_FROZEN:
7889 disable_runtime(cpu_rq(cpu));
7890 return NOTIFY_OK;
7892 case CPU_DOWN_FAILED:
7893 case CPU_DOWN_FAILED_FROZEN:
7894 case CPU_ONLINE:
7895 case CPU_ONLINE_FROZEN:
7896 enable_runtime(cpu_rq(cpu));
7897 return NOTIFY_OK;
7899 default:
7900 return NOTIFY_DONE;
7904 void __init sched_init_smp(void)
7906 cpumask_var_t non_isolated_cpus;
7908 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7909 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7911 get_online_cpus();
7912 mutex_lock(&sched_domains_mutex);
7913 init_sched_domains(cpu_active_mask);
7914 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7915 if (cpumask_empty(non_isolated_cpus))
7916 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7917 mutex_unlock(&sched_domains_mutex);
7918 put_online_cpus();
7920 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7921 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7923 /* RT runtime code needs to handle some hotplug events */
7924 hotcpu_notifier(update_runtime, 0);
7926 init_hrtick();
7928 /* Move init over to a non-isolated CPU */
7929 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7930 BUG();
7931 sched_init_granularity();
7932 free_cpumask_var(non_isolated_cpus);
7934 init_sched_rt_class();
7936 #else
7937 void __init sched_init_smp(void)
7939 sched_init_granularity();
7941 #endif /* CONFIG_SMP */
7943 const_debug unsigned int sysctl_timer_migration = 1;
7945 int in_sched_functions(unsigned long addr)
7947 return in_lock_functions(addr) ||
7948 (addr >= (unsigned long)__sched_text_start
7949 && addr < (unsigned long)__sched_text_end);
7952 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7954 cfs_rq->tasks_timeline = RB_ROOT;
7955 INIT_LIST_HEAD(&cfs_rq->tasks);
7956 #ifdef CONFIG_FAIR_GROUP_SCHED
7957 cfs_rq->rq = rq;
7958 /* allow initial update_cfs_load() to truncate */
7959 #ifdef CONFIG_SMP
7960 cfs_rq->load_stamp = 1;
7961 #endif
7962 #endif
7963 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7964 #ifndef CONFIG_64BIT
7965 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7966 #endif
7969 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7971 struct rt_prio_array *array;
7972 int i;
7974 array = &rt_rq->active;
7975 for (i = 0; i < MAX_RT_PRIO; i++) {
7976 INIT_LIST_HEAD(array->queue + i);
7977 __clear_bit(i, array->bitmap);
7979 /* delimiter for bitsearch: */
7980 __set_bit(MAX_RT_PRIO, array->bitmap);
7982 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7983 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7984 #ifdef CONFIG_SMP
7985 rt_rq->highest_prio.next = MAX_RT_PRIO;
7986 #endif
7987 #endif
7988 #ifdef CONFIG_SMP
7989 rt_rq->rt_nr_migratory = 0;
7990 rt_rq->overloaded = 0;
7991 plist_head_init(&rt_rq->pushable_tasks);
7992 #endif
7994 rt_rq->rt_time = 0;
7995 rt_rq->rt_throttled = 0;
7996 rt_rq->rt_runtime = 0;
7997 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7999 #ifdef CONFIG_RT_GROUP_SCHED
8000 rt_rq->rt_nr_boosted = 0;
8001 rt_rq->rq = rq;
8002 #endif
8005 #ifdef CONFIG_FAIR_GROUP_SCHED
8006 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8007 struct sched_entity *se, int cpu,
8008 struct sched_entity *parent)
8010 struct rq *rq = cpu_rq(cpu);
8011 tg->cfs_rq[cpu] = cfs_rq;
8012 init_cfs_rq(cfs_rq, rq);
8013 cfs_rq->tg = tg;
8015 tg->se[cpu] = se;
8016 /* se could be NULL for root_task_group */
8017 if (!se)
8018 return;
8020 if (!parent)
8021 se->cfs_rq = &rq->cfs;
8022 else
8023 se->cfs_rq = parent->my_q;
8025 se->my_q = cfs_rq;
8026 update_load_set(&se->load, 0);
8027 se->parent = parent;
8029 #endif
8031 #ifdef CONFIG_RT_GROUP_SCHED
8032 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8033 struct sched_rt_entity *rt_se, int cpu,
8034 struct sched_rt_entity *parent)
8036 struct rq *rq = cpu_rq(cpu);
8038 tg->rt_rq[cpu] = rt_rq;
8039 init_rt_rq(rt_rq, rq);
8040 rt_rq->tg = tg;
8041 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8043 tg->rt_se[cpu] = rt_se;
8044 if (!rt_se)
8045 return;
8047 if (!parent)
8048 rt_se->rt_rq = &rq->rt;
8049 else
8050 rt_se->rt_rq = parent->my_q;
8052 rt_se->my_q = rt_rq;
8053 rt_se->parent = parent;
8054 INIT_LIST_HEAD(&rt_se->run_list);
8056 #endif
8058 void __init sched_init(void)
8060 int i, j;
8061 unsigned long alloc_size = 0, ptr;
8063 #ifdef CONFIG_FAIR_GROUP_SCHED
8064 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8065 #endif
8066 #ifdef CONFIG_RT_GROUP_SCHED
8067 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8068 #endif
8069 #ifdef CONFIG_CPUMASK_OFFSTACK
8070 alloc_size += num_possible_cpus() * cpumask_size();
8071 #endif
8072 if (alloc_size) {
8073 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8075 #ifdef CONFIG_FAIR_GROUP_SCHED
8076 root_task_group.se = (struct sched_entity **)ptr;
8077 ptr += nr_cpu_ids * sizeof(void **);
8079 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8080 ptr += nr_cpu_ids * sizeof(void **);
8082 #endif /* CONFIG_FAIR_GROUP_SCHED */
8083 #ifdef CONFIG_RT_GROUP_SCHED
8084 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8085 ptr += nr_cpu_ids * sizeof(void **);
8087 root_task_group.rt_rq = (struct rt_rq **)ptr;
8088 ptr += nr_cpu_ids * sizeof(void **);
8090 #endif /* CONFIG_RT_GROUP_SCHED */
8091 #ifdef CONFIG_CPUMASK_OFFSTACK
8092 for_each_possible_cpu(i) {
8093 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8094 ptr += cpumask_size();
8096 #endif /* CONFIG_CPUMASK_OFFSTACK */
8099 #ifdef CONFIG_SMP
8100 init_defrootdomain();
8101 #endif
8103 init_rt_bandwidth(&def_rt_bandwidth,
8104 global_rt_period(), global_rt_runtime());
8106 #ifdef CONFIG_RT_GROUP_SCHED
8107 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8108 global_rt_period(), global_rt_runtime());
8109 #endif /* CONFIG_RT_GROUP_SCHED */
8111 #ifdef CONFIG_CGROUP_SCHED
8112 list_add(&root_task_group.list, &task_groups);
8113 INIT_LIST_HEAD(&root_task_group.children);
8114 autogroup_init(&init_task);
8115 #endif /* CONFIG_CGROUP_SCHED */
8117 for_each_possible_cpu(i) {
8118 struct rq *rq;
8120 rq = cpu_rq(i);
8121 raw_spin_lock_init(&rq->lock);
8122 rq->nr_running = 0;
8123 rq->calc_load_active = 0;
8124 rq->calc_load_update = jiffies + LOAD_FREQ;
8125 init_cfs_rq(&rq->cfs, rq);
8126 init_rt_rq(&rq->rt, rq);
8127 #ifdef CONFIG_FAIR_GROUP_SCHED
8128 root_task_group.shares = root_task_group_load;
8129 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8131 * How much cpu bandwidth does root_task_group get?
8133 * In case of task-groups formed thr' the cgroup filesystem, it
8134 * gets 100% of the cpu resources in the system. This overall
8135 * system cpu resource is divided among the tasks of
8136 * root_task_group and its child task-groups in a fair manner,
8137 * based on each entity's (task or task-group's) weight
8138 * (se->load.weight).
8140 * In other words, if root_task_group has 10 tasks of weight
8141 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8142 * then A0's share of the cpu resource is:
8144 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8146 * We achieve this by letting root_task_group's tasks sit
8147 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8149 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8150 #endif /* CONFIG_FAIR_GROUP_SCHED */
8152 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8153 #ifdef CONFIG_RT_GROUP_SCHED
8154 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8155 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8156 #endif
8158 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8159 rq->cpu_load[j] = 0;
8161 rq->last_load_update_tick = jiffies;
8163 #ifdef CONFIG_SMP
8164 rq->sd = NULL;
8165 rq->rd = NULL;
8166 rq->cpu_power = SCHED_POWER_SCALE;
8167 rq->post_schedule = 0;
8168 rq->active_balance = 0;
8169 rq->next_balance = jiffies;
8170 rq->push_cpu = 0;
8171 rq->cpu = i;
8172 rq->online = 0;
8173 rq->idle_stamp = 0;
8174 rq->avg_idle = 2*sysctl_sched_migration_cost;
8175 rq_attach_root(rq, &def_root_domain);
8176 #ifdef CONFIG_NO_HZ
8177 rq->nohz_balance_kick = 0;
8178 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8179 #endif
8180 #endif
8181 init_rq_hrtick(rq);
8182 atomic_set(&rq->nr_iowait, 0);
8185 set_load_weight(&init_task);
8187 #ifdef CONFIG_PREEMPT_NOTIFIERS
8188 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8189 #endif
8191 #ifdef CONFIG_SMP
8192 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8193 #endif
8195 #ifdef CONFIG_RT_MUTEXES
8196 plist_head_init(&init_task.pi_waiters);
8197 #endif
8200 * The boot idle thread does lazy MMU switching as well:
8202 atomic_inc(&init_mm.mm_count);
8203 enter_lazy_tlb(&init_mm, current);
8206 * Make us the idle thread. Technically, schedule() should not be
8207 * called from this thread, however somewhere below it might be,
8208 * but because we are the idle thread, we just pick up running again
8209 * when this runqueue becomes "idle".
8211 init_idle(current, smp_processor_id());
8213 calc_load_update = jiffies + LOAD_FREQ;
8216 * During early bootup we pretend to be a normal task:
8218 current->sched_class = &fair_sched_class;
8220 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8221 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8222 #ifdef CONFIG_SMP
8223 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8224 #ifdef CONFIG_NO_HZ
8225 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8226 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8227 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8228 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8229 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8230 #endif
8231 /* May be allocated at isolcpus cmdline parse time */
8232 if (cpu_isolated_map == NULL)
8233 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8234 #endif /* SMP */
8236 scheduler_running = 1;
8239 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8240 static inline int preempt_count_equals(int preempt_offset)
8242 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8244 return (nested == preempt_offset);
8247 static int __might_sleep_init_called;
8248 int __init __might_sleep_init(void)
8250 __might_sleep_init_called = 1;
8251 return 0;
8253 early_initcall(__might_sleep_init);
8255 void __might_sleep(const char *file, int line, int preempt_offset)
8257 #ifdef in_atomic
8258 static unsigned long prev_jiffy; /* ratelimiting */
8260 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8261 oops_in_progress)
8262 return;
8263 if (system_state != SYSTEM_RUNNING &&
8264 (!__might_sleep_init_called || system_state != SYSTEM_BOOTING))
8265 return;
8266 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8267 return;
8268 prev_jiffy = jiffies;
8270 printk(KERN_ERR
8271 "BUG: sleeping function called from invalid context at %s:%d\n",
8272 file, line);
8273 printk(KERN_ERR
8274 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8275 in_atomic(), irqs_disabled(),
8276 current->pid, current->comm);
8278 debug_show_held_locks(current);
8279 if (irqs_disabled())
8280 print_irqtrace_events(current);
8281 dump_stack();
8282 #endif
8284 EXPORT_SYMBOL(__might_sleep);
8285 #endif
8287 #ifdef CONFIG_MAGIC_SYSRQ
8288 static void normalize_task(struct rq *rq, struct task_struct *p)
8290 const struct sched_class *prev_class = p->sched_class;
8291 int old_prio = p->prio;
8292 int on_rq;
8294 on_rq = p->on_rq;
8295 if (on_rq)
8296 deactivate_task(rq, p, 0);
8297 __setscheduler(rq, p, SCHED_NORMAL, 0);
8298 if (on_rq) {
8299 activate_task(rq, p, 0);
8300 resched_task(rq->curr);
8303 check_class_changed(rq, p, prev_class, old_prio);
8306 void normalize_rt_tasks(void)
8308 struct task_struct *g, *p;
8309 unsigned long flags;
8310 struct rq *rq;
8312 read_lock_irqsave(&tasklist_lock, flags);
8313 do_each_thread(g, p) {
8315 * Only normalize user tasks:
8317 if (!p->mm)
8318 continue;
8320 p->se.exec_start = 0;
8321 #ifdef CONFIG_SCHEDSTATS
8322 p->se.statistics.wait_start = 0;
8323 p->se.statistics.sleep_start = 0;
8324 p->se.statistics.block_start = 0;
8325 #endif
8327 if (!rt_task(p)) {
8329 * Renice negative nice level userspace
8330 * tasks back to 0:
8332 if (TASK_NICE(p) < 0 && p->mm)
8333 set_user_nice(p, 0);
8334 continue;
8337 raw_spin_lock(&p->pi_lock);
8338 rq = __task_rq_lock(p);
8340 normalize_task(rq, p);
8342 __task_rq_unlock(rq);
8343 raw_spin_unlock(&p->pi_lock);
8344 } while_each_thread(g, p);
8346 read_unlock_irqrestore(&tasklist_lock, flags);
8349 #endif /* CONFIG_MAGIC_SYSRQ */
8351 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8353 * These functions are only useful for the IA64 MCA handling, or kdb.
8355 * They can only be called when the whole system has been
8356 * stopped - every CPU needs to be quiescent, and no scheduling
8357 * activity can take place. Using them for anything else would
8358 * be a serious bug, and as a result, they aren't even visible
8359 * under any other configuration.
8363 * curr_task - return the current task for a given cpu.
8364 * @cpu: the processor in question.
8366 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8368 struct task_struct *curr_task(int cpu)
8370 return cpu_curr(cpu);
8373 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8375 #ifdef CONFIG_IA64
8377 * set_curr_task - set the current task for a given cpu.
8378 * @cpu: the processor in question.
8379 * @p: the task pointer to set.
8381 * Description: This function must only be used when non-maskable interrupts
8382 * are serviced on a separate stack. It allows the architecture to switch the
8383 * notion of the current task on a cpu in a non-blocking manner. This function
8384 * must be called with all CPU's synchronized, and interrupts disabled, the
8385 * and caller must save the original value of the current task (see
8386 * curr_task() above) and restore that value before reenabling interrupts and
8387 * re-starting the system.
8389 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8391 void set_curr_task(int cpu, struct task_struct *p)
8393 cpu_curr(cpu) = p;
8394 #ifdef CONFIG_PREEMPT_COUNT_CPU
8395 smp_wmb();
8396 #endif
8399 #endif
8401 #ifdef CONFIG_FAIR_GROUP_SCHED
8402 static void free_fair_sched_group(struct task_group *tg)
8404 int i;
8406 for_each_possible_cpu(i) {
8407 if (tg->cfs_rq)
8408 kfree(tg->cfs_rq[i]);
8409 if (tg->se)
8410 kfree(tg->se[i]);
8413 kfree(tg->cfs_rq);
8414 kfree(tg->se);
8417 static
8418 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8420 struct cfs_rq *cfs_rq;
8421 struct sched_entity *se;
8422 int i;
8424 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8425 if (!tg->cfs_rq)
8426 goto err;
8427 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8428 if (!tg->se)
8429 goto err;
8431 tg->shares = NICE_0_LOAD;
8433 for_each_possible_cpu(i) {
8434 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8435 GFP_KERNEL, cpu_to_node(i));
8436 if (!cfs_rq)
8437 goto err;
8439 se = kzalloc_node(sizeof(struct sched_entity),
8440 GFP_KERNEL, cpu_to_node(i));
8441 if (!se)
8442 goto err_free_rq;
8444 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8447 return 1;
8449 err_free_rq:
8450 kfree(cfs_rq);
8451 err:
8452 return 0;
8455 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8457 struct rq *rq = cpu_rq(cpu);
8458 unsigned long flags;
8461 * Only empty task groups can be destroyed; so we can speculatively
8462 * check on_list without danger of it being re-added.
8464 if (!tg->cfs_rq[cpu]->on_list)
8465 return;
8467 raw_spin_lock_irqsave(&rq->lock, flags);
8468 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8469 raw_spin_unlock_irqrestore(&rq->lock, flags);
8471 #else /* !CONFG_FAIR_GROUP_SCHED */
8472 static inline void free_fair_sched_group(struct task_group *tg)
8476 static inline
8477 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8479 return 1;
8482 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8485 #endif /* CONFIG_FAIR_GROUP_SCHED */
8487 #ifdef CONFIG_RT_GROUP_SCHED
8488 static void free_rt_sched_group(struct task_group *tg)
8490 int i;
8492 destroy_rt_bandwidth(&tg->rt_bandwidth);
8494 for_each_possible_cpu(i) {
8495 if (tg->rt_rq)
8496 kfree(tg->rt_rq[i]);
8497 if (tg->rt_se)
8498 kfree(tg->rt_se[i]);
8501 kfree(tg->rt_rq);
8502 kfree(tg->rt_se);
8505 static
8506 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8508 struct rt_rq *rt_rq;
8509 struct sched_rt_entity *rt_se;
8510 int i;
8512 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8513 if (!tg->rt_rq)
8514 goto err;
8515 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8516 if (!tg->rt_se)
8517 goto err;
8519 init_rt_bandwidth(&tg->rt_bandwidth,
8520 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8522 for_each_possible_cpu(i) {
8523 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8524 GFP_KERNEL, cpu_to_node(i));
8525 if (!rt_rq)
8526 goto err;
8528 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8529 GFP_KERNEL, cpu_to_node(i));
8530 if (!rt_se)
8531 goto err_free_rq;
8533 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8536 return 1;
8538 err_free_rq:
8539 kfree(rt_rq);
8540 err:
8541 return 0;
8543 #else /* !CONFIG_RT_GROUP_SCHED */
8544 static inline void free_rt_sched_group(struct task_group *tg)
8548 static inline
8549 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8551 return 1;
8553 #endif /* CONFIG_RT_GROUP_SCHED */
8555 #ifdef CONFIG_CGROUP_SCHED
8556 static void free_sched_group(struct task_group *tg)
8558 free_fair_sched_group(tg);
8559 free_rt_sched_group(tg);
8560 autogroup_free(tg);
8561 kfree(tg);
8564 /* allocate runqueue etc for a new task group */
8565 struct task_group *sched_create_group(struct task_group *parent)
8567 struct task_group *tg;
8568 unsigned long flags;
8570 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8571 if (!tg)
8572 return ERR_PTR(-ENOMEM);
8574 if (!alloc_fair_sched_group(tg, parent))
8575 goto err;
8577 if (!alloc_rt_sched_group(tg, parent))
8578 goto err;
8580 spin_lock_irqsave(&task_group_lock, flags);
8581 list_add_rcu(&tg->list, &task_groups);
8583 WARN_ON(!parent); /* root should already exist */
8585 tg->parent = parent;
8586 INIT_LIST_HEAD(&tg->children);
8587 list_add_rcu(&tg->siblings, &parent->children);
8588 spin_unlock_irqrestore(&task_group_lock, flags);
8590 return tg;
8592 err:
8593 free_sched_group(tg);
8594 return ERR_PTR(-ENOMEM);
8597 /* rcu callback to free various structures associated with a task group */
8598 static void free_sched_group_rcu(struct rcu_head *rhp)
8600 /* now it should be safe to free those cfs_rqs */
8601 free_sched_group(container_of(rhp, struct task_group, rcu));
8604 /* Destroy runqueue etc associated with a task group */
8605 void sched_destroy_group(struct task_group *tg)
8607 unsigned long flags;
8608 int i;
8610 /* end participation in shares distribution */
8611 for_each_possible_cpu(i)
8612 unregister_fair_sched_group(tg, i);
8614 spin_lock_irqsave(&task_group_lock, flags);
8615 list_del_rcu(&tg->list);
8616 list_del_rcu(&tg->siblings);
8617 spin_unlock_irqrestore(&task_group_lock, flags);
8619 /* wait for possible concurrent references to cfs_rqs complete */
8620 call_rcu(&tg->rcu, free_sched_group_rcu);
8623 /* change task's runqueue when it moves between groups.
8624 * The caller of this function should have put the task in its new group
8625 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8626 * reflect its new group.
8628 void sched_move_task(struct task_struct *tsk)
8630 int on_rq, running;
8631 unsigned long flags;
8632 struct rq *rq;
8634 rq = task_rq_lock(tsk, &flags);
8636 running = task_current(rq, tsk);
8637 on_rq = tsk->on_rq;
8639 if (on_rq)
8640 dequeue_task(rq, tsk, 0);
8641 if (unlikely(running))
8642 tsk->sched_class->put_prev_task(rq, tsk);
8644 #ifdef CONFIG_FAIR_GROUP_SCHED
8645 if (tsk->sched_class->task_move_group)
8646 tsk->sched_class->task_move_group(tsk, on_rq);
8647 else
8648 #endif
8649 set_task_rq(tsk, task_cpu(tsk));
8651 if (unlikely(running))
8652 tsk->sched_class->set_curr_task(rq);
8653 if (on_rq)
8654 enqueue_task(rq, tsk, 0);
8656 task_rq_unlock(rq, tsk, &flags);
8658 #endif /* CONFIG_CGROUP_SCHED */
8660 #ifdef CONFIG_FAIR_GROUP_SCHED
8661 static DEFINE_MUTEX(shares_mutex);
8663 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8665 int i;
8666 unsigned long flags;
8669 * We can't change the weight of the root cgroup.
8671 if (!tg->se[0])
8672 return -EINVAL;
8674 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8676 mutex_lock(&shares_mutex);
8677 if (tg->shares == shares)
8678 goto done;
8680 tg->shares = shares;
8681 for_each_possible_cpu(i) {
8682 struct rq *rq = cpu_rq(i);
8683 struct sched_entity *se;
8685 se = tg->se[i];
8686 /* Propagate contribution to hierarchy */
8687 raw_spin_lock_irqsave(&rq->lock, flags);
8688 for_each_sched_entity(se)
8689 update_cfs_shares(group_cfs_rq(se));
8690 raw_spin_unlock_irqrestore(&rq->lock, flags);
8693 done:
8694 mutex_unlock(&shares_mutex);
8695 return 0;
8698 unsigned long sched_group_shares(struct task_group *tg)
8700 return tg->shares;
8702 #endif
8704 #ifdef CONFIG_RT_GROUP_SCHED
8706 * Ensure that the real time constraints are schedulable.
8708 static DEFINE_MUTEX(rt_constraints_mutex);
8710 static unsigned long to_ratio(u64 period, u64 runtime)
8712 if (runtime == RUNTIME_INF)
8713 return 1ULL << 20;
8715 return div64_u64(runtime << 20, period);
8718 /* Must be called with tasklist_lock held */
8719 static inline int tg_has_rt_tasks(struct task_group *tg)
8721 struct task_struct *g, *p;
8723 do_each_thread(g, p) {
8724 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8725 return 1;
8726 } while_each_thread(g, p);
8728 return 0;
8731 struct rt_schedulable_data {
8732 struct task_group *tg;
8733 u64 rt_period;
8734 u64 rt_runtime;
8737 static int tg_schedulable(struct task_group *tg, void *data)
8739 struct rt_schedulable_data *d = data;
8740 struct task_group *child;
8741 unsigned long total, sum = 0;
8742 u64 period, runtime;
8744 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8745 runtime = tg->rt_bandwidth.rt_runtime;
8747 if (tg == d->tg) {
8748 period = d->rt_period;
8749 runtime = d->rt_runtime;
8753 * Cannot have more runtime than the period.
8755 if (runtime > period && runtime != RUNTIME_INF)
8756 return -EINVAL;
8759 * Ensure we don't starve existing RT tasks.
8761 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8762 return -EBUSY;
8764 total = to_ratio(period, runtime);
8767 * Nobody can have more than the global setting allows.
8769 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8770 return -EINVAL;
8773 * The sum of our children's runtime should not exceed our own.
8775 list_for_each_entry_rcu(child, &tg->children, siblings) {
8776 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8777 runtime = child->rt_bandwidth.rt_runtime;
8779 if (child == d->tg) {
8780 period = d->rt_period;
8781 runtime = d->rt_runtime;
8784 sum += to_ratio(period, runtime);
8787 if (sum > total)
8788 return -EINVAL;
8790 return 0;
8793 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8795 struct rt_schedulable_data data = {
8796 .tg = tg,
8797 .rt_period = period,
8798 .rt_runtime = runtime,
8801 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8804 static int tg_set_bandwidth(struct task_group *tg,
8805 u64 rt_period, u64 rt_runtime)
8807 int i, err = 0;
8809 mutex_lock(&rt_constraints_mutex);
8810 read_lock(&tasklist_lock);
8811 err = __rt_schedulable(tg, rt_period, rt_runtime);
8812 if (err)
8813 goto unlock;
8815 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8816 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8817 tg->rt_bandwidth.rt_runtime = rt_runtime;
8819 for_each_possible_cpu(i) {
8820 struct rt_rq *rt_rq = tg->rt_rq[i];
8822 raw_spin_lock(&rt_rq->rt_runtime_lock);
8823 rt_rq->rt_runtime = rt_runtime;
8824 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8826 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8827 unlock:
8828 read_unlock(&tasklist_lock);
8829 mutex_unlock(&rt_constraints_mutex);
8831 return err;
8834 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8836 u64 rt_runtime, rt_period;
8838 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8839 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8840 if (rt_runtime_us < 0)
8841 rt_runtime = RUNTIME_INF;
8843 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8846 long sched_group_rt_runtime(struct task_group *tg)
8848 u64 rt_runtime_us;
8850 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8851 return -1;
8853 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8854 do_div(rt_runtime_us, NSEC_PER_USEC);
8855 return rt_runtime_us;
8858 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8860 u64 rt_runtime, rt_period;
8862 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8863 rt_runtime = tg->rt_bandwidth.rt_runtime;
8865 if (rt_period == 0)
8866 return -EINVAL;
8868 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8871 long sched_group_rt_period(struct task_group *tg)
8873 u64 rt_period_us;
8875 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8876 do_div(rt_period_us, NSEC_PER_USEC);
8877 return rt_period_us;
8880 static int sched_rt_global_constraints(void)
8882 u64 runtime, period;
8883 int ret = 0;
8885 if (sysctl_sched_rt_period <= 0)
8886 return -EINVAL;
8888 runtime = global_rt_runtime();
8889 period = global_rt_period();
8892 * Sanity check on the sysctl variables.
8894 if (runtime > period && runtime != RUNTIME_INF)
8895 return -EINVAL;
8897 mutex_lock(&rt_constraints_mutex);
8898 read_lock(&tasklist_lock);
8899 ret = __rt_schedulable(NULL, 0, 0);
8900 read_unlock(&tasklist_lock);
8901 mutex_unlock(&rt_constraints_mutex);
8903 return ret;
8906 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8908 /* Don't accept realtime tasks when there is no way for them to run */
8909 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8910 return 0;
8912 return 1;
8915 #else /* !CONFIG_RT_GROUP_SCHED */
8916 static int sched_rt_global_constraints(void)
8918 unsigned long flags;
8919 int i;
8921 if (sysctl_sched_rt_period <= 0)
8922 return -EINVAL;
8925 * There's always some RT tasks in the root group
8926 * -- migration, kstopmachine etc..
8928 if (sysctl_sched_rt_runtime == 0)
8929 return -EBUSY;
8931 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8932 for_each_possible_cpu(i) {
8933 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8935 raw_spin_lock(&rt_rq->rt_runtime_lock);
8936 rt_rq->rt_runtime = global_rt_runtime();
8937 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8939 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8941 return 0;
8943 #endif /* CONFIG_RT_GROUP_SCHED */
8945 int sched_rt_handler(struct ctl_table *table, int write,
8946 void __user *buffer, size_t *lenp,
8947 loff_t *ppos)
8949 int ret;
8950 int old_period, old_runtime;
8951 static DEFINE_MUTEX(mutex);
8953 mutex_lock(&mutex);
8954 old_period = sysctl_sched_rt_period;
8955 old_runtime = sysctl_sched_rt_runtime;
8957 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8959 if (!ret && write) {
8960 ret = sched_rt_global_constraints();
8961 if (ret) {
8962 sysctl_sched_rt_period = old_period;
8963 sysctl_sched_rt_runtime = old_runtime;
8964 } else {
8965 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8966 def_rt_bandwidth.rt_period =
8967 ns_to_ktime(global_rt_period());
8970 mutex_unlock(&mutex);
8972 return ret;
8975 #ifdef CONFIG_CGROUP_SCHED
8977 /* return corresponding task_group object of a cgroup */
8978 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8980 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8981 struct task_group, css);
8984 static struct cgroup_subsys_state *
8985 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8987 struct task_group *tg, *parent;
8989 if (!cgrp->parent) {
8990 /* This is early initialization for the top cgroup */
8991 return &root_task_group.css;
8994 parent = cgroup_tg(cgrp->parent);
8995 tg = sched_create_group(parent);
8996 if (IS_ERR(tg))
8997 return ERR_PTR(-ENOMEM);
8999 return &tg->css;
9002 static void
9003 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9005 struct task_group *tg = cgroup_tg(cgrp);
9007 sched_destroy_group(tg);
9010 static int
9011 cpu_cgroup_allow_attach(struct cgroup *cgrp, struct task_struct *tsk)
9013 const struct cred *cred = current_cred(), *tcred;
9015 tcred = __task_cred(tsk);
9017 if ((current != tsk) && !capable(CAP_SYS_NICE) &&
9018 cred->euid != tcred->uid && cred->euid != tcred->suid)
9019 return -EACCES;
9021 return 0;
9024 static int
9025 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9027 #ifdef CONFIG_RT_GROUP_SCHED
9028 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9029 return -EINVAL;
9030 #else
9031 /* We don't support RT-tasks being in separate groups */
9032 if (tsk->sched_class != &fair_sched_class)
9033 return -EINVAL;
9034 #endif
9035 return 0;
9038 static void
9039 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9041 sched_move_task(tsk);
9044 static void
9045 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9046 struct cgroup *old_cgrp, struct task_struct *task)
9049 * cgroup_exit() is called in the copy_process() failure path.
9050 * Ignore this case since the task hasn't ran yet, this avoids
9051 * trying to poke a half freed task state from generic code.
9053 if (!(task->flags & PF_EXITING))
9054 return;
9056 sched_move_task(task);
9059 #ifdef CONFIG_FAIR_GROUP_SCHED
9060 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9061 u64 shareval)
9063 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9066 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9068 struct task_group *tg = cgroup_tg(cgrp);
9070 return (u64) scale_load_down(tg->shares);
9072 #endif /* CONFIG_FAIR_GROUP_SCHED */
9074 #ifdef CONFIG_RT_GROUP_SCHED
9075 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9076 s64 val)
9078 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9081 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9083 return sched_group_rt_runtime(cgroup_tg(cgrp));
9086 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9087 u64 rt_period_us)
9089 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9092 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9094 return sched_group_rt_period(cgroup_tg(cgrp));
9096 #endif /* CONFIG_RT_GROUP_SCHED */
9098 static struct cftype cpu_files[] = {
9099 #ifdef CONFIG_FAIR_GROUP_SCHED
9101 .name = "shares",
9102 .read_u64 = cpu_shares_read_u64,
9103 .write_u64 = cpu_shares_write_u64,
9105 #endif
9106 #ifdef CONFIG_RT_GROUP_SCHED
9108 .name = "rt_runtime_us",
9109 .read_s64 = cpu_rt_runtime_read,
9110 .write_s64 = cpu_rt_runtime_write,
9113 .name = "rt_period_us",
9114 .read_u64 = cpu_rt_period_read_uint,
9115 .write_u64 = cpu_rt_period_write_uint,
9117 #endif
9120 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9122 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9125 struct cgroup_subsys cpu_cgroup_subsys = {
9126 .name = "cpu",
9127 .create = cpu_cgroup_create,
9128 .destroy = cpu_cgroup_destroy,
9129 .allow_attach = cpu_cgroup_allow_attach,
9130 .can_attach_task = cpu_cgroup_can_attach_task,
9131 .attach_task = cpu_cgroup_attach_task,
9132 .exit = cpu_cgroup_exit,
9133 .populate = cpu_cgroup_populate,
9134 .subsys_id = cpu_cgroup_subsys_id,
9135 .early_init = 1,
9138 #endif /* CONFIG_CGROUP_SCHED */
9140 #ifdef CONFIG_CGROUP_CPUACCT
9143 * CPU accounting code for task groups.
9145 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9146 * (balbir@in.ibm.com).
9149 /* track cpu usage of a group of tasks and its child groups */
9150 struct cpuacct {
9151 struct cgroup_subsys_state css;
9152 /* cpuusage holds pointer to a u64-type object on every cpu */
9153 u64 __percpu *cpuusage;
9154 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9155 struct cpuacct *parent;
9156 struct cpuacct_charge_calls *cpufreq_fn;
9157 void *cpuacct_data;
9160 static struct cpuacct *cpuacct_root;
9162 /* Default calls for cpufreq accounting */
9163 static struct cpuacct_charge_calls *cpuacct_cpufreq;
9164 int cpuacct_register_cpufreq(struct cpuacct_charge_calls *fn)
9166 cpuacct_cpufreq = fn;
9169 * Root node is created before platform can register callbacks,
9170 * initalize here.
9172 if (cpuacct_root && fn) {
9173 cpuacct_root->cpufreq_fn = fn;
9174 if (fn->init)
9175 fn->init(&cpuacct_root->cpuacct_data);
9177 return 0;
9180 struct cgroup_subsys cpuacct_subsys;
9182 /* return cpu accounting group corresponding to this container */
9183 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9185 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9186 struct cpuacct, css);
9189 /* return cpu accounting group to which this task belongs */
9190 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9192 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9193 struct cpuacct, css);
9196 /* create a new cpu accounting group */
9197 static struct cgroup_subsys_state *cpuacct_create(
9198 struct cgroup_subsys *ss, struct cgroup *cgrp)
9200 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9201 int i;
9203 if (!ca)
9204 goto out;
9206 ca->cpuusage = alloc_percpu(u64);
9207 if (!ca->cpuusage)
9208 goto out_free_ca;
9210 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9211 if (percpu_counter_init(&ca->cpustat[i], 0))
9212 goto out_free_counters;
9214 ca->cpufreq_fn = cpuacct_cpufreq;
9216 /* If available, have platform code initalize cpu frequency table */
9217 if (ca->cpufreq_fn && ca->cpufreq_fn->init)
9218 ca->cpufreq_fn->init(&ca->cpuacct_data);
9220 if (cgrp->parent)
9221 ca->parent = cgroup_ca(cgrp->parent);
9222 else
9223 cpuacct_root = ca;
9225 return &ca->css;
9227 out_free_counters:
9228 while (--i >= 0)
9229 percpu_counter_destroy(&ca->cpustat[i]);
9230 free_percpu(ca->cpuusage);
9231 out_free_ca:
9232 kfree(ca);
9233 out:
9234 return ERR_PTR(-ENOMEM);
9237 /* destroy an existing cpu accounting group */
9238 static void
9239 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9241 struct cpuacct *ca = cgroup_ca(cgrp);
9242 int i;
9244 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9245 percpu_counter_destroy(&ca->cpustat[i]);
9246 free_percpu(ca->cpuusage);
9247 kfree(ca);
9250 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9252 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9253 u64 data;
9255 #ifndef CONFIG_64BIT
9257 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9259 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9260 data = *cpuusage;
9261 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9262 #else
9263 data = *cpuusage;
9264 #endif
9266 return data;
9269 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9271 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9273 #ifndef CONFIG_64BIT
9275 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9277 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9278 *cpuusage = val;
9279 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9280 #else
9281 *cpuusage = val;
9282 #endif
9285 /* return total cpu usage (in nanoseconds) of a group */
9286 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9288 struct cpuacct *ca = cgroup_ca(cgrp);
9289 u64 totalcpuusage = 0;
9290 int i;
9292 for_each_present_cpu(i)
9293 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9295 return totalcpuusage;
9298 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9299 u64 reset)
9301 struct cpuacct *ca = cgroup_ca(cgrp);
9302 int err = 0;
9303 int i;
9305 if (reset) {
9306 err = -EINVAL;
9307 goto out;
9310 for_each_present_cpu(i)
9311 cpuacct_cpuusage_write(ca, i, 0);
9313 out:
9314 return err;
9317 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9318 struct seq_file *m)
9320 struct cpuacct *ca = cgroup_ca(cgroup);
9321 u64 percpu;
9322 int i;
9324 for_each_present_cpu(i) {
9325 percpu = cpuacct_cpuusage_read(ca, i);
9326 seq_printf(m, "%llu ", (unsigned long long) percpu);
9328 seq_printf(m, "\n");
9329 return 0;
9332 static const char *cpuacct_stat_desc[] = {
9333 [CPUACCT_STAT_USER] = "user",
9334 [CPUACCT_STAT_SYSTEM] = "system",
9337 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9338 struct cgroup_map_cb *cb)
9340 struct cpuacct *ca = cgroup_ca(cgrp);
9341 int i;
9343 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9344 s64 val = percpu_counter_read(&ca->cpustat[i]);
9345 val = cputime64_to_clock_t(val);
9346 cb->fill(cb, cpuacct_stat_desc[i], val);
9348 return 0;
9351 static int cpuacct_cpufreq_show(struct cgroup *cgrp, struct cftype *cft,
9352 struct cgroup_map_cb *cb)
9354 struct cpuacct *ca = cgroup_ca(cgrp);
9355 if (ca->cpufreq_fn && ca->cpufreq_fn->cpufreq_show)
9356 ca->cpufreq_fn->cpufreq_show(ca->cpuacct_data, cb);
9358 return 0;
9361 /* return total cpu power usage (milliWatt second) of a group */
9362 static u64 cpuacct_powerusage_read(struct cgroup *cgrp, struct cftype *cft)
9364 int i;
9365 struct cpuacct *ca = cgroup_ca(cgrp);
9366 u64 totalpower = 0;
9368 if (ca->cpufreq_fn && ca->cpufreq_fn->power_usage)
9369 for_each_present_cpu(i) {
9370 totalpower += ca->cpufreq_fn->power_usage(
9371 ca->cpuacct_data);
9374 return totalpower;
9377 static struct cftype files[] = {
9379 .name = "usage",
9380 .read_u64 = cpuusage_read,
9381 .write_u64 = cpuusage_write,
9384 .name = "usage_percpu",
9385 .read_seq_string = cpuacct_percpu_seq_read,
9388 .name = "stat",
9389 .read_map = cpuacct_stats_show,
9392 .name = "cpufreq",
9393 .read_map = cpuacct_cpufreq_show,
9396 .name = "power",
9397 .read_u64 = cpuacct_powerusage_read
9401 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9403 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9407 * charge this task's execution time to its accounting group.
9409 * called with rq->lock held.
9411 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9413 struct cpuacct *ca;
9414 int cpu;
9416 if (unlikely(!cpuacct_subsys.active))
9417 return;
9419 cpu = task_cpu(tsk);
9421 rcu_read_lock();
9423 ca = task_ca(tsk);
9425 for (; ca; ca = ca->parent) {
9426 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9427 *cpuusage += cputime;
9429 /* Call back into platform code to account for CPU speeds */
9430 if (ca->cpufreq_fn && ca->cpufreq_fn->charge)
9431 ca->cpufreq_fn->charge(ca->cpuacct_data, cputime, cpu);
9434 rcu_read_unlock();
9438 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9439 * in cputime_t units. As a result, cpuacct_update_stats calls
9440 * percpu_counter_add with values large enough to always overflow the
9441 * per cpu batch limit causing bad SMP scalability.
9443 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9444 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9445 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9447 #ifdef CONFIG_SMP
9448 #define CPUACCT_BATCH \
9449 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9450 #else
9451 #define CPUACCT_BATCH 0
9452 #endif
9455 * Charge the system/user time to the task's accounting group.
9457 static void cpuacct_update_stats(struct task_struct *tsk,
9458 enum cpuacct_stat_index idx, cputime_t val)
9460 struct cpuacct *ca;
9461 int batch = CPUACCT_BATCH;
9463 if (unlikely(!cpuacct_subsys.active))
9464 return;
9466 rcu_read_lock();
9467 ca = task_ca(tsk);
9469 do {
9470 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9471 ca = ca->parent;
9472 } while (ca);
9473 rcu_read_unlock();
9476 struct cgroup_subsys cpuacct_subsys = {
9477 .name = "cpuacct",
9478 .create = cpuacct_create,
9479 .destroy = cpuacct_destroy,
9480 .populate = cpuacct_populate,
9481 .subsys_id = cpuacct_subsys_id,
9483 #endif /* CONFIG_CGROUP_CPUACCT */